
Efficient Realization of Data Dependencies in

Algorithm Partitioning Under Resource

Constraints

Sebastian Siegel and Renate Merker

Dresden University of Technology, Institute of Circuits and Systems,
01062 Dresden, Germany

<siegel, merker>

Abstract. Mapping algorithms to parallel architectures efficiently is
very important for a cost-effective design of many modern technical prod-
ucts. In this paper, we present a solution to the problem of efficiently
realizing uniform data dependencies on processor arrays. In contrary to
existing approaches, we formulate an optimization problem to consider
the cost of both: channels and registers. Further, a solution to the op-
timization problem assigns which channels shall be implemented and it
specifies the control for the realization of the uniform data dependencies.
We illustrate our method on the edge detection algorithm.

1 Introduction

Many modern technical products need to cope with fast digital signal, image
and video processing under real-time requirements. Massively parallel data pro-
cessing on processor arrays (PAs) is known to accelerate compute-intensive al-
gorithms. The semiconductor industry presents more and more solutions for
implementations of PAs in portable and other embedded systems. These solu-
tions range from ASICs, reconfigurable systems in FPGAs, arrays of CPU-cores
to platforms such as DRP from NEC [1] and picoArray [2].

PAs are mainly characterized by their processing elements (PEs). Some PEs
are connected to the periphery, e. g. via a memory hierarchy (Fig. 1 (b)). The PEs
are characterized by functional units and local memory. This paper focuses on the
communication within the PA which is realized by regular local interconnections
between the PEs.

To exploit the processing performance of PAs, we apply a new design flow
which consists of mainly two steps: 1) partitioning the algorithm in order to
match the PA parameters such as shape of PA, number of PEs, communication to
a memory hierarchy [3] and 2) realizing the data dependencies of the algorithm
on the PA. This paper deals with the second step.

The first step can be summarized as follows: We consider compute-intensive
algorithms e. g. described as systems of uniform recurrence equations (SUREs)
[4]. They consist of many elementary computational tasks, the so-called itera-
tions, that are aligned in an iteration space. Using our parameterized partitioning

method [5], we map algorithms to PAs, i. e. each iteration to a PE (allocation)
and determine the corresponding time of execution (schedule). The optimal use
of the data path of each PE for the operations of the algorithm is addressed in
[6–9].

This paper considers the second step: the realization of the data dependencies
of an algorithm on the PA. The data dependencies cause data transfer within
the PA. This data transfer is realized using channels between PEs and registers
within PEs. Other existing works consider only one or the other. The optimal
use of channels for the realization of data dependencies is considered in [10] for
one-dimensional PAs and in [11] embedded in the traditional design flow which
applies linear space-time mappings. The optimal use of registers is regarded in
[12, 13] for a single processor machine or in [14] for the design of PAs based on
the traditional design flow.

We present an approach which addresses the optimal use of both: channels
and registers for the realization of the uniform data dependencies of the algo-
rithms. It is important to consider channels and registers in one model because
channels with a delay (e. g. with a pipeline structure) can reduce the usage of
registers.

Given several channels and their implementation cost, we formulate and solve
the communication problem by integer linear programming (ILP). A solution to
the communication problem specifies which channels shall be implemented and
the control of the data dependencies, i. e. when a channel or a register is used
to realize a data dependency. This solution also includes the specification of
an inner schedule for all computational tasks (given by the statements of the
SURE) within an iteration. Our approach can be extended by existing methods
concerning the optimal use of the data path.

To select the channels with minimum cost, our method can be applied in
several ways. E. g. in reconfigurable computing where different algorithms shall
be implemented on the same PA, we can determine which channels would best
realize the communication within the PA for each algorithm. This information
combined with the reconfiguration cost can lead to an efficient solution for the
communication. In [15] we consider savings in the communication cost by avoid-
ing redundancy. There it is necessary to know the channel selection (binding of
data dependencies to channels) a priori. We apply the method presented in this
paper to determine an efficient channel selection.

This paper is organized as follows. We describe the notation of algorithms as
SUREs and we summarize partitioning in Sect. 2. Section 3 is the main contribu-
tion of this paper. In this section we derive a method to formulate and solve the
communication problem. We give a solution to the communication problem for
an example application in Sect. 4. Finally we draw some conclusions in Sect. 5.

