
Incremental Distributed Garbage Collection using
Reverse Reference Tracking

M. Schoettner, R. Goeckelmann, S. Frenz, M. Fakler, P. Schulthess

University of Ulm, Computer Science Faculty, 89069 Ulm Germany
michael.schoettner@uni-ulm.de

Abstract. Most modern middleware systems like Java Beans and .NET pro-
vide automatic garbage collection (GC). In spite of the many distributed solu-
tions proposed in literature collection is typically limited to a single node and
simple leasing techniques are used for remote references. In this paper we pre-
sent a new incremental multistage GC. It has been implemented in the Plurix
operating system but might easily be applied to other platforms. The scheme
works incrementally and avoids blocking remote nodes. The reverse reference
tracking scheme efficiently detects acyclic garbage and is also used for finding
cyclic garbage without precomputing a global root set. To minimize network
communication cycle detection splits into a local and a global detection part.
Keeping the object markers in a separate stack avoids invalidation of replicated
objects. Performance measurements show that the proposed distributed GC
scheme scales very nicely.

1 Introduction

Garbage Collection (GC) relieves the programmer of explicit memory management and avoids
memory leaks and dangling pointers. This is important on a single node system and almost
indispensable in a distributed and persistent environment. As a consequence most modern
middleware systems such as Java Beans and .NET provide automatic GC. These commercial
GCs are typically based on scanning algorithms (mark and sweep) for a single node and fall
back to a leasing scheme for remote references in distributed programs. In the literature
numerous more sophisticated distributed GCs have been proposed [6].

Efficient GC for a distributed environment is more of a challenge than for a single machine.
Basic scanning algorithms can not detect concurrent manipulation of pointers during the execu-
tion of the GC task and require suspending all other execution. Unfortunately in a distributed
environment this means stopping all processing in the cluster. Incremental GC algorithms solve
this problem, but often require read or write barriers and introduce programmed
synchronization between the nodes in the cluster. Furthermore, in a distributed system all
changes to objects including those introduced by the GC (e.g. temporary markers) must be
propagated to remote object replicas. Hence small changes made on a single node may affect
the entire cluster and decrease overall cluster performance.

In this paper we propose a reverse reference tracking scheme to collect incrementally all
types of garbage – local or remote, cyclic or acyclic. Objects which are no longer referenced are

called acyclic garbage. Garbage cycles consist of at least two objects referencing each other but
neither of these objects is referenced from the root set.

The acyclic GC phase is a simple reference counting scheme with local and global parts of
the computation. Unlike other scanning algorithms our reverse reference tracking avoids an
atomic precomputation of the global root set and scales smoothly to larger clusters. The second
phase collects cyclic garbage in an incremental fashion. Invalidation of remote replicates is
avoided by storing the temporary marks separate from the candidate objects in small tables.

The remainder of the paper is organized as follows. In section 2 we briefly present relevant
parts of the Plurix architecture followed by a discussion of related work in section 3. In section
4 we present our GC scheme which uses reverse reference tracking. Subsequently, we present
the measurement results indicating the scalability of the proposed approach. The conclusions
and an outlook on future work is given in the last section 6.

2 Plurix Architecture Aspects

Plurix is a native cluster operating system (OS) which simplifies distributed and parallel pro-
gramming [3]. The entire OS is written in Java (with some minor language extensions for de-
vice drivers) and works in a type safe and object-oriented language framework continuing the
OS development which was convincingly demonstrated by the Oberon system [2].

Distributed Shared Memory (DSM) in Plurix offers an elegant solution for distributing and
sharing data in a cluster of loosely coupled PCs [8]. Applications running on top of the DSM
are unaware of the physical location of objects. Remote objects are automatically transferred to
an accessing node by the runtime system. Plurix implements a distributed heap (DHS) on top of
the DSM which hosts language objects, kernel objects, code segments and device drivers.

