
Data Sharing Conscious Scheduling for Multi-threaded
Applications on SMP Machines

Shlomit S. Pinter and Marcel Zalmanovici

IBM Haifa Research Lab, Haifa University, Mount Carmel,
31905 Haifa, Israel

{shlomit, marcel}@il.ibm.com

Abstract. Extensive use of multi-threaded applications that run on SMP mac-
hines, justifies modifications in thread scheduling algorithms to consider
threads’ characteristics in order to improve performance. Current schedulers
(e.g. in Linux, AIX) avoid migrating tasks between CPUs unless absolutely
necessary. Unwarranted data cache misses occur when tasks that share data run
on different CPUs, or are far apart time-wise on the same CPU. This work pre-
sents an extension to the Linux scheduler that exploits inter-task data relations
to reduce data cache misses in multi-threaded applications running on SMP
platforms, thus improving runtime, memory throughput, and energy consumpt-
ion. Our approach schedules the tasks to the CPU that holds the relevant data
rather than to the one with highest affinity. We observed improvements in CPU
time and throughput on several benchmarks. For the Chat benchmark, the im-
provement in CPU time and cache misses is over 30% on average.

1 Introduction

The demand for greater computing capacity has lead to an increased use of multi-
processor machines. Symmetric multi-processing (SMP) is a specific implementation
of multiprocessing in which multiple CPUs are physically connected via a common
high-speed bus and share resources such as memory, peripherals, and OS. With the
rise in the number of parallel multi-threaded applications, the popularity of SMP has
increased as well because it provides a way to utilize the application level parallelism
for performance gain.

Schedulers in many operating systems, such as Linux, UNIX and AIX, implement
variations on processor affinity thread (task) scheduling. The observation behind this
choice is the desire to reuse data (and instructions) remaining in the processor's cache
from a previous dispatch of the thread. We observed that in SMP machines unneces-
sary cache misses occur when tasks that share data run on different CPUs.

Several studies have examined the affinity of a task to a processor based on how
fast a task can run on a processor in heterogeneous processor environments [4] [7]
[15]. Those studies provide a variety of algorithms for different timing metrics and
conditions for scheduling tasks to CPUs. Another type of processor affinity looks at
the resources bound to processors [8] [15]. These studies attempt to optimize a certain

metric under constraints, e.g. the task must execute on a processor that has access to
the required resource. Another type, which has received far less attention, is based on
tasks’ affinity to cache contents, i.e., data affinity. The difficulty in utilizing such af-
finity is in its dynamic nature. Our work suggests and measures new methods that pro-
duce scheduling based on data affinity information.

The potential for performance improvements from exploiting data affinity is dis-
puted. Squillante's theoretical work and simulations [14] have exhibited promising po-
tential. Conversely, Gupta [6] in his simulations and Vaswani [12] in his measure-
ments and tests have concluded that exploiting data affinity has a negligible effect for
multi-threaded applications. These results should be rethought in view of architectural
advances and the ever-growing use of multi-threading in today’s applications.

We found that most applications can benefit from data affinity, regardless of the
pessimistic claims mentioned above. Applications consisting of long-living, frequently
synchronizing, and memory-intensive threads benefit the most. Moreover, the steady
growth in cache sizes implies that a large portion of a task's data will reside in proces-
sor's cache, allowing optimizations to ignore the exact data access patterns of threads,
thus simplifying data affinity based optimizations. Furthermore, the increase in the
relative cost of cache misses [1] makes optimizations that reduce them, such as ours,
attractive. In addition, the likelihood that the instructions and data remain in the cache
between consecutive dispatching decreases as the number of threads in the system
grows; this is a problem which can be alleviated by improving data affinity. Our
scheme, as opposed to CPU affinity, maintains cache hotness within an époque by
batching together threads that share data. However, data affinity may introduce addi-
tional thread preemption or migration that should be carefully traded-off with the extra
cache misses contributed by CPU affinity.