2 Algorithm Coding and Partitioning

To demonstrate our methods for the communication problem, we consider sys-
tems of uniform recurrence equations which are defined as follows:

Definition 1 (System of Uniform Recurrence Equations (SURE)).
A system of uniform recurrence equations consists of a set of J statements
(1 ≤ j ≤ J) of the form

Sj : yj [i] := fj

(
. . . , yi

[
i− d̃

r

j,i

]
, . . .

)
, ∀i ∈ Ij , i, j ∈ N

where Ij denotes the iteration space of statement Sj , Ij is a polyhedral subset of
a Z-module and fj denotes a single-valued function.

A variable yi that is computed by statement Si is a dependent variable if

it is input to some (other) statement Sj . Vector d̃
r

j,i denotes the corresponding
uniform data dependency. Upper index “r” is used only if more that one data
dependency exists between statements Sj and Si.

With the embedding given by I = conv(
⋃

j Ij) ⊂ Z
n we determine the

iteration space I of the SURE. In Algorithm 1 we show the edge detection
algorithm (EDA) in the notation of a SURE which we use throughout this paper
as an example.

Algorithm 1: Edge detection algorithm (EDA)

S1 : q [x
y] = 2 · pi [x

y] , (x
y) ∈ I1 = {(x

y) ∈ Z
2 | 0≤x≤N−1

0≤y≤M−1
}

S2 : h1 [x
y] = pi [x

y−1] + pi [x
y+1] , (x

y) ∈ I2 = {(x
y) ∈ Z

2 | 0≤x≤N−1

1≤y≤M−2
}

S3 : h2 [x
y] = h1 [x

y] + q [x
y] , (x

y) ∈ I3 = I2

S4 : v1 [x
y] = pi

[
x−1

y

]
+ pi

[
x+1

y

]
, (x

y) ∈ I4 = {(x
y) ∈ Z

2 | 1≤x≤N−2

0≤y≤M−1
}

S5 : v2 [x
y] = v1 [x

y] + q [x
y] , (x

y) ∈ I5 = I4

S6 : h3 [x
y] = h2

[
x−2
y−1

]
− h2 [x

y−1] , (x
y) ∈ I6 = {(x

y) ∈ Z
2 | 2≤x≤N−1

2≤y≤M−1
}

S7 : h4 [x
y] = |h3 [x

y] |, (x
y) ∈ I7 = I6

S8 : v3 [x
y] = v2

[
x−1
y−2

]
− v2

[
x−1

y

]
, (x

y) ∈ I8 = I6

S9 : v4 [x
y] = |v3 [x

y] |, (x
y) ∈ I9 = I6

S10 : s [x
y] = h4 [x

y] + v4 [x
y] , (x

y) ∈ I10 = I6

S11 : po

[
x−1
y−1

]
= min(255, s [x

y]), (x
y) ∈ I11 = I6

Next we briefly describe locally parallel, globally sequential (LPGS) parti-
tioning [5] and we use it as a parameterized method to directly map an algorithm
to a PA. LPGS-partitioning separates an iteration i ∈ I into κ̂ (denoting a par-
tition) and κ (representing the position within a partition) by the tiling step as
follows [5]:

i = Θκ̂ + κ, 0 ≤ κk < ϑk, 1 ≤ k ≤ n, κ̂ ∈ K̂ ⊂ Z
n, κ ∈ K ⊂ N

n (1)

where Θ = diag(ϑ1 · · ·ϑn) ∈ N
n×n is a square matrix whose diagonal elements

represent the size of the partitions in each of the n directions of the iteration
space I. The size of the partitions corresponds to the size of the PA. Only two

elements of Θ may be greater than one to obtain a two-dimensional PA. The
PA consists of

∏n

i=1
ϑi PEs.

We extend the scheduling function from [5] to determine the time of execution
for each statement Sj of an iteration given by κ̂ and κ as follows:

tj(κ̂, κ) = λτ κ̂ + τ
offs

κ + bj with τ , τ offs ∈ Z
1×n, bj ∈ L . (2)

The first term in (2) determines the starting time for each partition. The
second term allows to shift the schedule within a partition according to τ

offs to
avoid data dependency conflicts or to change the time behavior of the I/O of
the PA. With bj we determine the starting time for each statement Sj within
the iteration interval λ which is defined as follows:

Definition 2 (Iteration Interval λ). The iteration interval λ denotes the
number of time steps between the beginning of two successive iterations. The
set L = {0, 1, 2, . . . , λ − 1} consists of these time steps.