Tracking references to objects is a requirement both for the GC scheme and for the object re-
location facility. The latter is needed to compact the heap, to resolve false sharing (page thrash-
ing) situations, and to support type evolution. We have developed the so-called backpack
scheme to track all references to an object. The basic idea is that each object can track up to
three references in its own header accommodating the majority of all reference situations (in-
line backlinks). The reverse tracking links are called backlinks. If more than three references are
tracked backpacks are created on demand. These are separate hash tables containing additional
backlinks. A detailed description of backlinks and backpacks can be found in [1].

Any heap object may be registered and then looked up in the directories and subdirectories
of a cluster-wide name service. This corresponds to the directory structure of traditional file
systems but the functionality of the name service is extended to store symbol tables, configura-
tion information, and to cover all naming issues occurring in the OS. Any heap object reachable
from the name service root is not garbage and thus persistent.

The Plurix DHS detects memory access using the Memory Management Unit (MMU) of
the CPU thus implementing a page-based DSM. Since individual pages and the allocated ob-
jects get replicated a distributed consistency protocol is necessary. Plurix uses a strong consis-
tency model, called transactional consistency [3]. All actions in Plurix regarding the DHS are
encapsulated in restartable transactions (TA) combined with an optimistic synchronization
scheme. Before a page is modified by a TA the OS creates a shadow image. During the commit
phase the addresses of all modified pages are multicast and the receiving nodes will invalidate
these pages. Those nodes that detect a collision, abort themselves voluntarily.

In case of an abort all modified pages in a TA are discarded. Shadow images are used to re-
set the DHS is to the state before this conflicting TA. A token mechanism guarantees that only
one node at a time can enter the commit phase. Currently, the token is passed according to a
first wins strategy, but improved fairness strategies are currently being investigated. For a more
detailed discussion about consistency management, fault tolerance, and persistence see [3].

3 Related Work

In this section we briefly discuss GC algorithms which were designed for distributed environ-
ments or whose ideas inspired our implementation. An excellent summary of basic GC algo-
rithms is found in [6].

Copying Algorithms
These schemes copy all live objects (reachable from the root object set) from one part of the
address space to another and the garbage objects are left in the source portion. After the “copy”
action heap fragmentation is eliminated but copying many small objects (even if only logically)
may be time consuming and expensive invalidations of live remote objects are unavoidable.

LeSergent and Berthomieu [5] have developed an copying algorithm for a distributed GC.
Each process in the system has a uniform view of the DSM. The memory is divided into parts
with equal size, e.g. physical pages. A single page may be dynamically assigned to one or more
processes at a time. If a process tries to access a page which is not present the page is fetched
across the network and locally assigned. For this algorithm it is necessary to lock pages if a
process needs write access to it. As a consequence nodes may be blocked during the GC cycle.

Mark-and-Sweep Algorithms
These algorithms mark each object reachable from the root set. Unmarked objects are garbage.
Setting marks within an object may lead to many invalidations of remote objects. It is preferable
to store marks outside of the objects, e.g. in bitmap- or hash-tables. Hash-tables consume less
physical memory than the bitmap approach but are still expensive in a scenario with many
small objects (e.g. 32-64 byte) that are common in object-oriented languages.

A mark-and-sweep algorithm for a distributed system was developed by Yu and Cox [10] in
1996. They designed a GC scheme for the Treadmarks DSM system [4]. Here the heap is
divided into blocks in which each process can allocate its own objects. After allocation, the
process gains ownership of the object. Objects can be either “local“ meaning that the process is
owner of this object or “remote“. “local“ objects which are used by other nodes are marked as
“exported”. Remotely owned objects are “imported”. Both kinds of objects are tracked using
import-/export tables. References to “remote“ objects are handled using weighted reference
counters without using indirection objects i.e. the weight of an object may be less than the
weight of all references to it. The GC itself is divided into a local and a global part. The local
part is a mark-and-sweep scheme examining entries in the export table, but it is unable to detect
distributed cyclic garbage. The global GC part will stop the cluster. All objects reachable from a
local root are marked; references to other nodes are recorded and afterwards sent to the associ-
ated node, which continuous marking. These steps are repeated until no more references to
other nodes exist.