We propose an algorithm that endeavors reduction of data cache misses by apply-
ing a paradigm whose essence is ‘run the task on the processor holding the currently
required data’, as opposed to CPU affinity. This paradigm ignores the processor on
which the task previously ran and focuses on what data it is about to work on and its
location. Furthermore, our approach batches together tasks that use the same data and
runs them in succession to maximize cache hotness utilization. The scheduler main-
tains information on data fragments (DF) shared by multiple tasks. A newly imple-
mented syscall provides DF hints at strategic locations. Hints are generated by the
compiler, the user, or potentially by the scheduler. A DF can be a set of variables,
parts of arrays, etc. Based on available hints, the scheduler dynamically batches to-
gether ready-to-run tasks according to their current DF. Each batch is assigned a CPU
and its tasks run in succession to minimize data cache misses. When a task accesses a
different DF it is migrated to the appropriate batch. The load balancer attempts to pre-
serve batches during migration.

We formally defined our optimization problem and implemented our scheduling al-
gorithm in the Linux kernel version 2.6. Experiments were conducted on a few
benchmarks. The results are very encouraging; cache misses were reduced by up to an
order of magnitude on several tests, throughput in benchmarks such as the ����
benchmark [16] doubled in some cases and the total application runtime and cache
misses were reduced on most tests.

2 Model

The scheduler of an OS handles the lists of running, waiting, and blocked threads. Its
responsibilities include scheduling threads onto CPUs, determining their execution or-
der and load balancing the system. In this section we present a system model and use
it to describe how threads are dynamically mapped for execution, thereby allowing us
to identify sources of overhead incurred by threads contending on the data cache.

2.1 Hardware Model

Our model of an SMP machine consists of processors and caches.

Fig. 1. SMP Architecture

For simplicity, the following assumptions are made on the model:
� Each processor has a single cache and all caches are of equal size.
� The hardware’s “snoopy protocol” is ‘write-invalidate’.
� The cache can contain all the data for the present run of a thread.

The SMP hardware utilizes some variation of a “snoopy protocol” in order to keep the
data in caches coherent. Common policies are: Write-invalidate protocols that allow
multiple readers, but only one writer at a time. Every write to a shared cache line
(block) must be preceded by the invalidation of all other copies of the same line. Lo-
cal writes to exclusive lines are cheap. Write-update/(broadcast) schemes follow a
quite an opposite approach. The word to be written to a shared line is distributed to all
others, and caches containing that block can update it, thus preventing the stale state.

2.2 System Model

Threads use the machine resources on a need basis. The threads' running order and run
time on each époque depend on their resource usage. Once a thread is selected for
execution on some CPU, it can use all its resources (e.g. memory, caches and bus).
The scheduling process controls when and on which CPU the thread will execute.

The following notations are used:
� Each cache is divided into k lines, which can be individually filled, whereas

the write back to memory is done for the whole cache by the flush operation.

Main Memory

Pn

Cn

tr tw

Processors

Data caches

P1

C1

tr tw

� Time to fill a cache line is tr and tw to write it. Tr and Tw are for whole cache.
� The execution time of a single thread v is ex(v).
� Using a cache takes one of the following four forms:

Read Write Description

tr = 0 tw = 0 No writes were done by the previous thread thus cache
is not dirty, and the needed data is already in cache.

l·tr tw = 0 l needed data lines are not present in memory; reading
the l lines takes l·tr time units; no writes are performed.

tr = 0 j·tw
j data cache lines are dirty and flushing them back
to memory takes j·tw time units. Needed data is in cache.

l·tr j·tw
The thread needs to fill the cache with l lines of
data (l·tr), and flush changed data requiring write (j·tw).

The following example demonstrates how the cache influences scheduling results. To
simplify the example, the following assumptions are used:
� The whole data cache is flushed if the new thread uses different data fragment
� During execution the thread utilizes all the cache attached to the CPU.
� Each thread uses a single data fragment.

