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Abstract. This paper proposes a hybrid hardware/software generated prefetch-
ing thread mechanism on Chip Multiprocessors(CMP). Two kinds of prefetch-
ing threads appear in our hybrid mechanism. Most threads belong to Dynamic
Prefetching Thread, which are automatically generated, triggered, spawn and
managed by hardware; The others are of Static Prefetching Thread, targeting
at the critical delinquent loads which can not be accurately or timely predicted
by Dynamic Prefetching Thread. Static Prefetching Threads are statically gen-
erated by binary-level optimization tool with the guide of profiling information.
Also, some aggressive thread construction policies are proposed. Furthermore,
the necessary hardware infrastructure for CMP supporting this hybrid mecha-
nism are described. For a set of memory limited benchmarks with complicated
access patterns, an average speedup of 3.1% is achieved on dual-core CMP when
constructing basic hardware-generated prefetching thread, and this gain grows to
31% when adopting our hybrid mechanism.

1 Introduction

Advances in integrated circuit technology afford great opportunities for Chip Multi-
processors(CMP). It is really a challenge to utilize multi-cores in CMP to accelerate
sequential programs. Thread-based prefetching technique is a promising approach to
achieve this purpose. It typically uses additional execution pipelines or idle thread
contexts in a multithreaded processor(CMP or SMT) to execute helper threads that
perform dynamic prefetching for the main thread. Pure hardware-generated prefetch-
ing thread mechanisms[1, 3, 5, 7, 8, 12, 16] are transparent to compiler. However, such
mechanisms might be inaccurate or suffer from higher memory bandwidth because it is
difficult for hardware to observe and analyze the large range runtime execution. Tradi-
tional software-generated prefetching thread techniques[2, 4, 10, 11] are typically accu-
rate due to the better understandability on program semantics and data structures, but
might incur additional instruction overhead and can not observe runtime behaviors.

It is necessary to adopt the advantages of both traditional hardware and software
methods. To the best of our knowledge, this paper firstly proposes a novel hybrid hard-
ware/software generated prefetching thread mechanism on Chip Multiprocessors.
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The main contributions of this work are: (1) A hybrid hardware/software generated
prefetching thread mechanism on Chip Multiprocessors is proposed; (2) Two aggressive
thread construction policies, known as “Self-Loop” and “Fork-on-Recursive-Call”, are
presented for Dynamic Prefetching Thread; (3) “Thread Merging” policy is proposed
for Static Prefetching Thread, which also adopts “Multi-Chain” policy; (4) The neces-
sary hardware infrastructure for CMP supporting this hybrid mechanism is designed.

The rest of this paper is organized as follows: Section 2 introduces Dynamic Prefetch-
ing Thread. Section 3 describes the challenges to Dynamic Prefetching Thread. A hy-
brid hardware/software generated prefetching thread mechanism is proposed in Section
4. And Section 5 is performance evaluation. Section 6 is conclusion.

2 Dynamic Prefetching Thread

Many researchers found that a small number of static loads, known as delinquent loads,
are responsible for the vast majority of memory stall cycles. Furthermore, not all the
instructions contribute to the address computation of the future delinquent load[2, 3,
7]. Motivated by these observations, we try to extract these sequence of instructions as
prefetching thread from the executed instruction trace by means of hardware, and uti-
lize idle cores to execute such threads that perform dynamic prefetching for the main
thread. Such threads are called Dynamic Prefetching Thread(DPT), which are automat-
ically generated, triggered, spawned and managed by hardware. It should exit when
meeting exceptions or interrupts. The operating system should make no response to
these exceptions and interrupts except for TLB exception.

2.1 The hardware infrastructure supporting Dynamic Prefetching Thread

Fig. 1. The architecture of CMP with Dynamic Prefetching Thread support.

Figure 1(a) illustrates the typical CMP architecture with DPT support. The black
blocks are the necessary hardware infrastructure supporting DPT. The “DPT Generator”
is in charge of extracting DPT, located off the pipeline critical path. It has no effects on
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the pipeline frequency due to its back-end work mode. The “shadow register” is used
for quickly initializing the context of the new spawned thread.