Reference Counting Algorithms
These GC algorithms depend on a counter for each object, recording the number of existing
references. The placement of the reference counter raises a problem similar to the placing of the
marks of a mark-and-sweep algorithm. Although the GC is simple and does not block the
cluster it cannot detect cyclic garbage without special provisions. Detecting cyclic garbage
mostly depends on marking algorithms or removing internal counts (i.e. the reference counter is
decremented for each pointer which potentially references another object from the same gar-
bage cycle) [11]. This modifies all checked objects and hereby causes unwarranted invalida-
tions.

Traditionally, the reference counter is included in the object and this forces a modification of
the object each time a reference to it is created or destroyed. Invalidation of an object during the
creation of a reference can be avoided by using weighted reference counting. But objects can
not always be identified as garbage and are modified when a reference is deleted.

Reference counting GC faces additional problems if a node crashes. In this case references
to an object are lost but the reference counter is not decremented. Now the reference counter
never reaches 0 and the object will not be collected.

David Bacon [11] has presented a GC strategy which is based on reference counting but also
collects cyclic garbage. In a separate structure (a so called RootBuffer) the algorithm remem-
bers all objects which could potentially be cyclic garbage. Separate from the traditional refer-
ence counting mechanism, the GC scheme contains a second phase in which cyclic garbage is
detected traversing all reachable objects starting with the objects included in the RootBuffer.
During this computation the reference counter of reached objects is decremented to remove
internal reference counts (references which points from one potentially cyclic garbage object to
another), and the objects are marked. The algorithm is able to collect cyclic garbage in linear
time but it needs to modify the traversed objects. Objects are cyclic garbage candidates if their
reference counter is decremented but does not reach zero and is not incremented before the
cyclic detection part of the GC is started. This condition may be true for many live objects
leading to a large number of invalidations of replicated objects.

Algorithms basing on an Inverse Reference Graph
The first GC depending on the inverse reference graph was made in 1991 by Piquer [13]. The
algorithm uses Indirect Reference Counting based on a diffusion tree which eliminates the need
for increment and decrement messages to adjust the reference counter of an object. This avoids
race conditions which can lead to incorrect behavior of distributed reference counters. Shapiro
[9] extended this approach. Scion-Stub Pointer Chains uses parent pointers to track where
references to an object are located. These pointers build the inverse reference tree from an
object to its accessors. The GC works similar to traditional reference counting and is not able to
collect cyclic garbage.

A similar approach was presented by Birrell [7]. The algorithm eliminates the reference
chains by maintaining a set of identifiers for processes with references to an object. To deter-
mine this ID-set the transfers of object references to another process are handled by a remote
procedure call. Premature collection of objects is prevented by forcing the sender of a reference
to keep its copy until receipt is verified.

Another GC strategy depending on the inverse reference graph was presented by Matthew
Fuchs [12]. The described algorithm solves the problem of discovering the distributed root set
for a mark- and-sweep GC by starting with any object and traversing inverse pointers. The
algorithm uses a three color marking to determine whether an object is garbage. An object is

live, if the inverse pointer graph contains at least one root object. Root objects are separately
marked so that they can be identified. The algorithm is interesting as it can collect garbage
without knowledge of the current cluster state and because it is not necessary to know each root
object, but it sets marks in shared objects and thus invalidates replicated objects.

5 Garbage Collection using Reverse Reference Tracking

Plurix is designed for both distributed and parallel computing but also for cooperative working.
Hence its GC must be capable to collect all types of garbage and run concurrently with other
applications and without significantly degrading cluster performance. To achieve this goal, the
GC should neither utilize excessive network capacity nor block the cluster during execution.
The objective of keeping network traffic low requires that write access to objects must be kept
to a minimum within the GC, as this would lead to invalidations of replicated objects or of 4
KB pages that could store dozens of objects within Plurix.

