Private Virtual Cluster:
Infrastructure and Protocol for Instant Grids.

Ala Rezmerita, Tangui Morlier, Vincent Neri, Franck Cappello

INRIA /LRI, University Paris-Sud, Orsay, France
E-mail:{ rezmerit, tmorlier, neri, fci }@Iri.fr

Abstract. Given current complexity of Grid technologies, the lack of
security of P2P systems and the rigidity of VPN technologies make shar-
ing resources belonging to different institutions still technically difficult.
We propose a new approach called ”Instant Grid” (IG), which combines
various Grid, P2P and VPN approaches, allowing simple deployment of
applications over different administration domains. Three main require-
ments should be fulfilled to make Instant Grids realistic: 1) simple net-
working configuration (Firewall and NAT), 2) no degradation of resource
security and 3) no need to re-implement existing distributed applications.
In this paper, we present Private Virtual Cluster, a low-level middleware
that meets these three requirements. To demonstrate its properties, we
have connected with PVC a set of firewall-protected PCs and conducted
experiments to evaluate the networking performance and the capability
to execute unmodified MPI applications.

1 Introduction

Sharing resources in a secure way, over the Internet, is attractive for a broad
range of users and communities. Audio and video over IP, file sharing, file storage
and distributed computing are examples of applications concerning many com-
munities of users. However, despite the continuous progress in Grid, P2P and
VPN technologies, sharing resources over different administration domains still
raises technical difficulties. Grid technologies allow sharing resources between the
participants of virtual organizations [1]. Compared to previously existing tech-
nologies, Grid middleware provides tools for inter-domain security and resource
management, assuming pre-existing local software and policies in every Grid site.
The current trend towards the use of Services [3, 2] responds to the complexity of
managing heterogeneous resources and sharing policies by providing a standard
interface between the user and the resources.

However, installing Grid middleware is still complex and requires the skills of
networking, security and OS experts. Moreover, providing a standard but novel
interface to the users imposes, in many cases, to re-implement or to adapt the
applications. P2P systems allow simple resource sharing between large commu-
nities of users. However, they exhibit two major limitations: 1) the security is
very limited and generally not considered in these systems and 2) they run dedi-
cated applications. Albeit Jxta [4] provides a communication layer to deploy and

run P2P applications, it has a major limitation by exposing only a Java inter-
face to the application. Installing and using a VPN (Virtual Private Network),
using technologies like VTun [5] or IPsec [6], allows users registered in the VPN
to share their resources as if they were in a LAN. However, VPN’s have their
own limits: 1) installation and maintenance require OS and networking experts,
administrator authorization and 2) they are static.

In fact, existing technologies restrict resource sharing to Grid and VPN ex-
perts or users of unsecured and dedicated P2P systems. This situation motivates
the research presented in this paper towards a more spontaneous and dynamic
Grid approach called "Instant Grid” (IG), in reference to popular ”Instant Mes-
saging” environments. Three mains requirements should be addressed in an IG
environment: 1) Connectivity. Firewall and NAT settings may preclude the de-
ployment of cross-domain applications. Moreover, the user may have no technical
knowledge on how to setup correctly firewalls and NATs. Thus, an IG envi-
ronment should use a set of firewall and NAT configuration and/or traversing
techniques, transparent to the user and acceptable by domain administrators.
2) Security. Sharing resources across administrative boundaries should not lower
the security level of the hosting sites and the shared resources, 3) Compatibility.
Sharing resources should not imply specific application or runtime developments.

In this paper, we propose PVC (Private Virtual Cluster), an environment for
Instant Grids. PVC design considers the following context: 1) resource sharing is
established when required and 2) security is based on classical OS mechanisms
(currently access rights and sandbox or virtual machines in the near future), used
commonly in LAN’s and clusters. PVC turns dynamically a set of resources be-
longing to different administration domains into a cluster where existing cluster
runtime environments and applications can be run.

The next section presents the related work concerning the three issues. Sec-
tion 3 describes the general architecture of PVC and gives details on the protocol
implementation. The evaluation of PVC is presented in Section 4.