The organization of DPT Generator is shown in Figure 1(b). The committed load
instructions in original thread and their corresponding execution information(such as L2
hit/miss flag) are sent to the back-end DPT Generator. These load instructions will first
probe the trigger pointer selector, “Spawn Table”. Once a trigger pointer is identified,
the corresponding prefetching thread stored in DPT Cache is dispatched on idle core
and run in parallel with original thread to perform dynamic prefetching for the targeted
delinquent loads; otherwise it will query and update the Delinquent Load Table(DLT
Table), which is in charge of identifying the delinquent load.

When any delinquent load is identified, DPT Generator begins to collect the com-
mitted instructions from the main core running original program. This collection does
not stop untill the same delinquent load comes again or the Trace Buffer is full(If Trace
Buffer is full, this mechanism is abort). After this collection, Thread Constructor per-
forms a reverse walk of the trace to extract relevant instructions which contribute to the
address computation of the targeted delinquent load. Then it produces a sequence con-
taining these instructions in program order, oldest (lead) to youngest (candidate load).
For simplicity, we only focus on the register dependence but ignore both memory and
control-flow dependence during this reverse analysis. This policy is similar to Slice
Processor[7], and we adopt it as our basic policy. Meanwhile, the trigger point is cho-
sen for each Dynamic Prefetching Thread. These maps are recorded in DPT Cache.

The current CMP memory hierarchy is utilized to store prefetching results. No mod-
ifications are needed for memory hierarchy in this work.
Identify the delinquent load

The delinquent loads are identified at runtime via DLT Table. It is a PC-indexed
table with 128 entries and each has 5-bit counters. One out-chip cache load miss(L2
Miss in our simulation) increases the corresponding counter by 4, otherwise decreases
it by 1. A delinquent load is selected once the counter value exceeds 31. Predictor entry
is allocated only when an L2 load miss occurs.
“Shadow Register” mechanism

The main core running original thread is to initialize the registers of the idle core
when a DPT is dispatched. “Shadow Register” is for such quick initialization mecha-
nism. It keeps the same data content with the main core. Some modifications are needed
in pipeline to support this mechanism. The value and logical index of the destination
register are attached with each issued instruction and reserved in ROB entries. Thus this
information can be sent to the “Shadow Register” at commit time. The main core has the
write privilege whereas the other cores running prefetching threads are only be allowed
to read it. During the thread extraction phase, the live-in registers should be analyzed
and used for marking some flags in renaming table of new core so as to differentiate the
“Shadow Register” and local registers. Only the first access about the live-in registers
on prefetching cores should access the “Shadow Register”.
Trigger point and Spawn time

The delinquent load itself is selected as the trigger point. And the commit time is
selected as spawn time because it is suitable for the loosely-coupled feature of CMP.
Although choosing decode time as spawn time can spawn the thread earlier, it has prob-
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lems in transporting register context among multi-cores. The reason is that the value of
the instruction’s destination register is still unavailable at decode time. Therefore the
commit time is selected as the spawn time. It just needs to copy corresponding registers
to initialize the new thread context at spawn time.

2.2 Aggressive thread construction policies

(1) “Self-Loop” Policy
In basic policy, one Dynamic Prefetching Thread only prefetches one future in-

stance of the static delinquent load. In “Self-Loop” policy, the future N instances of
the same delinquent load instruction are prefetched in the same Dynamic Prefetching
Thread at one trigger point(N=10 in our simulation). We accomplish this purpose via
adding loop structure on basic-policy constructed thread code. The framework of new
added loop structure is so stable that hardware implementation has high feasibility.
This policy enlarges the prefetching range and helps the thread speculatively prefetch
farther delinquent loads that are not visible in current pipeline. And it can also decrease
the cost of thread initialization by merging multi-threads into one. Furthermore, “Self-
Loop” policy need not copy register values between consecutive prefetching threads,
since such threads are run on one core in our policy. This policy needs less prefetching
cores(usually 1-4 cores are enough), thus releasing the access contention for “Shadow
Register”.
(2) “Fork-on-Recursive-Call” Policy

Most nodes in tree or graph structures connect two or more sub-nodes. This inherent
memory parallelism can be exploited for prefetching. When the main program accesses
one sub-tree or sub-graph, other idle cores can be utilized to speculatively access the
other sub-tree or sub-graph. What’s more, the recursive function is one of the primary
methods used to access such structures. When any recursive call instruction is executed,
a new prefetching thread is dispatched on one idle core starting from the next instruction
address. Then the idle core begins to speculatively execute the following instructions.
By means of this approach, idle cores are utilized to speculatively access the other sub-
tree or sub-graph for prefetching. This is the “Fork-on-Recursive-Call” policy.