Non-Cyclic Garbage Collection using Reference Counting
Reference Counting is conceptually simple but in a distributed environment it is important to
avoid frequent modification of objects. Piquer [13] has shown that instead of a reference
counter backward references can be used, too.

In Plurix the bookkeeping of references is primarily used for relocation of objects but it can
also used for GC at little additional cost. We merely count the number of references stored in
backlinks within the object itself and in associated backpacks. An object is garbage if all back-
link entries from the object are empty. Special root objects which are never garbage are marked
by a special non-garbage flag by the OS.

The bookkeeping of references modifies objects only when the “in-line” backlinks are
changed. The respective backpack table-object is deleted if the last object reference is removed.
The memory management makes sure that backpacks do not co-reside with normal objects on a
page, i.e. aborts of other TAs may only occur if both TAs try to modify a reference to an object.

Reference counting schemes also need to consider stack references and CPU registers. Be-
cause of the transactional processing in Plurix this can be done elegantly. The GC runs as a
separate TA thus seeing only committed and valid state of objects. Most TAs (e.g. processing
an event) commit with an empty stack and with empty registers. Some TAs (e.g. for parallel
computing) may commit with a non-empty stack that is consolidated during commit time in-
cluding CPU registers - all references on the stack are recorded in backpacks during commit
time. Postponing stack reference tracking is recommended because not all applications need
this feature. Often the stack shrinks before commit and only the references from a small residual
stack need to be tracked and only once during commit.

Plurix will find all objects in the heap by stepping from one object to the next. The reference
counting algorithm can run concurrently on several nodes. The GC only has to check objects
which are present locally, as each object must be present on at least one node. The backlinks of
each such object are checked, and it is collected in case of garbage.

Acyclic GC can be run without causing additional network traffic during detection of gar-
bage objects, as only local objects are inspected and the internal backlinks contain sufficient
information about the state of an object. Network traffic and collisions only occur if a garbage
object and all its references to remote objects are deleted.

Cyclic Garbage Collection using Inverse References
The major challenge for a GC in a distributed system is to detect and collect cyclic garbage.
After collecting non-cyclic garbage the remaining objects are either alive or part of cyclic gar-
bage. Cyclic GC is used to break the cyclic structure of garbage objects so that these objects can
be collected during the next execution of the non-cyclic GC. We have developed an incre-
mental variation of mark-and-sweep to detect cyclic garbage. The marks are kept outside the
objects to avoid invalidations. Backpacks provide all information for inverse reference tracking.

In traditional systems the set of root objects must be determined by obtaining the root subset
from each node or running the GC simultaneously on each node. More easily our algorithm
starts at an arbitrary object which is locally present and traverses the inverse reference graph
searching for a root object. If none is found, the object is part of cyclic garbage and should be
deleted. Thereby all references included in this object are removed. Other objects which were
traversed during this GC scan are not yet collected because the remaining members of this cycle
will be detected by the non-cyclic GC if the cycle is broken at an appropriate place. Otherwise
the cyclic GC will identify the next candidate and so forth.

It is necessary to mark each traversed object to avoid endless loops during the execution of
the GC. These marks must not be located inside the objects to reduce invalidations. Unlike
traditional mark-and-sweep algorithms not all objects in the cluster need to be marked, therefore
it is possible to place the marks in a separate “marking table” (MT, hashed or otherwise). As all
objects in Plurix are located on 4 Byte borders, the least significant 2 Bits of each address or
backlink are 0. These bits in the MT are conveniently used to remember whether an object has
already been checked. In addition to the MT there is another table (i.e. an integer array) used
during the GC which is organized as a stack. All encountered backlinks which are not already
checked are placed on top of this handle stack (HS).