2 Related Works

In this section, we present the existing projects and technologies related to the
three main issues of Instant Grids: connectivity, security and compatibility.

2.1 Connectivity, Security

One of the most popular projects providing connectivity among peers in differ-
ent administration domains is JXTA [4]. Based on proxy technologies, JXTA
proposes two communication approaches: a rendezvous and a pipe binding pro-
tocol. The two methods use a relay to forward messages between peers which
results in significant communication overhead. To provide secure communication
between peers, JXTA uses a virtual transport layer based on TLS (Transport
Layer Security). The difficulty of installing and configuring the proxy limits the
usage of JXTA in the Instant Grid context.

Ibis [7] is another project providing NAT and Firewalls traversing techniques
to connect resources in different administration domains. Several approaches
are successively proposed to bypass Firewall/NAT: a direct connection, a simul-
taneous TCP SYN connection and a proxy connection. For user identification
and secure communication a standard SSL/TLS infrastructure, performing data
encryption and peer authentication over a socket connection.

CODO [8] provides end-to-end connectivity for distributed applications over
firewalls/NAT protected domains in a secure way. It consists in firewall agents
(FAs), placed on the firewall machines and client libraries (CLs) linked with the
application. The FA communicates with CL to dynamically add and delete rules
needed to establish direct connections. Authentication and security are based on
X.509 certificates. The major limitation of CODO is that it currently supports
only firewalls based on Netfilter and it assumes the installation on firewalls of
the FAs that is not always possible.

Another simple and practical NAT traversal technique is UDP/TCP hole
punching [9]. This technique enables two clients behind NAT, to set up a direct
peer-to-peer UDP /TCP session with the help of a rendezvous server. Following
the statistics given in the article describing this technique, about 82% of the
NATSs support hole punching for UDP, and about 64% for TCP streams.

With the popularity of DSL network, the use of NAT increases dramati-
cally. Unfortunately, NAT imposes another limitation for the direct connection
of peers. Two projects propose NAT discovery and bypassing techniques. The
first one is STUN RFC [11]. This standard describes the techniques to discover
the NAT type and an UDP protocol to traverse it. The standard classifies NAT's
in four classes and the traversing technique works for three of them.

The second one is UPnP [10]. The UPnP Forum proposes an API for com-
munications with the NAT device allowing opening firewall ports for direct con-
nection. This technique is particularly suitable for the objectives and constraints
of Instant Grids. Obviously, this method does not work with the NAT devices
that are not UPnP compatible or if the administrator does not enable it.

2.2 Compatibility, Virtualization

To the best of our knowledge, only JXTA provides compatibility and a virtual-
ization layer in addition to connectivity and security. Its approach is based on
unique IDs, by which the network resources can be addressed independently of
their physical address.

Several projects allow the creation of a virtual cluster from independently
administered domains through machine and network virtualization. A VioClus-
ter [12] logically moves machines between virtual domains, allowing a cluster
to dynamically grow and shrink based on resource demand. Network virtualiza-
tion in VioCluster is made by a hybrid version of VIOLIN [13] which gives to a
machine the ability to connect to the private network.

Cluster-On-Demand (COD) [14] shares the same objective. COD was inspired
by Oceano [15]. Its main difference is its dynamic resource management between
multiple clusters by reinstalling the base OS on resources. The VNET [16] is a

virtual private network tool implementing a virtual local area network over a
wide area, for virtual machines in Grids. VNET is a simple proxy scheme that
works entirely at user level and uses the Layer Two Tunneling Protocol (L2TP).

3 General Principles of Private Virtual Cluster

The objective of Private Virtual Cluster (PVC) is to provide, in a transpar-
ent way, an execution environment for existing cluster applications over nodes
distributed on the Internet. The main difference between PVC and VPN is its
capability to dynamically connect firewall protected nodes, without any inter-
vention of domain administrators and without breaking the security rules of the
domains hosting the nodes. Compared to other projects presented in the related
work section, PVC provides a fully integrated environment.