Note that the parameters bj will be specified by a solution to the communi-
cation problem.

In Fig. 1 (a) we show LPGS-Partitioning for the EDA. Each circle denotes an
iteration. The numbers within each circle describe the beginning and the end of
the corresponding iteration interval. In Fig. 1 (b) we illustrate the obtained PA
with a memory hierarchy. Memory L0 denotes local registers whose cost will be
determined in the communication problem. Some boundary PEs are connected
to the memory hierarchy whose size depends on the tile size and the size of the
image (M and N). We refer to [3] where we describe how to determine this
memory hierarchy. The local interconnections are not depicted in Fig. 1 (b).
They will be determined by solving the communication problem.

We introduce the set D̃ which comprises all uniform data dependencies with
∀d̃ ∈ D̃: d̃k < ϑk where 1 ≤ k ≤ n. For a data dependency d̃ ∈ D̃ there
exists at least one iteration within a partition serving as the source of the data
dependency d̃ and there exists at least one iteration in the same partition serving
as the corresponding drain.

Let ϑk1
> 1 and ϑk2

> 1 represent the two dimensions of the partitions. Then,

only the elements d̃k1
and d̃k2

of any vector d̃ ∈ D̃ can be greater than zero. To
make things easier (especially for dim(I) > 2), we introduce the set D ∈ Z

2 as

follows: Each vector d ∈ D corresponds to one and only one vector d̃ ∈ D̃ with
d1 = d̃k1

and d2 = d̃k2
. Hence there exists a bijective mapping between the sets

D̃ and D. Note that one-dimensional partitions can be regarded as a special case
where w. l. o. g. we set ϑk2

= 1.
For the example of the EDA we consider partitions with ϑ1, ϑ2 ≥ 3. There-

fore, all the 13 data dependencies which can be extracted from Algorithm 1
belong to the set DEDA:

DEDA =
˘
d3,1 =(0

0
) , d3,2 =(0

0
) , d5,1 =(0

0
) , d5,4 =(0

0
) , d

1

6,3 =(2
1
) ,d

2

6,3 =(0
1
) ,d7,6 =(0

0
) ,

d
1

8,5 =(1
2
) , d

2

8,5 =(1
0
) , d9,8 =(0

0
) ,d10,7 =(0

0
) , d10,9 =(0

0
) ,d11,10 =(0

0
)

¯
.

0 1 2 3 4 5 6 7

0 1

0 1 2 3 0 1 2 3

i1

bκ1

κ1 κ1

0

1

2

3

4

5

0

1

0

1

2

0

1

2

i2bκ2

κ2

κ2

(a) (b)

Fig. 1. (a) LPGS-Partitioning of the EDA with an iteration space of size M×N = 8×6
according to Θ = diag(4 3) and tj(bκ, κ) = 11·(2 1)·bκ+(0 1)·κ+bj , (b) Corresponding
PA with a 2-level memory hierarchy

3 Communication Problem

The uniform data dependencies given by the set D need to be realized by a
conflict free organization of the data transfer they cause. The communication
problem consists in minimizing the implementation cost in terms of channels
and registers for these data dependencies. In order to determine this cost, we
introduce a model which allows a description of the communication.

3.1 Modelling the Communication

A set W = {w1, w2, . . . , w|W|} of channels wi ∈ Z
2 between PEs is supposed

to be given. The elements of Wbi ⊆ W denote the channels that may be used
bidirectional. To each element wk of W corresponds a delay lwk ∈ N which
represents the time it takes to transfer an instance of a variable on that channel.
Each channel with lwk = 0 denotes a broadcast. Channels with lwk > 0 represent
a pipeline structure which may only be used onedirectional. Hence the delay of
channel wk may only be non-zero if wk ∈ W \Wbi.

The realization of data dependency dj,i consists of two parts. First, it re-
alizes the transfer of an instance of variable yi from its source to the relative
position given by dj,i. Second, the realization is responsible for the storage of
that instance until it is input to a data path which executes statement Sj .