Example: Assume a cache with a single cache line. Let t0 be the time in which thread
v is mapped to processor P with cache CP. The execution of v can start at t1 = t0 + Tr
when the required data is read to cache, and end at t2 = t1 + ex(v) + Tw. In our example:
� Threads set, TH = {v0, v1, v2, v3, v4}, ex(vn) = 1, 0 � n � 4, Tr = Tw = 4
� Number of processors (P) = number of caches (C) = 2

The following constraints are given for the whole run of the application:
� v2, v3 and v0 use the same data fragment – DF1.
� v1 and v4 use the same data fragment - DF2
Threads’ story: The program starts with thread v0 running. It spawns four additional

threads v1 – v4 and finishes. In a CPU affinity based scheduler, by default v1 – v4 are
scheduled to run on the same CPU as their parent, v0. Assume v0 ran on P1. Since hav-
ing all four remaining threads run on P1 causes imbalance, the load balancer will move
two threads to P2. Two possible scheduling scenarios are presented in Figures 2 and 3.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
P1 Tr(v0) ex(v0) Tr(v1) ex(v1) Tw(v1) Tr(v2) ex(v2) Tw(v2)
P2 Tr(v3) ex(v3) Tw(v3) Tr(v4) ex(v4) Tw(v4)

Fig. 2. Pure CPU affinity based scheduling

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P1 Tr(v0) ex(v0) ex(v2) ex(v3) Tw(v3)
P2 Tr(v1) ex(v1) ex(v4) Tw(v4)

Fig. 3. Data affinity based scheduling following the constraints on data sharing

As can be seen from the figures above, not having to read the data for threads v2, v3
and v4 decreases the total run time from 22 time units, to only 14! Next section pre-
sents a scheduling optimization problem that integrates the parameters in our model.

3 Scheduling to Reduce Cache Miss Penalty

Assume a set � �1 2, ,..., nV v v v� of currently running tasks to schedule. The number of

CPUs available to the scheduler is denoted by m. Since, in our model, every CPU has
its own cache, m is also the number of caches. DF(vi) is the data fragment used by
vi. (,)i jf v v is an asymmetric penalty function for the context switch from vi to vj. Its

characteristics, in our model, are defined below. l is the number of cache lines read by
vj, � denotes an empty CPU and the times tr and Tw are as defined in Section 2.2.

�
�

�

�
�

	

�

�

��

�

�

�

 lines. read data, dinvalidate ,)()(
 required. data s' offlush ,)()(

lines. read not write, did ,)()(or
 data. invalidatenot did ,)()(0

),(

lvvvDFvDF

vvDFvDF

lvvvDFvDFv
vvDFvDF

Ttl
T

tl
vvf

jiji

iji

jijii

iji

wr

w

r
ji

�

(1)

To improve system throughput we seek to minimize the penalty induced by the con-
text switches between the tasks of V on m CPUs, based on the data fragment they use.
We define XW to be the set of all permutations over a subsetW V� and let Ww X� .

()F w , the penalty of permutation w is defined by: �
�

�
��

1||

1
1),()(

w

i
ii vvfwF . The minimal

penalty *F over W is)(min)(* wFWF
WXw�

� . The collection of all partitions of V into m

equal-sized subsets is denoted by ()V� , where each partition in this collection is of

size k
m
n

���

�
��

� (switching to padding task costs 0). Given a partition ()m vS �� , the

minimal penalty for scheduling the partition is: *() max ()
m

m
X S

F S F X
�

�� and our optimi-

zation problem is to find T such that
()

min ()
VZ

T F Z
��

� � .

Solving equation T when the system’s state changes, is impractical. Next we con-
sider a special simplified case where during a thread switch all the cache contents are
replaced if the new thread uses a different data fragment. The assumptions previously
made still hold; mainly that each task uses exactly one DF and that fragment fits pre-
cisely into a processor's cache. In the simplified penalty function g we pay a price only
when switching between tasks that use different data fragments.