At the start of a GC TA the MT and HS are created unless older tables can be reused. Both
tables are not shared so that TAs on other nodes are not affected by modifications of these
tables. Additionally, the memory management allocates the HT and MS on a 4kB border and
with a size of a multiple of 4 KB to avoid false sharing so that modifications do not cause in-
validations of unconcerned objects. The size of both tables is limited by a configurable value,
given to the GC TA at start time. This defines the maximum depth of cycles which might be
detected by this TA but does not reduce the capability of the algorithm. If the GC is terminated
due to an exhausted MT or MS, the GC can be restarted with a larger one. In contrast to the
tables needed for general mark-and-sweep, the tables for cyclic garbage detection are very
small. The GC has successfully detected a cyclic structure if the HS is empty and no root object
has been found. In this case at least the object at which the GC has been started should be de-
allocated. References from this object to another one are deleted. Depending on the remaining
time, other objects in the MT may be deleted since they are not reachable from the root set.

The steps of the algorithm are described below and an example is shown in fig. 1:

1. The flag field of the object is checked. If it is marked as non-garbage the GC terminates

 because the object is a root object. The chosen object is reachable and not garbage.
2. The address of this object is inserted into MT. If the MT is exhausted go to step 7.
3. All backlinks of the object are inserted into the MT and pushed onto the HS; duplicates

 are ignored. If the MT or HS is exhausted go to step 7.
4. The MT entry for the object is marked. This object is now completely handled.
5. If the HS is not empty get next address of an object from the HS and go to step1.
6. If the HS is empty, the chosen object is part of cyclic garbage and can be deleted. MT

 and HS can be cleared and the algorithm will terminate.
7. The GC terminates without being able to detect a root object. The chosen object is

 treated to be non-garbage.

Object

Backpack

Reference

C

A B

D

B
C A

C

A
B
D

C

B
C

A
B
C

x

HS MT

B
D

A
B
C
D

x

x

HSMT

B A
B
C
D

x

x
x

HSMT

A
B
C
D

x
x
x
x

HSMT

Processing object A
Start: Push A onto HS
1. Get next object from the top
 of HS (C)
2. Push all Backlinks from A not
 in MT onto HS (B,C)
3. Insert all Backlinks from A
 not in MT into MT (B,C)
4. Mark A as handled
5. If HS is empty: finished

Processing object C
1. Get next object from the top of
 HS (C)
2. Push all Backlinks from C not
 in MT onto HS (D)
3. Insert all Backlinks from C not
 in MT into MT (D)
4. Mark C as handled
5. If HS is empty: finished

Processing object D
1. Get next object from the top
 of HS (D)
2. Push all Backlinks from D not
 in MT onto HS (none)
3. Insert all Backlinks from C
 not in MT into MT (none)
4. Mark D as handled
5. If HS is empty: finished

Processing object B
1. Get next object from the top
 of HS (B)
2. Push all Backlinks from B not
 in MT onto HS (none)
3. Insert all Backlinks from B
 not in MT into MT (none)
4. Mark B as handled
5. If HS is empty: finished

Fig. 1. Cyclic Garbage Detection Example

Because cyclic garbage detection can be a time consuming operation depending on the size of
the cycle and the distribution of the affected objects, the cycle GC comes in two variants: local
and global cyclic GC. Both variants may be aborted at any time without affecting the cluster
state. Which variant and which parameters of the cyclic GC are started is configurable
reflecting CPU load of the node, network load, and low memory, etc.

The local part of the cyclic garbage detection checks only those objects which are locally pre-
sent. This can be determined by the flags (set by the MMU) in the page tables. For each candi-
date object the backpack or respectively the backlinks are inspected and the inverse reference
tree is built. As soon as a backlink references a remote object the cyclic garbage detection stops
and the object is regarded to be live. The GC will choose the next candidate object until the
configured time slot if any expires. Since even in a distributed environment many objects are
locally used the local phase is useful – effectively reducing network traffic.