We model the transfer of each instance of a dependent variable yi by a
sequence of moves which describes the path from its source to its drain. A
sequence of moves m where 0 ≤ m ≤ Mj,i is characterized by a mapping

{0, 1, 2, . . . , Mj,i} −→ W ∪ {w0} which determines the order in which the
channels are used for a realization of data dependency dj,i. With Mj,i we denote
the maximum number of moves it may take to realize a data dependency dj,i.
We determine each Mj,i a priori according to [16]. The element w0 represents
“no transfer”. With m = 0 we describe an initial “move” which will always be
mapped to w0.

Example 1. Suppose W = {w1 = (1
0) , w2 = (0

1) , w3 = (1
1)}, d = (1

1) and
M = 2. The following four different mappings would realize data dependency d:

1) 2) 3) 4)

0 → w0

1 → w1

2 → w2

0 → w0

1 → w2

2 → w1

0 → w0

1 → w3

2 → w0

0 → w0

1 → w0

2 → w3

To determine this mapping is one task of the communication problem. We
add binary variables βj,i,k,m to the communication problem which parameterize
this mapping as follows:

βj,i,k,m =

{
1 if channel wk is used at move m to realize data dep. dj,i

0 otherwise
. (3)

In order to assure that each move is mapped to one and only one channel,
the variables βj,i,k,m are subject to:

∀dj,i ∈ D :
∑|W|

k=0
βj,i,k,m = 1, 0 ≤ m ≤ Mj,i where βj,i,0,0 = 1 . (4)

To avoid mappings which represent similar paths as given in Example 1 by
realizations 3) and 4), we force mappings to channel w0 to be placed as far to
the end as possible in the sequence of moves for m ≥ 1. Therefore we add the
following constraints:

∀dj,i ∈ D : βj,i,0,m+1 ≥ βj,i,0,m, 1 ≤ m ≤ Mj,i − 1 . (5)

To distinguish between the direction in which a bidirectional channel wk ∈
Wbi is used we add binary variables βbi

j,i,k to the communication problem which
parameterize the direction of a potential use of channel wk by data dependency
dj,i as follows:

βbi
j,i,k =

{
0 if channel wk would be used in the direction given by wk

1 if channel wk would be used in the direction given by −wk
(6)

where wk ∈ Wbi. The path of a dependent variable from its source to its drain
is fixed once the sequence of moves is determined. To ensure that this path leads
to the correct final destination, we add the following constraints:

∀dj,i ∈ D : prel
j,i,Mj,i

= dj,i (7)

where prel
j,i,m describes the relative position where an instance of variable yi is

located within the PA (relative to its source) after the mth move of the realization
of data dependency dj,i. We determine prel

j,i,m as follows:

prel
j,i,m =

m∑

m′=1

(∑

{k |wk∈Wbi}

βj,i,k,m′(1 − 2 βbi
j,i,k)wk +

∑

{k |wk∈W\Wbi}

βj,i,k,m′wk

)
. (8)

In the following, we will regard the time behavior of the realization of the
data dependencies. The causality of all data dependencies of the set D is ensured
by the following constraints:

∀dj,i∈D : tdj,i = bj − (bi + li)︸ ︷︷ ︸
1©

+ τ
offs · dj,i︸ ︷︷ ︸

2©

−
∑Mj,i

m=1

∑|W|
k=1

βj,i,k,m · lwk︸ ︷︷ ︸
3©

≥ 0 . (9)

The delay tdj,i equals the number of time steps for which an instance of
the dependent variable yi needs to be stored until it is used by statement Sj .
Of course, this amount of time may not be negative (causality constraint). In
(9), term 1© determines the time between the availability of an instance of the
dependent variable yi and its use (disregarding the scheduling offset). With li
we describe the number of time steps after which the result of statement Si is
available at the output register of the data path. We assume that the input of
the data path can be connected directly to the end of any local channel or to any
local register. Term 2© takes the scheduling offset into account as it represents
the relative time difference between the iteration serving as the source and the
iteration serving as the drain of data dependency dj,i. And term 3© denotes the
time it takes to transfer an instance of the dependent variable yi from the source
to the drain.