() () 0
(,)

 or () ()
i j

i j
r w i i j

DF v DF v
g v v

T T v DF v DF v�

�
�
� 	

� � ���

 (2)

An optimal algorithm for a single CPU would be: Go over all ready threads and put
each thread in the bin (batch) corresponding to the DF that it uses (d bins), and then
schedule the bins in arbitrary order. Changing currently running bin is done only after
all tasks in the bin finished their quota. The runtime of the algorithm on a set of n
tasks is O(n). Adding and removing a task to the ready list can be performed in O(1).

For multiple CPUs an additional step for distributing the bins between CPUs is
added after partitioning the threads into bins. This general partitioning problem is NP-
complete. However, based on the dynamic programming pseudo-polynomial partition-

ing by Cieliebak et al. [17] for m=O(1) CPUs our algorithm will run in �
�
�

�
�
�
�

�

�1m

m

m
nd

O .

4 Data Affinity Based Algorithm

Our scheduler implementation is an enhancement of the Linux 2.6.x scheduler. The
Linux scheduler allocates a time slice to each thread/task in the system. An époque,
i.e. the time it takes for all tasks to get a chance to run, may vary due to the many heu-
ristics utilized. Tasks that spend much of their time submitting and waiting on I/O re-
quests (I/O bound) have their time slice enlarged. Tasks that tend to run until pre-
empted, spending most time executing code (CPU bound) receive time slice penalties.

The scheduler keeps the tasks in run-queues. A run-queue is a list of runnable tasks
which may run in arbitrary order. There exists one list per processor and each task can
be on exactly one. It contains two priority arrays; an active and an expired array. Each
array contains one queue of runnable tasks per priority level. The 2.6.x scheduler can
locate the next highest priority task and pull it off the priority list in constant time.

The scheduler is called explicitly by kernel code that is about to yield CPU and also
whenever a task is to be preempted. The scheduler performs the following steps: it re-
calculates the time slice of the tasks that ended theirs and moves them to the expired
array, determines the next highest priority task in the active array and switches to it.

The load balancer complements the scheduler. It ensures that the run-queues are
balanced by moving tasks from the busiest run-queue to the relatively under utilized
one that invoked it. It is invoked when a run-queue is idle and also via timer interrupt.
An imbalanced run-queue contains 25% more tasks than the one on whose behalf the
load balancer runs. From the tasks allowed to migrate, the load balancer prefers ex-
pired ones, since these are probably cache cold. It also favors high priority tasks be-
cause of their importance. Tasks are moved as long as an imbalance still exists.

4.1 The Implemented Algorithm

The basic idea is to schedule the current set of tasks in a way that will minimize cache
misses, thus resulting in an overall reduction of execution time. This is done by sup-
plying additional information to the scheduler. The algorithm’s goal is as follows:
� Tasks that use the same data fragments (DFs) at some point in time are

mapped to the same CPU. If a task accesses multiple DFs, it may be reas-
signed to a different CPU each time it changes DFs; this is done before actu-
ally accessing the data (i.e. yield and reschedule).

The mapping of a task to a processor (run-queue) occurs in the following cases: when
it is first created (parent's processor is the default), whenever the load balancer is
called, and when it returns from a wait queue. We would also like a mapping to occur

when the task changes DFs. From the initial mapping onward until (if at all) it is mi-
grated, the task’s time slice is calculated according to the existing Linux policies.

The theoretic formulation in the previous section provides optimal scheduling when
all information is known a priori. Unfortunately, real-life systems are dynamic in na-
ture; therefore, there is a need to devise heuristics that use dynamically available info.

The information about which DF each task is using at a given time is passed from
user space to the scheduler via a syscall. The syscall is called with the application ID,
current (if any) and next DF IDs when a task is created and whenever it changes DFs.

