
Design and Effectiveness of Small-Sized

Decoupled Dispatch Queues ⋆

Won W. Ro1 and Jean-Luc Gaudiot2

1 Department of Electrical and Computer Engineering
California State University, Northridge

wro@csun.edu
2 Department of Electrical Engineering and Computer Science

University of California, Irvine
gaudiot@uci.edu

Abstract. Continuing demands for high degrees of Instruction Level
Parallelism (ILP) require large dispatch queues in modern superscalar
microprocessors. However, such large queues are inevitably accompanied
by high circuit complexity which correspondingly limits the pipeline clock
rates. This is due to the fact that most of today’s designs are based upon
a centralized dispatch queue which depends on globally broadcasting op-
erations to wake up and select the ready instructions. As an alternative
to this conventional design, we propose the design of hierarchically dis-
tributed dispatch queues, based on the access/execute decoupled archi-
tecture model. Simulation results based on 14 data intensive benchmarks
show that our DDQ (Decoupled Dispatch Queues) design achieves perfor-
mance comparable to a superscalar machine with a large dispatch queue.
We also show that our DDQ can be designed with small-sized, distrib-
uted dispatch queues which consequently can be implemented with low
hardware complexity and high clock rates.

1 Introduction

Reaching high degrees of Instruction Level Parallelism (ILP) through multiple-
instruction issue and out-of-order execution has been an essential part of mod-
ern microprocessor design. During the last decade, superscalar architectures have
dominated the commercial market by adopting a hardwired scheduling logic that
enables dynamic instruction scheduling. However, conventional dynamic schedul-
ing possesses an inherent scaling problem as far as the size of the dispatch queue

is concerned since the wake up and select logic requires a one-cycle operation
and cannot be pipelined [1].

Another important issue is how to solve the dramatically growing speed gap
between processor and main memory. This performance gap causes long access
latencies at cache misses and forces the cache miss instructions to be stalled. It
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consequently means all the instructions that depend on the cache miss instruc-
tions should stay inside the dispatch queue. In fact, those instructions would
occupy the slots for considerable amounts of time, which would result in a re-
duction of the number of available entries in the dispatch queue. Therefore, the
long memory latency also implies the need for a large dispatch queue. However,
as described earlier, a large queue will eventually cause a scaling problem.
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Fig. 1. Distributed instruction scheduling on the decoupled dispatch queues

As an alternative to a large dispatch queue, we propose Decoupled Dispatch
Queues (DDQ) which can be implemented with a three small-sized dispatch
queues. It aims at reducing the critical path delay of a large queue. The basic
motivation is to mask the long memory access latencies without increasing the
size of a single dispatch queue. The DDQ enables asynchronous scheduling of
three instruction groups which are separated according to the memory access
role of the instructions (computation instructions, memory access instructions,
and prefetching instructions); this means there is a dedicated dispatch queue for
each of the three instruction groups. Three dispatch queues are, at any given
moment, asynchronously dealing with different points of a sequential instruction
stream. However, it is virturally operating as if we had a large queue (Fig. 1).

Performance evaluation is based on a cycle-time simulator which is developed
from SimpleScalar 3.0 [2]. Compared to a superscalar architecture with a 256-
entry dispatch queue, our DDQ achieves a similar performance (98.5%) with
three 128-entry dispatch queues. When the dispatch queue is reduced by as
much as one fourth (64 entries), the DDQ still performs at 91.3% of the baseline
performance. With 32-entry dispatch queues, the performance still remains as
high as 86.7%. Moreover, reduction in the queue size will eventually contribute
to the higher clock rate.

The rest of the paper is organized as follows. In Section 2, we describe back-
ground research and previous work related to the complexity-effective dispatch
queue design. Section 3 presents the detailed description of the proposed DDQ
architecture. Section 4 includes experimental results and performance analysis.
Conclusions and future work are included in Section 5.

2 Background Research

Access/execute decoupled architecture concepts are not new and we now describe
them in some detail, while several related research projects are surveyed.
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2.1 Access/execute decoupled architectures

Access/execute decoupled architectures have been developed to tolerate long
memory access latencies [3–10]. Latency tolerance is achieved by separating the
original, single instruction stream into two streams: the access stream and the ex-

ecute stream. By definition, the access stream includes memory access operations:
load/store instructions and address calculation instructions. Other remaining in-
structions (commonly referred to as computation instructions) are included in
the execute stream. Timely data prefetching can be achieved by running the
access stream ahead of the execute stream; any processor stalling due to data
delivery can be eliminated by the early execution of the access stream. The time
difference between the access instruction produces a data element and the exe-
cute instruction needs the data is called the slip distance. The two independent
instruction streams processed by each processing unit exploit instruction-level
parallelism while providing memory latency tolerance. In general, the communi-
cations between the two streams are achieved via a set of FIFO queues.