If tdj,i > 0, then it is necessary to store an instance of the dependent variable

yi along its path for tdj,i time steps. We introduce variables trj,i,m ∈ N in the com-
munication problem to parameterize the storage of an instance of a dependent
variable yi along its path from the source to the drain of data dependency dj,i.
The value of variable trj,i,m gives the number of time steps for which an instance

of variable yi is stored in a local register after the mth move of the realization
of data dependency dj,i. The variables trj,i,m are subject to:

∀dj,i ∈ D : tdj,i =
∑Mj,i

m=0 trj,i,m . (10)

Equation (10) ascertains that an instance of the dependent variable yi is
stored for as many time steps as given by tdj,i along its path. Each variable trj,i,m
with m = 0 denotes the time of storage for dependent variable yi at the source
of data dependency dj,i, i. e. before yi is transported anywhere. This explains
why we always map move m = 0 to channel w0. Note that our model above is
also valid for data dependencies with dj,i = 0 where we use Mj,i = 0.

3.2 The Objective Function

The values of variables βj,i,k,m, βbi
j,i,k, and trj,i,m fully describe the realization

of all data dependencies on the PA. In the following, we will determine the

objective function of the communication problem. Hence we need to derive the
cost for channels and registers. This cost can only be determined indirectly from
variables βj,i,k,m, βbi

j,i,k, and trj,i,m. Therefore we introduce further variables in
the communication problem through which the cost can be described.

With tinj,i,m we describe the time at the PE at the relative position prel
j,i,m at

which an instance of variable yi arrives as the mth move of the realization of data
dependency dj,i. And with tout

j,i,m we describe the time at which that instance
of variable yi leaves the PE to perform move m + 1 of the realization of data
dependency dj,i. Variables tinj,i,m and tout

j,i,m are determined as follows:

tinj,i,m = bi + li︸ ︷︷ ︸
1©

+
∑m

m′=1

∑|W|
k=1

βj,i,k,m′ · lwk︸ ︷︷ ︸
2©

+
∑m−1

m′=0
trj,i,m′

︸ ︷︷ ︸
3©

− τ
offs · prel

j,i,m︸ ︷︷ ︸
4©

, (11)

tout
j,i,m = tinj,i,m + trj,i,m . (12)

In (11), term 1© determines the time when the source of a data dependency
dj,i is available. Term 2© represents the delay caused by the transfer until the
mth move. Term 3© gives the delay caused by the storage along its path. And
term 4© accounts for the time difference between the source and the position
after the mth move of the realization of the data dependency according to the
scheduling offset.

Note that for m = 0, the time tinj,i,0 denotes the time when an instance of

variable yi is fetched from the data path at the relative position prel
j,i,0 = 0. After

the last move (m = Mj,i), an instance of variable yi arrives at the drain of data
dependency dj,i. And time tout

j,i,Mj,i
denotes the time when that instance serves

as an input to the data path at the relative position prel
j,i,Mj,i

= dj,i for the
computation of statement Sj .

For τ
offs = 0 in (2), it would be sufficient to consider one iteration interval

λ of one PE to describe the communication problem [11]. For the general case
where the scheduling offset may also be non-zero, we have to use an extended
approach to solve the communication problem.

As a consequence we determine a priori for each data dependency dj,i ∈ D
a set of time steps L′

j,i. The set L′
j,i is defined in a similar way to the set L (see

Def. 2) with the only difference that it takes the scheduling offset into account
so that it may consist of some different time steps. We refer to [16] for a detailed
derivation of how to determine the set L′

j,i.
We introduce binary variables which account for the use of channels and

registers caused by the realization of data dependency dj,i ∈ D. Binary variable
γj,i,k,m,l′ denotes whether a channel wk is used at time step l′ ∈ L′

j,i at the mth

move of the realization of that data dependency. And binary variable δj,i,m,l′

denotes whether a register is used at time l′ ∈ L′
j,i after the mth move of the

realization of that data dependency. The binary variables γj,i,k,m,l′ and δj,i,m,l′

are determined as follows:

γj,i,k,m,l′ =

{
1 if l′= tout

j,i,m−1+βbi
j,i,kτ

offswk ∧ βj,i,k,m=1

0 otherwise

}
, l′∈L′

j,i, m>0 ,

(13)

δj,i,m,l′ =

{
1 if tinj,i,m ≤ l′ ∧ l′ < tout

j,i,m

0 otherwise

}
with l′ ∈ L′

j,i . (14)

Note that for a channel with a pipeline structure, the binary variable γj,i,k,m,l′

takes the value of one only for the first time step during which the channel is
used for the realization of data dependency dj,i. Hence, another communication
can begin to use the same channel at the next time step.