A hardware stack and Recursive Call Table are used for identifying the recursive
call and recording the recursive entries for each recursive call. They work in back-end
and are placed in DPT Generator. Any function call instruction(e.g, jal, jalr in MIPS
ISA) at the top of ROB will trigger the following step:

(a) Looking up the Recursive Call Table to find whether this call is recursive. If
some entry is found, then goto (b), else goto (c).

(b) The following PC of the current call instruction is sent to idle core to be specu-
latively executed. And exits here.

(c) The instruction’s PC enters the hardware stack. It will look up the previous stack
entries before entering the stack. If some entry matches, a recursive call is identified,
and the PC is recorded in Recursive Call Table. Otherwise, it is just stored in the stack.
The stack should be emptied if it is full.

Any return instruction(e.g, jr in MIPS ISA) should update the stack at commit time.
If the stack is empty, nothing is done; otherwise the top stack entry is popped.
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The store instructions are considered as nop operation since the speculatively exe-
cuted thread is only used for prefetching and should not modify the architecture state. A
counter is used to control the execution distance of prefetching thread. The prefetching
thread also looks up the Recursive Call Table when any call instruction is executed. If
one recursive call is identified, the counter begins to work and increase one for each
instruction. In this work, the prefetching thread will not stop untill the counter exceeds
200 or some exception occurs.

3 The challenges to Dynamic Prefetching Thread

The following three cases are great challenges for Dynamic Prefetching Thread.
(1) The loops with two or more delinquent loads. When there are two or more

delinquent loads in the same loop structure, usually some of them are not timely prefetched
by Dynamic Prefetching Threads. The reason is that each such threads usually targets
at only one static delinquent load. If the number of processor core is small, several Dy-
namic Prefetching Threads separately targeting at different loads compete for the scarce
idle cores. Thus some of prefetching threads have no chance to be dispatched.

(2) The loops with two or more levels. Larger prefetching range can be expected
at the outer-level loop. Yet it is hard for the hardware to identify and collect the whole
execution trace of the outer loop iterations. Therefore the prefetching timeliness and
range are limited.

(3) The hot regions with complicated control flow. The instruction traces are
unstable in this case. It is hard for hardware to analyze and conclude all the conditions
at runtime. The prefetching accuracy might be quite low.

4 The hybrid Hardware/Software prefetching thread mechanism

Although software-generated prefetching thread might incur additional instruction over-
head and can not observe runtime behaviors, it can overcome the challenges to Dynamic
Prefetching Thread. We proposes a hybrid hardware/software generated prefetching
thread mechanism on Chip Multiprocessors. Two kinds of prefetching threads appear in
our hybrid mechanism. Most threads belong to Dynamic Prefetching Thread, which are
automatically generated, triggered, spawn and managed by hardware; The others are
of Static Prefetching Thread(SPT), targeting at the critical delinquent loads identified
by profiling information. SPT is statically generated by binary-level optimization tool.
The software tool can understand the program semantics better, thus higher prefetching
accuracy and larger prefetching range are anticipated for SPT.Furthermore, benefiting
from the concentration on critical delinquent loads, SPT incurs little additional instruc-
tion overhead.

This hybrid mechanism is effectively composed of DPT and SPT where DPT is
predominant. These two kinds of threads are efficiently combined by the identification
of critical delinquent loads. An enhanced compilation flow and the corresponding pro-
filing mechanism are proposed to support the identification of critical delinquent loads
and the SPT construction. By the way, SPT has higher execution priority than DPT. All
such threads are transparent to operating system.
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4.1 Compilation in hybrid mechanism

The enhanced compilation supporting the hybrid mechanism is illustrated as the fol-
lowing steps:

(1) The program is compiled by general source-code compiler(e.g, gcc);
(2) The binary is run directly on CMP without Dynamic Prefetching Thread support.