PVC itself is a distributed system working as a) a daemon process (peer)
running on each participating host and b) a brokering service. The role of each
local peer daemon is to establish a secure direct connection between the local peer
and the other participating peers, subsequently leaving the connection control
to the application. The role of the brokering service is to help establishing these
connections by 1) collecting and advertising the peer connection requests and
2) tunneling some communications between peers when direct connections are
not established, 3) translating network addresses from virtual to real and 4)
transporting security negotiation messages. Typically, the brokering service may
also help with failure detection, although this feature is not yet implemented.

— @ —
application
1 1
PR (Per
Gi rtual inlerface)—(nlerpos’lioa ! C security) Cbroker) Cﬁcurity) ! Gnterpos’ti OD_Gi rtual interface)
‘ ‘

1 : 1
@oordi nati o& '''''''' (*l)* (EL)* ******* (coordi nati oa
:

Cconnectivi@ @rtua‘izatioB ("""") @rtualizatioa Cconnectivity
\ ! \)

(1) Virtualization, Connection initialization, Security (2) Direct communication

Fig. 1. PVC architecture

Figure 1 presents the modular architecture of PVC. The peer daemon en-
capsulates five modules for: 1) operation coordination, 2) communication in-
terposition, 3) network virtualization for the application, 4) security checking
and 5) peer-to-peer direct connection establishment. The modular architecture
offers the possibility to extend and adapt each module to fit with the target
environment. The brokering service is implemented as a set of replicated nodes,
connected to the Internet and accept inbound communications from PVC peers.

All daemon modules are coordinated locally by the coordinator, which also
participates in the global coordination of a PVC deployment. The coordinator

runs a workflow through the four other modules to establish the direct connec-
tion between the local peer and distant ones. The coordinator also exchanges
messages with the brokering service to implement the global coordination.

The interposition module intercepts the application connection requests and
transfers them to the coordination module. It may be implemented in various
ways (network calls overloading, virtual network interface) offering high adapt-
ability to the system configuration. The intercepted requests are routed on a
virtual network simulated by the PVC virtualization module, which features its
own IP range and domain name service.

In this virtual network, the PVC security module checks the respect of pre-
existing security policies and authenticates the virtual cluster participants. Dif-
ferent security standard and specific methods may be adapted to the PVC ar-
chitecture (SSL certificates, standard security challenges, etc.). The connectivity
module transparently helps the cluster application to establish direct connections
between virtual cluster nodes (peers). Like all the other modules, a variety of
techniques can be used depending on participants host configuration as well as
its local network environment (firewall, NAT). Standard (UPnP) and original
mechanisms (Traversing-TCP, TCP Hole Punching) may be used to establish
direct connection between peers. In the following parts, we will focus three key
modules: virtualization, security and connectivity.

3.1 Domain Virtualization

One of the PVC objectives is to allow the execution of cluster applications with-
out any modification. Cluster applications generally use the socket model as
interface with the communication network. Following this constraint we have
chosen to use a domain virtualization at IP level. The virtualization layer estab-
lishes an IP domain over resources belonging to different administration domains
having public or private (possibly conflicting) addresses. Like in a VPN, an over-
lay network featuring virtual IP addresses is built on top of the actual network.

To avoid the conflict between real and virtual networks used by the resource,
we use a specific IP class defined by a RFC [17] for experimental purposes (class E
ranging between 240.0.0.1 and 255.255.255.254). The use of these IP addresses
guaranties that no real machine uses them (such addresses are actually not
routed on the Internet). A virtual DNS,; configurable by the PVC members, is
associated with this experimental IP class.

3.2 Security policy in PVC

The main objective of the security mechanism is to fulfill the security policy
of every local domain and enforce a cross-domain security policy. Two security
levels are implemented: 1) local to the administration domain and 2) between do-
mains. The intra and inter-domain security policies could be configured by local
system administrator who could also define the global policy. When a connec-
tion is requested by the application, the local peer first checks that it can accept

inbound and outbound communications with other peers outside the adminis-
tration domain, according to the local policy. Then, it checks that IP addresses
of external peers and the ports to be used are granted by the global policy.