The second part of the cycle detection GC works on the entire cluster. Again objects which
are locally present are used as a start for cycle detection but all backlinks are checked. To re-
duce network traffic, the cluster wide cycle detection algorithm tries to detect a local root object
before remote objects are transferred to the node. Remote pages are not requested until all local

references are checked and no root object was yet found, hence the GC does not cause network
traffic for objects which are reachable from the local root subset. To distinguish between local
and remote the inverse reference stack of the GC is duplicated. One stack is used for objects
locally present and the other for remote ones. When the local stack is exhausted and no root
object was found, the backlinks preserved in the remote stack are inspected. If such a remote
object contains backlinks to locally present objects these are checked before other remote back-
links are observed. This ensures, that remote pages are only requested if it is inevitable. In most
cases a local root object is found, if the chosen object is not part of cyclic garbage, before all
remote backlinks have been checked.

6 Measurements

Measurements were made on a cluster of 16 nodes (AthlonXP 2500+ with 512 MB RAM)
using a switched FastEthernet. We compare our GC with a traditional blocking mark-and-
sweep GC (BMSGC). Since blocking GCs are faster than the corresponding incremental solu-
tions the execution time of BMSGC can be viewed as the lower bound. In the first part the
measurements only use a single node. We allocated 13’800 objects whereof 1’600 were acyclic
and 1’200 cyclic garbage. The cyclic garbage was spread over 36 cycles each containing be-
tween two and eight objects. Table 1 shows the execution times of different steps of the Plurix
GC (PGC) and for the BMSGC. Times shown are an average of 10 independent runs.

Table 1. Execution times of PGC and BMSGC on a single node

Action exec. time (ms) #objects processed
PGC: acyclic garbage 6,03 2’653’000
PGC: cyclic garbage (detection only) 54,00 252’000
PGC: cycle detection & removal 55,00 251’000
BMSGC: remove marks 3,27 4’220’000
BMSGC: mark phase 18,07 763’600
BMSGC: delete objects 4,12 3’349’0004

The measurements show that the detection of acyclic garbage is much faster in PGC than in

BMSGC whereas the situation is reversed for cyclic garbage on a single node. But BMSGC
requires marking all objects each time the GC is called to determine if an object is garbage or
not - and of course it represents a lower execution bound if we can afford to block all nodes.

In the second part we evaluated the performance of PGC in cluster operation. For these
measurements we have allocated 61’600 objects whereof 12’000 are acyclic and 9’600 cyclic
garbage. The latter included 4’000 objects having references to remote nodes. As the acyclic
GC stage is able to check individual objects it can be executed concurrently on all nodes. Inter-
node communication is necessary only if an object with a reference to a remote object is deleted
because this requires deleting the associated backlink on the remote node. In this case the object
deletion is increased by 784 µs - reflecting network latency. Of course this will be less signifi-
cant for faster networks. In the best case there are no remote references and the acyclic GC will
scale almost linearly with the number of nodes.

1 2 4 8 16
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

acyclic GC
cyclic GC
BMSGC

#nodes

10
6

ob
je

ct
s /

 se
c

Fig. 2. Performance in cluster operation PGC & BMSGC

The performance of the cyclic garbage detection in cluster mode depends on the number of

objects that need to be checked and the number of page requests to remote objects to be per-
formed. If all local objects are referenced by some object that is part of the root set, no network
communication is necessary. In that best case the scalability of the GC depends only on the
distribution of objects in the cluster. For the applications we use (distributed and parallel ones)
this is true for approximately 90% of all objects. This is the reason why PGC outperforms
BMSGC in the cycle detection in cluster operation. Fig. 2 shows the scalability for the acyclic
and cyclic stages of PGC and BMSGC. The throughput given in 106 objects per second has
been computed using measurements with the example with 61’600 objects described above.
Although for this example BMSGC offers a better performance on a single node PGC outper-
forms the BMSGC for four and more nodes and scales quite well. As we assume concurrent
execution of PGC on all nodes periodically this is a very nice result.

Further measurements might be beneficial and we do not claim that there won’t be a special
case where the one or other sophisticated GC will be faster than the one we propose. But
generally speaking we find that our approach scales well in a distributed DSM environment and
that it is an interesting option for other distributed scenarios as well.