The instruction addresses of the TOP N most frequent load misses are collected via
performance counter. Regarding these instructions, we call the set, which is composed
of (instruction address, the number of cache misses) pairs, as Miss Set0;

(3) The binary is run directly on CMP with Dynamic Prefetching Thread support.
The instruction addresses of the TOP N most frequent load misses are collected via
performance counter. Regarding these instructions, we call the set, which is composed
of (instruction address, the number of cache misses) pairs, as Miss Set1;

(4) Then the set of critical delinquent loads, which can not be accurately or timely
prefetched by Dynamic Prefetching Thread, are identified according to the following
formula:

Critical Set = {x | ∃x, ∃y0, ∃y1,

(x, y0) ∈ Miss Set0,

(x, y1) ∈ Miss Set1,

and (y0− y1)/y0 < δ}
In this formula, x is instruction address, y0 and y1 are the numbers of cache misses, and
the δ is the assumed threshold for identifying critical instructions.

(5) Targeting at these critical delinquent loads, the binary-level SPT tool can ex-
tract more effective prefetching threads from original binary, attach them in a special
program text segment , and regenerate the final version SPT-enhanced binary.

4.2 The binary-level SPT tool

Firstly, the binary is loaded and disassembled. Guided by the relocation information in
binary head section(e.g, ELF head), all basic blocks and their relationships(functions
and branches) are identified. Then the control flow graph(CFG) is constructed. Sec-
ondly, the loop structures or functions containing critical delinquent loads are located,
and the tool makes analysis on such zones based on several specific thread construction
policies. All the instructions, which contribute to the address computation of the crit-
ical delinquent loads, are extracted. Such extracted instructions are Static Prefetching
Thread, placed in a special program text segment at the bottom of original binary. Dur-
ing these analysis, the register live-ins of Static Prefetching Thread are also attained,
which is helpful to choose a spawn point and insert a spawn instruction in original
binary. Finally, some adjustments are necessary since original binary is modified, and
then we get the SPT-enhanced binary by the SPT tool.

4.3 Thread construction policies for SPT

(1) “Thread Merging” Policy
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“Thread Merging” policy is proposed to overcome the case where there are several
delinquent loads in the same loop. In this policy, all the static delinquent loads in the
same loop are prefetched by one prefetching thread.

According to profiling, SPT tool can observe that more than one critical delinquent
loads appear in the same loop structure. Through analyzing the register and control
dependence from the loop header to bottom(still ignoring memory dependence), all in-
structions contributing to the computation of these delinquent loads’ addresses are ex-
tracted. The loop header is selected as the spawn point before which spawn instruction
is inserted. Of course, “Self-Loop” can also be merged with “Thread Merging” policy.
(2) Multi-Chain Policy

Multi-Chain policy is described in [9]. We apply it to deal with the case where there
are delinquent loads in loop structure with two or more levels. Such case is common
in pointer-chasing applications, which tend to traverse composed data structures con-
sisting of multiple independent pointer chains. Multi-Chain policy exploits this inter-
chain memory parallelism. When the original thread accesses one pointer chain, Static
Prefetching Threads simultaneously perform their speculative traversal of other pos-
sible future chains on idle cores. Consequently, the serialized memory latency can be
tolerated by overlapping cache misses across independent pointer-chain traversals.

When SPT tool observes that there are little overlap work between the sequent crit-
ical delinquent loads in the loop with two or more levels, multi-chain policy is adopted
to construct SPT. First, it analyze the inner loop, and extract all instructions contribut-
ing to the address computation of these delinquent load, including the loop induction
variables and corresponding instructions. These extracted instructions are called as sub-
thread. Meanwhile, the register live-ins of sub-thread are attained. Then the outer loop
is analyzed, all instructions related are also extracted. These instructions are located
before the sub-threads. Then the whole SPT is constructed. The spawn instruction is
inserted directly before the entry of the inner loop.