Without a strong access control mechanism, someone may take advantage of
the brokering service and pretend to take part of the virtual cluster. To avoid
this, every virtual cluster has a master peer (a peer managed by the virtual
cluster administrator) implementing the global security policy. Only the master
peer can dynamically register new hosts. Before opening the connection, every
peer checks that the other peer belongs to the same virtual cluster. The cross
authentication is performed using master information and crossing the brokering
service. A key point in the design is that the security protocol does not need to
trust the brokering service. This protocol ensures that: 1) only the participating
hosts of a cluster can be connected to each other and 2) only trusted connections
are returned to the cluster application.

In the current implementation, each host connected to PVC has its own pri-
vate and public key. Every participant to a virtual cluster knows the public key
of its master before connecting to PVC infrastructure. The master peer registers
the participation of a new peer, asking the brokering service to store its public
key previously encoded with the master’s private key. During the establishment
of the connection, both peers obtain the other side’s public key from the bro-
kering service and decode the received message with the master’s public key.
This mechanism ensures that only the master registers other participants on the
brokering service.

The peer’s mutual authentication consist in a classical security challenge-
response: the client generates a cryptographically random string M, encrypts
it with server public key and sends it to the server; the server decrypts the
message with its private key, encrypts the obtained value using its private key
and returns the result, Es(M), to the client; the client decrypts Es(M) using the
server’s public key, obtaining Ds(Es(M)); if that value is equal to the original
M, the client is satisfied of the server’s identity. Similarly, the server picks a
random string L, encrypts it and sends it to the client, which returns Ec(L) to
the server. The server checks that Dc(Ec(L)) equals L and it thereby satisfied
with the client’s identity. The security is implemented using OpenSSL Crypto
library [23]. The experimental results are presented in Section 4, where we discuss
the overhead of PVC in secure connection establishment.

3.3 Inter-domain connectivity techniques

As the major objective of PVC is to establish direct connections between dis-
tributed peers, the connectivity module can host several connection protocols.
In the current implementation, we have integrated three techniques in PVC. In
this section, we present the integration of these techniques.

Integration of a Firewall configuration protocol In the last two years,
UPnP project became very popular. The principal vendors of domestic network
devices incorporated UPnP in their routers. Using UPnP, a PVC peer can com-
municate with the router and can open the ports for direct connections.

To guarantee the safety of the local area network, the port forwarding rules
must be erased from the router when they are no longer needed. If during the
connection initialization, the authentication fails, or if the peer detects the end
of the connection, it erases immediately the target rule from the router. If the
PVC peer fails before the end of the connection, the application that starts PVC,
running on the same peer re-launches it. A security issue may occur if the host
running PVC fails before the end of the connection, and another host takes its
private address. In this case, all the rules related to the host should be removed
from the router. We use a distributed architecture to detect node failure and
handle firewall rule deletion. Every node of a domain runs a monitoring daemon.
These daemons periodically check the rules present on the firewall and ping the
corresponding host so that they may delete the rules related to a faulty machine.

TCP hole punching Widely used for applications such as online gaming and
voice over IP, TCP Hole Punching allows connection establishment between two
hosts behind NATSs in different administration domains.

Both clients establish a connection with the broker that observes the public
addresses (given by NAT) and private addresses of the clients and shares this
information between the peers. After this exchange, the clients try to connect to
each other’s NAT devices directly on the translated ports. If NAT devices use
the previously created translation states then a direct connection is possible.

The advantage of using this method is that it does not require special privi-
leges or specific network topology information. However, this technique does not
work with all type of NATs as their behavior is not standardized.

A novel technique: Traversing-TCP Traversing TCP (TTCP) is derived
from the TCP protocol and it works with firewalls that are not running stateful
packet inspection.

It essentially consists in 1) transporting, using
the PVC Broker, the initiating TCP packet (SYN)
blocked by the firewalls or NAT on the server side
and 2) injecting the packet in the server IP stack.