2.2 Related work

There have been several research projects which have sought to solve the com-
plexity problem of a large dispatch queue by splitting it into multiple queues.
Palacharla et al. have performed an initial analysis of the potential complexity
of large window superscalar architectures [1]. They have proposed a dependence-
based instruction queue design, in which the instructions are sent to separate
FIFO queues based on the data dependencies. At the issue stage level, only the
head instructions of each FIFO queue are considered for issuing. Their initial
analysis demonstrates the advantage of a small-sized queue and has motivated
further research on the clustered microprocessor design. The clustering is es-
sentially related to the partitioning of a dispatch queue and functional units
[1, 11–13]. Also, clustered architectures separate the instructions based on reg-
ister dependencies. Furthermore, the speculative multithreading technique has
been developed [14, 15] with the idea in mind of focusing on software separa-
tion (thread selection and scheduling) and speculative thread spawning on each
separated processing unit.

Although the distributed queue design has been proposed in many prior
research projects, none of them separate the instruction stream based on the
memory access functionality as originally proposed in the early decoupled ar-
chitectures. Actually, the access/execute decoupled architecture model can even
be considered one type of clustered architectures. However, the difference lies in
the separation of the instruction streams; the task separation is done according
to the memory operations in the decoupled architectures and our DDQ.

Several previous projects in decoupled architectures also attempted to solve
the complexity problem of superscalars [3, 10]. However, none of them addressed
the problem of the cache misses on the access processor. To the best of our
knowledge, DDQ is the first work which proposes an implementation of data
prefetching on the access/execute decoupled architectures (except our previous
work in [16]).
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3 DDQ: hierarchically decoupled dispatch queues

This section first describes the problems of traditional decoupled architectures
and presents the idea behind our development of the proposed DDQ architecture.
It also includes the hardware and software descriptions of the design.

3.1 Problems of the access/execute decoupling

Our initial motivation is to solve the complexity problem of a monolithic dispatch
queue in superscalar machines by using access/execute decoupled architectural
concepts. As described earlier, the advantage of decoupled architectures can be
exploited only if the slip distance is larger than the memory access latency.
However, several factors in the current access/execute decoupled architecture
designs prevent the access stream from running far ahead of the execute stream.

First of all, frequent synchronization between the two streams prohibits early
execution of the access stream. In fact, the access stream also requires data from
the execute stream; some control operations as well as data operations need data
from the computation results of the execute stream. Therefore, synchronization
between the two streams can happen at a certain point of the execution. We call
this phenomenon a loss of decoupling event [17].

Secondly, frequent cache misses in the access stream prevent early execution
of the access stream running on the access processor (AP). If a cache miss on the
AP has a sufficient time until any instruction in the EP requires the data, the
latency can be tolerated. However, frequent cache misses may cause the access
processor to lag further behind. For example, two or more consecutive cache
misses on the AP will slow down the execution of the access stream. From the
above observations, we find that the cache misses in the access processor should
be reduced.

3.2 Description of the DDQ architecture

The DDQ architecture includes one additional processing unit to achieve data
prefetching on the access processor. Consequently, our architecture requires one
more stream separation in addition to the access steam and the execute stream.
An additional stream named the data prefetching stream is intended to run
ahead of the access stream, achieving another hierarchy of the prefetching from
the memory to the L1 data cache. Fig. 2 shows the proposed DDQ architecture.
It has a single fetch unit and separates three streams at the pre-decoding stage.
The stream separation information (which indicates the stream to which the
instruction belongs) is already annotated with each instruction at compile time
(it is described in the following subsection).

Three dedicated processing units for each of the execute stream, the access
stream, and the data-prefetching stream are loosely combined; they are respec-
tively the EPU (Execute Processing Unit), the APU (Access Processing Unit),
and the DPPU (Data-Prefetching Processing Unit). The operations of the EPU



5

and the APU are very similar to that in conventional access/execute decou-
pled architectures. The load data queue (LDQ) and the store data queue (SDQ)
facilitate communications between the EPU and the APU. To guarantee the
correctness of the communication order between the two processors, we use the
indexed data queue concept which is first introduced in the DS (Decoupled Su-
perscalar) architecture [10]. The indexed data queues are implemented to declare
the FIFO order which is assigned at decoding time. However, the queue entries
can be accessed out-of-order.
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Fig. 2. The DDQ architecture

The basic idea behind the DPPU is similar to the speculative pre-execution
concept [18, 19], which extracts the future probable cache miss slices from the
original code and executes them as an additional prefetching thread. The data-
prefetching stream of the DDQ is equivalent to the p-thread in speculative pre-
execution [18]. It contains the future probable cache miss instructions (target
loads) and their backward slice (backward slice includes every instruction upon
which the target loads have data dependencies). Access profiling is used to detect
probable cache miss instructions at compiler time. The DPPU operation is very
loosely coupled with the processor above it since data communications occur
only through the L1 data cache.