4.4 Hardware support for hybrid mechanism

(1) Extensions to the Instructions Set Architecture
Two additional instructions are needed. One is the spawn instruction. Its format is

“spawn start-of-SPT”. This instruction explicitly indicates one SPT dispatch and regis-
ter context initialization. The other is the stop instruction, indicating that the prefetching
thread is to be finished. It has no operator and is also used for DPT.
(2) Profiling mechanism for the TOP N out-chip load instructions

The critical delinquent loads identification needs to collect the top N most frequent
out-chip loads for the execution of whole program. A hardware/software cooperative
profiling mechanism is designed for such purposed.

A new Performance Counter(PC) is provided to record recent the top N most fre-
quent out-chip load instruction, which is similar to Cache Miss Lookaside Buffer[13]
aiming at releasing the access pressure on L2 cache. The new Performance Counter con-
sists of(process ID, instruction address, counter) tuples with process ID and instruction
address as index. It is implemented as content-indexed array(CAM). The Process ID is
used for distinguishing the instructions from original or prefetching thread, and only the
former is concerned. To improve the accuracy, the tuples are broken into two segments:
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HOT and LRU region. Once an out-chip load commits, a lookup in the PC(both the
LRU and HOT segment) is performed. If it doesn’t match, the least-used entry in LRU
segment is replaced by the instruction and the counter is initialized as one; Otherwise,
the corresponding counter is increased. Furthermore, if it matches the LRU segment
and the counter is larger than the minimum in HOT segment, these two entries are ex-
changed. The size of LRU and HOT segments are important for the profiling accuracy.
We find 32 is suitable in our simulation.

However, the Performance Counter can only record recent out-chip load instruction.
In order to record the top N most frequent out-chip loads for the execution of whole
program, software are needed to record and accumulate the performance counter at
intervals. Such function is implemented in the timer interrupt entry of operating system.
Since PC only works for profiling, this mechanism does not decrease the performance
and has no additional power dissipation.

Table 1. Simulated CMP Processor Parameters.
Processor core Memory Hierarchy

Number of cores / Frequency 2core/2GHz Cache sizes 32KB IL1, 32KB DL1, 512KB L2
Fetch / Issue / Commit Width 4 / 4 / 4 Cache associativity 4-way L1, 8-way L2
I-window / ROB / LSQ size 64 / 128 / 64 Cache Hit/Miss latencies L1:2/3 cycles, L2: 9/11 cycles

Int/FP registers 184 Cache line sizes/ports L1:32B,2ports, L2:32B,4ports
LdSt/Int/FP units 2 /4 / 2 L1-L2, L2 cache Store policy write-back

Execution latencies similar to MIPS R10000 MSHRs L1:64 , L2:128
Branch predictor 16K-entry gshare hybrid Memory Bus split transaction, 2words/cycle

RAS entries 16 Main memory latency minimum 200 cycles

Hardware Supporting Hybrid Prefetching Thread
Trace Buffer Size 256 entries

DPT Cache size / associativity 32kB / 2 way
Thread construction time 200 cycles

Thread initiation time 6 cycles
Shadow Register size / port 64*32B / 4w4r ports

δ for Critical Set 0.5

5 Experiments

5.1 Simulation methodology

The evaluation is performed by a detailed CMP architecture simulator based on SESC[17]
implementing MIPS ISA, which is a cycle-accurate execution-driven simulator. The
CMP cores are out-of-order superscalar processors. Table 1 lists the parameters in de-
tails. To demonstrate the performance potential of our architecture, we just use the dual
core configuration for simplicity.

The memory limited benchmarks are selected from the Olden pointer intensive pro-
grams[6], and SPEC CPU2000. A large number of cache misses in these benchmarks
are due to relatively irregular access patterns involving pointers, hash tables, tree/graph,
indirect or complicated array references, or a mix of them, which are typically difficult
for prefetching. The train sets are used for SPEC benchmarks to achieve reasonable
simulation times. In addition, all benchmarks are compiled with gcc -O3 and simulated
for one billion committed instructions after fast-forwarding the initialization with cache
warmup.