Figure 2 presents in details the TTCP technique.
Plain lines show the packets corresponding to the
TCP standard. Dashed lines correspond to specific
Traversing-TCP messages. A TTCP connection be-
haves as follows:

Definitions: Server node: S, Broker: B, Client

node: C, initializing packet: SYN

1. The peer on S connects to B and waits for new

_ connection demand;

C'ér')t S&S 2. C sends SYN to S. It opens the Firewall of C but
it is stopped by the Firewall of S;

Fig. 2. Traversing-TCP 3. The peer on C s.ends the SYN packet information

to B. B forwards it to the peer on S;

4. The peer on S injects the SYN packet to the IP stack on S;

5. To this SYN packet S replies with a SYN/ACK packet. The SYN/ACK packet
opens Firewall on S and is accepted by the Firewall on C (previously opened);

6. The initialization of the TCP connection ends with an ACK packet from C
to S: the TCP connection is established.

TTCP works under the following device configurations: 1) The firewall must
authorize the outgoing packets and must accept all packets from established
connections; 2) Following the [11] classification, TTCP should work with all
NAT’s, except symmetric NAT (which maps a port to a quadruplet: the internal
host-port and external host-port).

Note that RST packets sent as rejection notification are also captured by a
PVC client peer and not forwarded to the client IP stack. Following our expe-
rience with the DSL-Lab platform (cf. the evaluation section) and related work
[18], these requirements fit many professional and domestic configurations.

After connection establishment, the communication can continue following
classical TCP operations. The communication between the two peers is direct,
bypassing the broker and ensuring high communication performance.

4 Performance Evaluation

In this paper, we focus on the performance evaluation of the whole workflow for
establishing a virtual cluster. We measure the overhead of PVC and demonstrate
its capabilities by running unmodified MPI applications deployed over a set of
firewall protected PCs, connected to the Internet by ADSL connections.

4.1 Experimental Protocol

PVC was designed to have a minimal overhead for TCP communications. In our
first experiments, we demonstrate this property with two types of tests: the first
one compares network performance with/without PVC, using NetPerf [19]. The
second one evaluates the overhead of PVC for establishing a connection.

The evaluation test for network performance was performed on a local PC
cluster with three different Ethernet networks: 1Gbps, 100Mbps, 10Mbps. We
have used standard PCs with BroadCom TG3 Ethernet interface connected using
Netgear EN106 10Mbps Ethernet switch, a Netgear FS105 100Mbps Ethernet
switch and a D-LINK D65-1216T Gigabit Ethernet switch.

To evaluate the system overhead of establishing a connection, we used the
DSL-Lab [22] platform: a set of resources connected to the Internet by a DSL
network. The same platform was used for the second type of experiments, which
consisted of the execution of real cluster applications. We ran the NAS bench-
marks [20], the MPIPOV program and the scientific application DOT [21] to
evaluate the capability of PVC to establish all the connections required by a
complex distributed environment like the MPICH runtime environment.

4.2 Evaluation results

Bandwidth Overhead Figure 3 presents the bandwidth (in Mbps) of PVC
(with/without firewall) and the reference (without PVC), using NetPerf on
10Base-T, 100Base-T and 1000Base-T Ethernet networks. To simulate the fire-
wall on both sides we used Linux Netfilter Iptables.

1Gbps 100Mbps 10Mbps

Reference (without PVC) 715(5) 94.0(0.4) 6.9 (0.1)
PVC without firewall 720 (5) 94.0(0.4) 6.9(0.1)
PVC with firewall 717 (3) 94.8(0.5) 6.9(0.1)

Fig. 3. Bandwidth of PVC and reference, as measured by NetPerf, on three ethernet
networks, in Mbps. Values in parenthesis are standard deviations.

Figure 3 demonstrates that the network rates computed by NetPerf are sta-
tistically similar. The difference between the two series of measurements is lower
than the standard deviation for all the tests. We can conclude that PVC does not
reduce the available bandwidth: once the connection is established, PVC does
not interact with the application any more, leaving the network rate unaltered.

Connection overhead For the establishment of direct connections between
the peers, PVC uses the TCP-Traversing, TCP hole punching techniques or
the firewall configuration protocol UPnP. To compare these three methods, we
evaluated their overhead using a specific test suite. In our test suite, a client
makes 1000 consecutive connections to a server and then tears them down.

Reference

[l PVC without firewall
PVC with firewall
E PVC with security
Il Standard deviation

Time (ins.)