The number of channels wk used at time l ∈ L caused by the realization of
data dependency dj,i is given by variable cwj,i,k,l. The corresponding number of
registers that is used at time l is given by cr

j,i,l. We determine variables cwj,i,k,l

and cr
j,i,l as follows:

cwj,i,k,l =
∑

{l′∈L′

j,i
| l′ mod λ=l}

∑Mj,i

m=1 γj,i,k,m,l′ with l ∈ L , (15)

cr
j,i,l =

∑
{l′∈L′

j,i
| l′ mod λ=l}

∑Mj,i

m=0 δj,i,m,l′ with l ∈ L . (16)

In (15) and (16), the first sum considers all time steps of the set L′
j,i that

will be mapped to time l ∈ L by modulo arithmetics. And the second sum adds
over the moves that realize data dependency dj,i.

Next we determine the total cost for the realization of all data dependencies of
the set D. Variable cwk denotes the maximum number of channels wk that is used
at an arbitrary PE. And variable cr denotes the maximum number of registers
used at an arbitrary PE. The values of variables cwk and cr are determined as
follows:

cwk = max
l∈L

∑
dj,i∈D cwj,i,k,l and cr = max

l∈L

∑
dj,i∈D cr

j,i,l . (17)

Finally, the objective function of the communication problem is determined
as follows:

min
(
ηr · cr +

∑|W|
k=1

ηw

k · cwk

)
(18)

where ηr denotes the cost for a register and ηw

k denotes the cost for channel wk.

4 Experimental Results

For the EDA (Algorithm 1) we discuss two different target architectures (PA1
and PA2) as given in Table 1. The cost for a register is ηr = 1 for PA1 and
ηr = 1.5 for PA2. In both cases, we assume one data path with a latency of one
for solving each statement Sj within each PE. Hence, we search for a solution
to the communication problem with λ = 11. The scheduling offset is τ

offs = 0.
In Fig. 2 we illustrate the optimal solution to the communication problem.

The starting time of each use of a channel and/or register within the iteration
interval is shown. The gray background in the use of channel w5 denotes a use
in the negative direction. The inner schedule is given by the succession of the
statements Sj .

ILPs were generated to solve the communication problem. Both ILPs consist
of 3838 constraints, 2001 binary and 220 integer variables. The ILPs were solved

Table 1. Available channels wk, their latency lwk and their cost ηw

k

(PA1)

k 1 2 3 4 5

wk (1 0)T (0 1)T (1 1)T (1 −1)T
±(1 0)T

lwk 3 3 1 2 0

ηw

k 1.5 1.5 1 2.5 2

(PA2)

k 1 2 3 4 5

wk (1 0)T (0 1)T (1 1)T (1 −1)T
±(1 0)T

lwk 2 2 1 2 0

ηw

k 1 1 1.5 3 1.5

using ILOG CPLEX v. 9.1 on an Athlon 64 Processor 3800+. It took 40 sec.
and 72 sec. for PA1 and PA2 respectively to find an optimal solution of each
ILP (including the verification that the solution is optimal).

reg1 d5,4 d3,1 d2
8,5 d2

8,5 d2
6,3 d1

6,3 d10,9 d10,9

reg2 d3,1

w3 d1
8,5 d1

8,5 d1
6,3 d2

6,3

w5 d2
8,5 d1

8,5 d1
6,3 d2

6,3

S4 S1 S5 S2 S3 S8 S9 S6 S7 S10 S11

(PA1)

reg1 d5,4 d3,1 d3,1 d1
6,3 d2

6,3 d10,9 d10,9

w1 d2
8,5

w3 d1
8,5 d1

8,5 d2
6,3 d1

6,3

w5 d1
8,5 d1

6,3 d2
6,3

S4 S1 S5 S2 S3 S8 S9 S6 S7 S10 S11

-

0 1 2 3 4 5 6 7 8 9 10 11

(PA2)

Fig. 2. Bar chart denoting the usage of channels and registers for the communication
caused by all data dependencies of the set DEDA within an iteration interval λ = 11.