Our scheduler works online, holding a list of application descriptors, one for each
application that provides DF information. Each descriptor contains a map between
DFs and <CPU, priority group> pairs. At any point in time all the tasks in a priority
group use the same DF and run in succession on the same CPU. The load balancer is
used to rectify 'mistakes' made when in the initial state.

 The algorithm consists of several procedures that decide what to do in the follow-
ing situations: a new DF is encountered, a new task enters the system, a task switches
DFs, a task returns from a wait queue, a task dies, and when the system is imbalanced.
We next describe those procedures as applied to a single application task.
� When a task arrives with a new DF, the load is verified for all CPUs, in terms

of number of currently running tasks. Since the tasks' time-slices are similar in
length, this constitutes a good measure for selecting the least loaded CPU.

� Upon arrival of a task with known DF, the scheduler locates its entry in the
application map, moves it to the DF's CPU (if it is not there already), and
places it in the priority group for that DF.

� When a task changes DFs, the scheduler removes it from its old priority
group, preempting it if necessary (this may actually be cheaper than the cache
misses), then treats it as if a new thread has arrived with a new or known DF.

� Upon return from a wait queue, a task’s current DF entry is looked up in the
application map. From there on, as before, it is handled based on whether or
not its current DF is known.

� When a task dies (and when changing DFs), a counter in the DF's structure is
updated. When it reaches 0, the priority group is flagged as 'may be removed'.

� When the load balancer is called, it checks if the run-queues are imbalanced.
If tasks need to be moved, the scheduler tries to identify whether the source of
the imbalance is in the managed or unmanaged tasks. When managed threads
cause the imbalance, an attempt is made to move an entire priority group. If
this is impossible, for example because a group’s task is running, the load
balancer reverts to unmanaged threads. In rare cases, when the problem is
sustained, separating a priority group is allowed.

5 Experimental Results

To assess the performance of our scheduler we tested a custom made benchmark and a
few known multi-threaded benchmarks that utilize shared data; achieving significant
improvement on the well known Chat benchmark, and a more modest gain on the
Hack benchmark, which uses processes. The custom benchmark tests scenarios that

are not exploited by the other benchmarks. Syscalls were added manually to the
benchmarks. We discuss the results and provide reasons for the large improvements.

All benchmarks were run on an Intel Xeon, dual processor at 3.2GHz, hyper
threaded with L1 cache of 8KB, L2 of 256KB, L3 of 2MB and main memory of 1GB.
The hyper-threading ability was turned off for most tests thus creating a 2-way ma-
chine. All tests were run using the 2.6.4 Linux distribution of the Linux kernel.

5.1 Chat Benchmark

The Chat benchmark (http://lbs.sourceforge.net) simulates chat rooms with multiple
users exchanging messages through TCP sockets. It is based on the� Volano Java
benchmark that was used in prior papers to show limitations of the 2.4 scheduler [9].

A room consists of 20 users each sending 100 byte messages to the server, which
broadcasts them to every other user in the room. Four threads are created per user (80
per room) two on the client side and two on the server side. 100 messages sent by a
user translate to 20*100*(1+19)=40,000 transmitted messages per room. At the end of
a run, the client side reports the total time and the throughput in messages per second.
A lower run-time and higher throughput indicate a more efficient kernel scheduler.

The Chat benchmark was tested with all pairs of parameters from these sets: rooms
= {10, 20, and 30} and messages per room = {500, 1000, and 1500}. The results are
displayed in Table 1 and represent the average over five runs for each pair.

Table 1 demonstrates that the total gain increases as the number of messages grows.
The results for some combinations are less than half the original scheduler time with
twice the throughput! Another statistic worth mentioning is that the standard deviation
over the five runs of each combination is considerably smaller for the new algorithm.