Traversing TCP TCP Hole Punching UPNP

Fig. 4. Overhead of Private Virtual Cluster.

Figure 4 shows the mean costs for the TCP connection establishment. In
the presence of firewall the overhead of PVC using Traversing-TCP resp. (TCP
Hole punching) technique is 76ms (42ms) and 60ms (40ms) without firewall.
The overhead observed for PVC with UPnP is the same in both cases and is
about 60ms. This overhead encompasses the costs of interception of application
connection attempt and communication with the broker.

Security overhead In the current version of PVC, security is implemented
using OpenSSL Crypto library [23]. The first step of the verification (membership
to the same virtual cluster) is coupled with the resolution of the virtual name,
avoiding the substantial increase of overhead. The second step of the security
protocol, which is done after the connection establishment, increases significantly
the overhead. Figure 4 shows the mean costs of authentication in PVC during
connection establishment.

Since PVC intervenes only at the beginning of the end-to-end communica-
tion, the observed overhead remains reasonable in the context of the distributed
applications.

Running MPI applications We successfully ran several of the NAS bench-
marks class A (EP, FT, CG and BT) on the PVC architecture. However, due to
the network performance between the nodes of the DSL platform, FT, CG and
BT do not scale with the number of nodes. Only EP with its low communication
to computation ratio is scalable.

m MPIPOV |
™ |znaser /
sl |eDoT

» Linear
54

4 5
Nodes #

Fig. 5. Speedup of MPI applications with PVC over a set of DSL connected nodes

Figure 5 presents the performance of EP according to the number of nodes
in the DSL platform. The speedup increases almost linearly with the number of
nodes. The results of the NAS benchmarks demonstrate that PVC successfully
transforms a set of nodes connected to the Internet through Firewall and NAT
into a virtual cluster where MPI runtime environments and applications can be
executed without modification.

The purpose of the DOT [21] program is to compute electrostatic potential
energy between charged molecules. It operates in a master/slave mode. During
the computation, the amount of data communication is low, but at the beginning
and at the end, some large arrays must be communicated. Figure 5 presents the
speedup for the computation of the example provided with the DOT distribution,
using from one to eight workers. The master is running on the first node.

The MPIPOV test measures the execution time for the computation of a
graphical rendering application parallelized with MPI. MPIPOV uses a master-
worker algorithm. Compared to the NAS EP, MPIPOV requires more commu-

nications of image rendering parameters and results. We perform the test by
splitting the image in 32 sub-images. Figure 5 presents the speedup for the com-
putation of the same image using from one to seven workers. The master is
running on a separated node.

Over all applications, the speedup evolves in a non-linear way. Obviously,
the scalability of the MPI application performance on DSL networks depends on
the communication to computation ratio of the application and the individual
performance of the heterogeneous platform components. We did not tune the
application in order to improve the performance since the purpose of the ex-
periments is only to demonstrate the capability of PVC to run unmodified MPI
runtime environments and unmodified, non-trivial MPI applications. However,
even without tuning, the test demonstrates that the ADSL platform can provide
significant speedups for some non-trivial MPI applications.

5 Conclusion

In this paper, we have presented and evaluated the performance of a lightweight
middleware called PVC (Private Virtual Cluster) designed to dynamically estab-
lish virtual clusters over resources connected by the Internet and protected by
firewalls and NAT. PVC derives from a mix of Grid, P2P and VPN concepts. It
features three main properties required for ”Instant Grids”: 1) a security model
that does not reduce the security level of the domains and resources to connect,
2) the capability to run cluster applications and runtime environments without
modification, and 3) negligible communication overhead.

PVC is itself a distributed system running as coordinated peer daemons ex-
ecuted on volunteer participants. Its architecture is modular and uses a set of
adaptable modules for its main functions: coordination, security, connectivity,
virtualization, interposition. Modules can be extended or modified to fit with the
target environment (e.g. interposition by virtual network interface or by shared
libraries, firewall-traversing protocols based on UPnP, TCP hole punching or
other.). We have detailed two important mechanisms: the security model and an
original traversing technique called ” Traversing TCP”. TTCP allows establishing
direct connections between resources protected in different administration do-
mains, except if the communicating resources are protected by a firewall running
state-full packet inspection.