7 Conclusion

In this paper we have proposed an incremental multistage GC built on reverse reference track-
ing and keeping the reverse references in so-called backpack/backlinks. The proposed GC
approach is easily be adapted to other distributed systems and does not limit the GC to a special
environment. The first stage of our GC detects non-cyclic garbage and is basically a reference
counting GC evolving directly from the backpack concept and scaling very nicely.

The cyclic phases deal with cyclic garbage and can be executed concurrently without block-
ing the cluster. There is one stage only working on local objects (avoiding network traffic) and
a second stage working at the cluster level if necessary. Marks are stored outside objects in
small tables avoiding invalidations of remote replicas. Furthermore, computation of the global

root set and contacting all nodes is not required because of the reverse reference tracking
scheme.

The GC algorithm is used in our Plurix OS and has been successfully tested in a cluster with
16 nodes concurrently running distributed and parallel applications. In the future we plan to
study different types of applications and to develop heuristics to find good candidates as a
starting point of the cyclic GC.

References

1. R. Goeckelmann, S. Frenz, M. Schoettner, P. Schulthess, “Compiler Support for Reference Tracking in
a type-safe DSM“, in: Proc. of the Joint Modular Languages Conf., Klagenfurt, Austria, 2003.

2. N. Wirt and J. Gutknecht, „Project Oberon“, Addison-Wesley, 1992.
3. The Plurix project: www.plurix.de.
4. Amza C., Cox A.L., Drwarkadas S. and Keleher P., „TreadMarks: Shared Memory Computing on

Networks of Workstations“, in: Proc. of the Winter 94 Usenix Conference, 1994.
5. T. Le Sergent and B. Berthomieu, “Incremental multi-threaded garbage collection on virtually shared

memory architectures“, in: Proc. Int. Workshop on Memory Management, number 637 in Lecture
Notes in Computer Science, pages 179-199, Utrecht (NL), 1992.

6. Richard Jones, “Garbage Collection: Algorithms for Automatic Dynamic Memory Management“,
JohnWiley and Sons, July 1996. With a chapter on Distributed Garbage Collection by Rafael Lins.
Reprinted 1997 (twice), 1999, 2000.

7. A.Birrell et al. , “Distributed garbage collection for network objects“, in Technical Report 116, DEC
Systems Research Center, 1993.

8. K. Li, “IVY: A Shared Virtual Memory System for Parallel Computing”, In Proceedings of the Inter-
national Conference on Parallel Processing, 1988.

9. M. Shapiro, D. Plainfossé, P. Ferreira, L. Amsaleg, “ Some Key Issues in the Design of Distributed
Garbage Collection and References“, in seminar on "Unifying Theory and Practice in Distributed Sys-
tems," Dagstuhl Int. Conf. and Res. Center for Comp. Sc., 1994.

10. W. M. Yu and A. L. Cox, “Conservative garbage collection on distributed shared memory systems“,
in: Proc. of the Int’l Conf. on Distributed Computing Systems (ICDCS-16), 1996.

11. D. F. Bacon and V. T. Rajan, “Concurrent Cycle Collection in Reference Counting Systems“, Proc.
European Conference on Object-Oriented Programming, June 2001, volume 2072 of Lecture Notes in
Computer Science, Springer Verlag.

12. M. Fuchs, “Garbage Collection on an Open Network“, in volume 986 of Lecture Notes in Computer
Science, 1995.

13. J.M. Piquer, “Indirect Reference Counting, a distributed garbage collection algorithm“ , in: PARLE'91-
Parallel Architectures and Languages Europe, volume 505 of Lecture Notes in Computer Science,
page 150-165, Eindhoven (NL), June 1991, Springer-Verlag

14. J. M. Piquer, “Indirect Mark and Sweep“, in Baker HG (Ed.), Memory Management, Proc IWMM95
LNCS 986, Springer-Verlag, 268-282.