The full mechanisms of Dynamic Prefetching Thread are simulated in details. Yet
Static Prefetching Threads are constructed manually. SPT tool now can read and modify
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the MIPS binaries, while the implementation of SPT thread construction policies is
still in development. These hand-generated Static Prefetching Threads demonstrate the
performance potential of our hybrid mechanism.

5.2 Performance evaluation

Fig. 2. The performance speedup of several prefetching thread mechanisms.

The performance speedup of our hybrid mechanism is illustrated in Figure 2. Since
DPT is predominant in our hybrid mechanism, the speedup of DPT adopting basic and
aggressive polices is also presented to make comparisons, and the speedup of pure SPT
mechanism is ignored in Figure 2. With regards to the DPT mechanism, it can be ob-
served that significant improvements are achieved with aggressive policies. The aggres-
sive policies achieve 21.5% speedup on average while the basic policy only achieves
3.1% speedup. Furthermore, the performance can be further improved by the hybrid
mechanism. SPT can overcome the challenges to DPT(especially for swim, mgrid,
equake, em3d and mst). The performance speedup is increased to 31% on average when
adopting the hybrid mechanism.

To understand the performance speedup, the prefetching coverage and timeliness
information is provided to have a deep insight at the prefetching activity in Figure 3.
Each bar is broken into eight segments according to the fractions of the miss latency
hidden by prefetching, e.g, less than 10 cycles, between 10 and 50 cycles and so on.

For swim, mgrid,art, equake and mcf, most of the speedup benefits from the larger
coverage and better timeliness achieved by DPT with “Self-Loop” policy. Through en-
larging the prefetching range and number per prefetching thread, “Self-Loop” policy
makes the thread generate more timely and more farther prefetching requests illustrated
in Figure 3. For instance, the coverage of swim is about 2% in basic policy, and it
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Fig. 3. The prefetching coverage and timeliness analysis.(For each group, the left bar: DPT with
basic policy, the middle: DPT with aggressive policies, the right: hybrid mechanism.)

increases to 21% in aggressive policies. And the performance speedup for swim also
increases from 0 to 32% with the improvements of prefetching coverage and timeliness.

The “Fork-on-Recursive-Call” policy stimulates the performance improvements for
treeadd, perimeter and tsp, since these benchmarks access tree-like structures via re-
cursive calls. This policy effectively exploits the memory parallelism indicated by the
the kernel data structures and then improves the prefetching coverage and timeliness,
especially for treeadd(31% performance improvement).

Although most benchmarks have been accelerated significantly by Dynamic Prefetch-
ing Thread, there are still considerable performance potential to be exploited by our
hybrid mechanism. For swim, mgrid and equake, the “hot” loops always have several
delinquent loads. Static Prefetching Threads constructed by “Thread Merging” policy
prefetches these delinquent loads using one thread, leading to the significantly improved
prefetching coverage demonstrated in Figure 3. For mcf and vpr, there are usually one
delinquent loads in hot loop or thread contentions are scarce, Static Prefetching Threads
almost have no effects. For mst and em3d, most pointer accesses have little overlap
work, so Dynamic Prefetching Threads almost have no effects on them. Fortunately,
it is observed that the kernel data structures are accessed by loops with two or more
levels, “Multi-Chain” policy can effectively accelerate these benchmarks via higher-
level prefetching(the performance improvement for em3d is 20%, mst is 18%). These
phenomenons are demonstrated in Figure 3.

6 Conclusion

This paper firstly proposes a hybrid hardware/software generated prefetching thread
mechanism on Chip Multiprocessors.This hybrid mechanism is effectively composed
of Dynamic Prefetching Thread and Static Prefetching Thread. The former is predomi-
nant and dynamically generated by hardware, and the latter is complementary and stat-
ically generated by software. These two kinds of threads are efficiently combined by an
enhanced compilation flow and the corresponding profiling mechanism.

For a set of memory limited benchmarks, an average speedup of 3.1% is achieved on
dual-core CMP when constructing DPT with basic policy, and this gain grows to 21.5%
when adopting aggressive policies. Although significant improvements can be achieved
by DPT, the performance can still be further improved by the hybrid mechanism. SPT
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is an effective complement to DPT. The performance speedup is increased to 31% on
average when adopting the hybrid mechanism.
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