The execution of the DPPU is triggered at runtime. When the stream sepa-
rator detects the target load instructions, it triggers the execution of the DPPU.
For that purpose, Select and Extract Logic (SEL) is implemented. When the
triggering is initiated by the stream separator, the SEL is enabled and looks into
the instruction fetch queue to select the instructions which are tagged as data-
prefetching stream (those instructions have been pre-detected and tagged by the
stream separator beforehand). After that, SEL extracts and sends those instruc-
tions to the instruction decoder which is dedicated to the data-prefetching dis-
patch queue. The extraction operation is a copy operation of the instruction bits,
since the AP still needs to hold and execute those instructions. The separation
information for the three streams is defined and embedded on each instruction
by the DDQ binary translator which is described in the next subsection.
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The main target of this design is to reduce the size of a single dispatch
queue so that we can reduce the wire delay for the wake up and select logic.
Although the total number of queue entries in the entire processor should be
multiplied by three, the clock rate is only affected by the size of a single, largest
dispatch queue. There are no data bypassing networks or wake up and select
logic connected between two different queues.

3.3 Software support for the stream separation

The DDQ binary code is produced by the DDQ binary translator which directly
works on the SimpleScalar binary code. The tool analyzes the SimpleScalar bi-
nary code and separates it into three streams based on the instruction function-
ality. After that, the annotation field of each instruction of SimpleScalar binary
is used to convey the each stream information (including information on the
target load instructions) down to the hardware.

The separation of the access stream and the execute stream is very similar to
that in conventional decoupled architectures. At the beginning, each load/store
instruction is defined as the access stream. After that, the backward slice of the
load/store instruction is included in the access stream. The remaining instruc-
tions of the code are separated as part of the execute stream. In our design,
additional separation for the data-prefetching stream must be identified for the
DPPU operations. Basically, the data-prefetching stream, which includes the
probable cache miss instructions and their backward slice, is a subset of the
access stream. If an instruction has been detected as a frequently miss-causing
instruction by the access profiling, it is identified as a target load instruction
for prefetching operation and defined as a part of the data prefetching stream.
Finally, its backward slice is chased and included as the data prefetching stream.
More detailed description can be found in our previous work in [16].

4 Experimental results and analysis

This section presents the experimental results and the performance analysis of
the DDQ architecture.

4.1 Simulation environment

The DDQ simulator has been designed based on the sim-outorder simulator
of the SimpleScalar 3.0 tool set [4]. The baseline superscalar architecture for
performance comparison has a 256-entry dispatch queue with 8-way issue and
commit. In the DDQ model, each dispatch queue size is tested from 32, 64, to
128. The issue and commit width is also reduced to 4. The EPU is implemented
with all the functional units except for the load/store units. The APU and DPPU
only have integer units and load/store units. In addition, we assume 12 CPU
cycles for L2 cache access latency and 120 cycles for memory access latency.
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The set of benchmarks we have selected include 14 applications: six applica-
tions chosen from the Atlantic Aerospace Stressmark suite (pointer, update, field,
neighborhood, transitive closure, and matrix), three benchmarks from the At-
lantic Aerospace Data-Intensive Systems Benchmarks suite (data management,
ray tracing, and fast Fourier transform), and five selected from the SPEC2000
suite (gzip, vortex, bzip2, art, and equake). The SPEC benchmarks have been
compiled at peak optimization level and tested with the reference input set.

We have performed simulations with the above 14 benchmarks for the three
different machine models: superscalar (sus), access/execute decoupled architec-
ture (aed), and our model (ddq). For all simulation results, the performance is
measured in terms of IPC (instructions per cycle) and normalized to the baseline
superscalar models (sus.256.8). Note that the first term specifies the architec-
ture model while the second and the third numbers correspond to the dispatch
queue size and issue width. For example, ddq.32.4 indicates a processor model
for a DDQ configuration with 32-entry dispatch queues and 4-way issue width.