Our performance evaluation demonstrates a moderate overhead (60 ms) for
the connection establishment, and a negligible bandwidth and latency reduction
compared to standard TCP communication. By establishing a virtual cluster,
at the IP level, with negligible communication overhead, PVC can be used to
deploy and run unmodified cluster applications and runtime environments. We
demonstrate this capability by running the MPI version of the NAS benchmarks
and the POV-Ray program on a set of PCs connected to the Internet by protected
DSL connections. Altogether, PVC features a set of characteristics allowing non-
OS and network specialists to deploy and run existing cluster applications over
multiple administration domains, with minimal performance overhead.

References

[1] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[2] M. Humphrey et all. An early evaluation of WSRF and WS-notification via
WSRF .net. In Proceedings of the 5th IEEE/ACMInternational Workshop on Grid
Computing, pages 172-181, Washington, DC, USA, 2004. IEEE Computer Society.

[3] S. Tuecke, K. Czajkowski, and I. Foster. Open Grid Services Infrastructure (OGSI)
version 1.0. Global Grid Forum, 2003.

[4] Li Gong. JXTA: A network programming environment./EEE IC, 5(3):88-95, 2001.

[5] M. Krasnyansky. Virtual tunnels over tcp/ip networks.hitp://vtun. sourceforge.net/.

[6] R. Thayer, N. Doraswamy, and R. Glenn. Rfc 2411 - ip security document roadmap.
USA, 1998. RFC Editor.

[7] A. Denis et all. Wide-area communication for grids: An integrated solution to con-
nectivity, performance and security problems. In Proceedings of the 13th IEEE In-
ternational Symposium on High Performance Distributed Computing, pages 97-106,
Washington, DC, USA, 2004. IEEE Computer Society.

[8] S. Son, B. Allcock, and M. Livny. CODO: Firewall traversal by cooperative on-
demand opening. In Proceedings of the 14th IEEE International Symposium on High
Performance Distributed Computing, Washington, DC, USA, 2005. IEEE CS.

[9] P. Srisuresh, B. Ford and D. Kegel. Peer-to-peer communication across NATS.
USENIX Annual Technical Conference, 2005.

[10] http://www.upnp.org/standardizeddcps/.

[11] C. Huitema J. Rosenberg, J.Weinberger and R.Mahy. Rfc 3489 - STUN - simple
traversal of UDP through NATs. USA, March 2003. RFC Editor.

[12] P. Ruth, P. McGachey, X. Jiang, and D. Xu. VioCluster: Virtualization for dy-
namic computational domains. IEEE IC on Cluster Computing (Cluster 2005), 2005.

[13] X. Jiang and D. Xu. Violin: Virtual internetworking on overlay infrastructure.
Technical report, Purdue University, 2003.

[14] J. Chase et all. Dynamic virtual clusters in a grid site manager. The 12th Inter-
national Symposium on High Performance Distributed Computing), 2003.

[15] K. Appleby et all. Oceano-SLA based management of a computing utility. In Proc.
7th IFIP/IEEE International Symposium on Integrated Network Management, 2001.

[16] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. Layer two
tunneling protocol 12tp. USA, August 1999. RFC Editor.

[17] J. Reynolds and J. Postel. Rfc 1340 - assigned numbers. USA, 1992. RFC Editor.

[18] A. Wool. A quantitative study of firewall configuration errors. IEEE Computer,
volume 37, number 6, pages 62-67, 2004.

[19] R. Jones. Netperf: http://netperf.org/, 1999.

[20] D. H. Bailey et all. The NAS parallel benchmarks: summary and preliminary
results. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages
158-165, NY, USA, 1991. ACM Press.

[21] LF Ten Eyck, J Mandell, VA Roberts, and ME Pique. Surveying molecular inter-
actions with DOT. Proc. ACM/IEEE SC 1995 Conference, 1995.

[22] http://www.Iri.fr/ rezmerit/dsllab/

[23] http://www.openssl.org/