5 Conclusions

In this paper we have formulated and solved the communication problem to
realize uniform data dependencies within a PA using ILP. Our method takes
the cost of channels and registers of the target architecture into account. A
solution to the communication problem determines a selection of channels and
the control of the communication caused by the uniform data dependencies.
Further, it specifies the inner schedule for all computational tasks within an
iteration.

Our method can also be used to find suitable realizations of the uniform
data dependencies of algorithms on a given PA with fixed local interconnec-
tions. Future work includes an extension of our approach to non-uniform data

dependencies (e. g. the realization of input/output) or to multi-level partitioning
(e. g. co-partitioning).

References

1. Motomura, M.: A Dynamically Reconfigurable Processor Architecture. In: Micro-
processor Forum. (2002)

2. Duller, A., Towner, D., Panesar, G., Gray, A., Robbins, W.: picoArray Technol-
ogy: The Tool’s Story. In: Design, Automation and Test in Europe (DATE’05).
Volume 3. (2005) 106–111

3. Siegel, S., Merker, R.: Optimized Data-Reuse in Processor Arrays. In: Proc. IEEE
Int. Conf. on Application-Specific Systems, Architectures, and Processors (ASAP
2004). (2004) 315–325

4. Karp, R.M., Miller, R.E., Winograd, S.: The organisation of computations for
uniform recurrence equations. JACM 14(3) (1967) 563–590

5. Siegel, S., Merker, R.: Algorithm Partitioning including Optimized Data-Reuse for
Processor Arrays. In: Proc. IEEE International Conference on Parallel Computing
in Electrical Engineering (PARELEC 2004). (2004) 85–90

6. Derrien, S., Rajopadhye, S., Sur-Kolay, S.: Combining Instruction and Loop Level
Parallelism for Array Synthesis on FPGAs. In: International Symposium on System
Synthesis. (2001)

7. Feautrier, P.: Fine-grain Scheduling under Resource Constraints. In: Proc. 7th
Int. Workshop on Languages and Compilers for Parallel Computing (LCPC ’94).
Volume 892 of LNCS., Springer (1994) 1–15

8. Thiele, L.: Resource constraint scheduling of uniform algorithms. Journal of VLSI
Signal Processing 10 (1995) 295–310

9. Teich, J., Thiele, L.: A New Approach to Solving Resource-Constrained Schedul-
ing Problems based on a Flow-Model. Technical Report 17, TIK, Swiss Federal
Institute of Technology (ETH) Zürich (1996)

10. Dion, M., Risset, T., Robert, Y.: Resource-constrained scheduling of partitioned
algorithms on processor arrays. Integration, the VLSI Journal 20 (1996) 139–159

11. Fimmel, D., Merker, R.: Localization of Data Transfer in Processor Arrays. In:
Parallel Processing: 5th International Euro-Par Conference (Euro-Par ’99). Volume
1685 of LNCS., Springer (1999) 401–408

12. Eisenbeis, C., Sawaya, A.: Optimal loop parallelization under register constraints.
Technical Report 2781, INRIA (1996)

13. Müller, J., Fimmel, D., Merker, R.: Optimal Loop Scheduling with Register Con-
straints Using Flow Graphs. In: Proc. of the 7th Int. Symposium on Parallel
Architectures, Algorithms, and Networks (I-SPAN), Hong Kong, China (2004)

14. Fimmel, D.: Optimaler Entwurf paralleler Rechenfelder unter Verwendung ganz-
zahliger linearer Optimierung. PhD thesis, Dresden University of Technology, In-
stitute of Circuits and Systems (2002)

15. Siegel, S., Merker, R.: Minimum Cost for Channels and Registers in Processor
Arrays by Avoiding Redundancy. In: IEEE 17th Int. Conf. on Application-Specific
Systems, Architectures, and Processors (ASAP 2006). (2006)

16. Siegel, S., Merker, R.: Optimal Realization of Uniform Data Dependen-
cies in Algorithm Partitioning Under Resource Constraints. Technical report,
Dresden University of Technology, Institute of Circuits and Systems (2006,
http://www.iee.et.tu-dresden.de/∼siegel/paper/SM06a.pdf)