We further investigated the pairs that exhibited the largest improvement using
Oprofile to count L2 cache misses. As can be seen from Table 2, there is a strong cor-
relation between the number of cache misses and the runtime/throughput.

Table 1. Chat benchmark results. Number of messages ranges from 2 million for the 10 rooms
with 500 messages combination to 18 million for 30 rooms and 1500 messages per room

Room Number 10 20 30
Message Number 500 1000 1500 500 1000 1500 500 1000 1500

Vanilla 5.794 15.303 26.86 11.01 30.7 55.01 16.83 38.93 72.0 Avg. Time
New 4.954 10.935 15.85 7.89 16.85 24.6 10.81 22.4 35.2

 Vanilla 352281 263621 67594 370625 121874 64336 103133 87981 11559 Avg. Through-
put New 420382 373323 108010 509062 221189 139266 158516 152722 23413

Table 2.Chat benchmark Oprofile results averaged over 5 runs; L2 misses divided by 3000

Room \ Message 10, 1500 20, 1500 30, 1500
Vanilla 49 88 133 Client side

New 16 34 45
 Vanilla 100 125 206 Server side

New 43 58 68

5.2 Custom Benchmark

Our benchmark consists of a small, highly configurable, application whose parame-
ters include: number of threads (using pthread), number of distinct data fragments
(DF), size of those DF, and amount of work done by the threads on the common data.
Threads are started in a loop and never sleep voluntarily. We used the Oprofile sam-
pling tool to count the L2 and L3 cache misses (L1 ignored because of its size). L3
may be larger than L2 due to unused pre-fetch into L3

Table 3. The effect of the number of threads on runtime and cache misses. All other parameters
are unchanged; iteration number = 10x106; DF number = 4; Oprofile numbers divided by 3000

Thread Number 8 32 128
DF size 1000 8000 20000 1000 8000 20000 1000 8000 20000

Vanilla 30.63 31.71 32.18 123.7 128.7 129.5 511 510 509 Avg. Run-
time New 27.84 27.56 27.44 113.5 110.5 110 439 442 439

 Vanilla 11236 6844 8509 72467 50232 48096 334290 247784 219611 Avg. L2
Miss New 1610 305 95 9934 2445 899 49347 9630 3491

 Vanilla 11247 11648 11015 78941 63422 48697 367062 272297 241738 Avg. L3
Miss New 1611 334 70 12467 2389 821 48952 9394 3125

Table 4.The effect of the number of iterations on runtime and cache misses. All other
parameters are unchanged; DF number = 4; DF size = 8000; Oprofile numbers divided by 3000

Iterations Number 1x106
 10x106 100x106

Thread Number 8 32 128 8 32 128 8 32
Vanilla 2.94 12.5 51.11 31.71 128.7 510 312 1283 Avg. Runtime

New 2.75 11.1 44.2 27.56 110.5 442 277 1101
 Vanilla 630 5572 25781 6844 50232 247784 2537530 501624 Avg. L2 Miss

New 31 246 965 305 2445 9630 96430 24230
 Vanilla 771 5555 27132 11648 63422 272297 2732690 634042 Avg. L3 Miss

New 32 240 955 333 2389 9394 94145 23910
The results in Table 3 emphasize the fact that if a system is not conscious of data

affinity, unnecessary CPU cycles are lost in moving data from one CPU cache to an-
other or during cache replacement. Many scheduling cycles are saved in our method.
The results in Table 4 are obvious. The longer the threads run repeatedly accessing the
same DF access, even a tiny gain gradually increases to noticeable size.

6 Related Work and Future Enhancements

Processor affinity scheduling has been extensively studied. Squillante [14] and Gupta
[6] showed its potential through simulations on several affinity-scheduling algorithms
and measuring metrics. Vaswani [12] focused on quantifying the effect of processor

reallocation on performance. Devarakonda [5] revealed a number of problems related
to exploiting cache affinity in Unix-like systems.