4.2 Performance results and analysis
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Fig. 3. Performance results for three DDQ models (normalized IPC to sus.256.8)

We have simulated three different configurations of the DDQ by using three
dispatch queue sizes: 32, 64, and 128 entries. They are respectively called ddq.32.4,
ddq.64.4, and ddq.128.4. The performance results for the three configurations are
shown in Fig. 3. The performance of each model is measured in terms of IPC and
normalized to that of sus.256.8. Although we cannot quantify the expected clock
rates of our design at this point, we know that the smaller dispatch queues in
our design would ultimately contribute to higher clock rates. Indeed, as previous
research indicates [1], the critical path delay shows a quadratic dependency on
the dispatch queue size and issue width.

As the results indicate, the ddq.128.4 configuration yields a performance com-
parable to the baseline superscalar model in most benchmarks. However, four
benchmarks (field, tr, fft, and art) show a weak performance compared to the
other benchmarks. Field does not encounter many cache misses with the super-
scalar model and did not benefit from the data prefetching. Also, tr suffers from
a low branch hit-ratio which prevents a successful speculative prefetching. As
for fft, the DPPU has too many instructions in the prefetching stream. It causes
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cache pollution that correspondingly degrades the performance. In addition, art

does not provide good performance since it works too well with the baseline
model which has a 256-entry instruction window. The wide range scheduling is
very beneficial to art and diminishes the advantages of the DDQ approach. The
other 10 benchmarks show very close or even better performance compared to
the baseline architecture.
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Fig. 4. Performance results with 128-entry queues (normalized IPC to sus.256.8)

For a further detailed analysis, Fig. 4 shows how ddq.128.4 improves the
performance over a traditional access/decoupled architecture (aed.128.4) and a
superscalar (sus.128.4). The results demonstrate that ddq.128.4 performs even
better than the baseline model (sus.256.8) in 6 benchmarks in spite of having
half-sized dispatch queues and half-sized issue width. However, sus.128.4 and
aed.128.4 do not show good performance results in most benchmarks. In partic-
ular, tr and art shows noticeably low performance in the sus and aed configura-
tions. We also performed benchmark simulations with 64-entry dispatch queues;
the results show very similar tendency and characteristic. To avoid including too
many redundant figures, only the average performance for the 64-entry configu-
rations is presented later in this section.
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Fig. 5. Performance results with 32-entry queues (normalized IPC to sus.256.8)

Fig. 5 illustrates the performance of three architecture models with 32-entry
dispatch queues and 4-way issue width; again, all results are normalized to
sus.256.8. In this result, the dispatch queues in DDQ are as small as one eighths
of the baseline model. However, the DDQ still reaches better than 80% of the
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baseline performance in 11 benchmarks. In contrast, more than half of the bench-
marks (8 out of 14) cannot achieve 80% of the performance with sus and aed.
More specifically, it should be noted that tr and art lose about 80% of the
performance in those two configurations. Both models are affected much by the
restriction of the queue size since neither configuration is assisted by prefetching.

The average performance over the 14 benchmarks is shown in Fig. 6. On
average, ddq.128.4 reaches up to 98.5% of the baseline performance with half-
sized dispatch queues and half-sized issue width. However, the aed.128.4 model
experiences a 12.2% performance degradation. These results clearly demonstrate
the advantage of the data prefetching operations of the DDQ. With ddq.64.4, the
average performance still remains above 91%. More over, the ddq configuration
remains in the range of over 86.7% of the baseline performance even for the
smaller configurations such as 32-entry queues. However, sus and aed experience
severe performance degradation when the dispatch queue is small.
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Fig. 6. Average performance with the small dispatch queue models

5 Conclusions and Future Work

The DDQ is based on the simple observation that the partitioning of a dispatch
queue can reduce the complexity of a centralized design as well as the size of each
component. Each processing unit is decoupled and works fairly independently of
the others. The performance results show that the proposed architecture achieves
performance comparable to that of the baseline superscalar architecture which
has a large dispatch queue. In addition, our DDQ can be implemented with a
faster clock since each processing unit has a smaller dispatch queue.

The main feature of the DDQ is having small dispatch queues, so that we can
reduce the complexity and wire delay of the instruction scheduling logic. This
eventually contributes to achieving higher clock rates. Even though the total
number of queue entries over the DDQ grows with the each queue size times
three, the clock rate is only affected by the size of a single dispatch queue. The
three distributed dispatch queues do not require any data bypassing from the
different functional units, nor share any instruction scheduling logic. Consider-
ing the clock rate improvement afforded by the size of a dispatch queue, these
performance results are encouraging.
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