Affinity based on how fast a task can run on a processor in a heterogeneous proces-
sor environment has been studied in [4] [7] [15]. Affinity that looks at the resources
that are bound to a processor has been studied in [8] [15]. Affinity based on cache
contents, closest to our work, was studied by Torrellas et al [3].

Linux has been widely used for scheduler experiments, especially in version 2.4
trying to deal with the queue lock contention bottleneck. For example, [10] proposed
the multi-queue scheduler to enhance scalability on large scale SMP machines. Molloy
et al. [11] proposed the ELSC scheduler. There was also Priority Level Scheduler
(PLS). Yamamura et al [13] tackled the cache miss problem occurring in kernel code
during the walk over the task structures held in a CPU’s run-queue.

For practical usage, automatic insertion of the syscall by the compiler is necessary.
Further study of the tradeoff between task preemption and the saved cache misses, and
the tradeoff between DF sizes vs. the number of data fragments are needed.

References

1. N. P. Jouppi, D. W. Wall - Available instruction-level parallelism for superscalar and super-
pipelined machines – Proceeding of the 3rd ASPLOS conference, Apr 1989, pp. 272-282.
2. Y. Etsion, D. Tsafrir, D. Feitelson – Effects of Clock Resolution on the Scheduling of Inter-
active and Soft Real Time Processes – ACM SIGMETRICS, pp. 172-183, Jun 2003.
3. J. Torrellas, A. Tucker, A. Gupta - Evaluating the Performance of Cache Affinity Scheduling
in Shared-Memory Multiprocessors, JPDC, Vol. 24, pp. 135-151, 1995.
4. E. Horowitz, S. Sahni – Exact and Approximate Algorithms for Scheduling Nonidentical
Processors – J. ACM, vol. 23, no. 2, pp. 317-327, 1976.
5. M. Devarakonda, A. Mukherjee - Issues in Implementation of Cache-Affinity Scheduling –
USENIX Technical Conference and Exhibition, pp. 345-357, 1992.
6. A. Gupta et al - The impact of operating system scheduling policies and synchronization
methods of performance of parallel applications - ACM SIGMETRICS, Vol. 19, May 1991.
7. E. L. Lawler, C. U. Martel - Scheduling periodically occurring tasks on multiple processors -
Information Processing Letters, vol. 7, pp. 9-12, Feb. 1981.
8. D. H. Craft - Resource management in a decentralized system - ACM SIGOPS Operating
Systems Review, Vol. 17, Issue 5, Oct. 1983.
9. R. Bryant, B. Hartner – Java Technology, Threads and Scheduling in Linux, Java Technol-
ogy Update, Volume IV, Issue 1 Jan 2000.
10. M. Kravetz et al - Enhancing Linux Scheduler Scalability - 5th ALS, Nov 2001.
11. S. Molloy, P. Honeyman – Scalable Linux Scheduling – CITI Technical Report, May 2001.
12. R. Vaswani et al - The implications of cache affinity on processor scheduling for multipro-
grammed, shared memory multiprocessors – 13th ACM SOSP, pp. 26-40, Oct. 1991.
13. S. Yamamura et al -Speeding Up Kernel Scheduler by Reducing Cache Misses - Proceed-
ings of the FREENIX Track 2002 USENIX Annual Technical Conference, pp. 275-285.
14. M. S. Squillante, E. D. Lazowska – Using Processor-Cache Affinity Information in Shared-
Memory Multiprocessor Scheduling – IEEE TPDS archive, Volume 4(2), pp. 131-143, 1993.
15. R.W. Conway, W.L. Maxwell, L.Miller - Theory of Scheduling - Addison-Wesley, 1967.
16. Linux Benchmark Suite Home page - http://lbs.sourceforge.net/
17. G. J. Woeginger, Z. L. Yu - On the equal-subset-sum problem - Information Processing
Letters, 42(6), pp. 299-302, 1992.

