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Abstract. Anisotropic Nonlinear Diffusion (AND) is a powerful noise reduction
technique in the field of computer vision. This method is based on a Partial Dif-
ferential Equation (PDE) tightly coupled with a massive set of eigensystems. De-
noising large 3D images in biomedicine and structural cellular biology by AND
is extremely expensive from a computational point of view, and the requirements
may become so huge that parallel computing turns out to be essential. This work
addresses the parallel implementation of AND. The parallelization is carried out
by means of three paradigms: (1) Shared address space paradigm, (2) Message
passing paradigm, and (3) Hybrid paradigm. The three parallel approaches have
been evaluated on two parallel platforms: (1) a DSM (Distributed Shared Mem-
ory) platform based on cc-NUMA memory access and (2) a cluster of Symmetric
biprocessors. An analysis of the performance of the three strategies has been ac-
complished to determine which is the most suitable paradigm for each platform.

1 Introduction

In many disciplines, raw data acquired from instruments are substantially corrupted by
noise and sophisticated filtering techniques are then indispensable for a proper interpre-
tation or post-processing. In general terms, smoothing techniques can be classified into
linear and non-linear. Standard linear filtering techniques based on local averages or
Gaussian kernels succeed in reducing the noise, but at expenses of poor feature preser-
vation. In other words, they may severely blur the features as their edges are attenuated.
However, nonlinear filtering techniques achieve better feature preservation as they try to
adaptively tune the strength of the smoothing to the local structures found in the image.
Anisotropic nonlinear diffusion (AND) is currently one of the most powerful noise re-
duction techniques in the field of computer vision [1]. This technique takes into account
the local structures found in the image to filter noise, preserve edges and enhance some
features, thus considerably increasing the signal-to-noise ratio (SNR) with no signifi-
cant quantitative distortions of the signal. Pioneered in 1990 by Perona and Malik [2],
AND has grown up to become a well-established tool in the last decade [1, 3, 4]. AND
has already been successfully applied in different disciplines, such as medicine [5-7] or
biology [8-10], for denoising multidimensional images. AND has actually been crucial
to achieve some recent breakthroughs [11-14].
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The mathematical basis of AND is a partial differential equation (PDE) tightly cou-
pled with a massive set of eigensystems [10]. The computational cost of AND may be
very high, depending on the size of the images. There are some disciplines where the
requirements may be so huge —much more than 1 Gbyte in size [15, 16]- that parallel
computing proves to be essential.

The standard numerical scheme for solving PDEs is based upon an explicit finite
difference discretization. More efficient schemes have been specifically designed for
nonlinear diffusion [17], though. However, they are complex to implement and, despite
their efficiency, they still require to be parallelized [18].

In this work we address the parallelization of AND for its application to denoising
of large three-dimensional (3D) volumes in biomedicine and structural cellular biol-
ogy. We make use of the standard explicit numerical scheme for the discretization. This
scheme is commonly used in other fields where PDEs are involved [19] and, as a conse-
guence, the parallel approaches that are presented and discussed here may be valuable
for them too.

2 Review of anisotropic nonlinear diffusion

AND accomplishes a sophisticated edge-preserving denoising that takes into account
the structures at local scales. AND tunes the strength of the smoothing along different
directions based on the local structure estimated at every point of the multidimensional
image. Conceptually speaking, AND can be considered as an adaptive gaussian filtering
technique in which, for every voxel in the volume, an anisotropic 3D gaussian function
is computed whose widths and orientations depend on the local structure [20]. This
section presents local structure determination via structure tensors, the concept of dif-
fusion, a diffusion approach commonly used in image processing and, finally, details of
the numerical implementation.

2.1 Estimation of local structure

The structure tensor is the mathematical tool that allows us to estimate the local struc-
ture in a multidimensional image. Let I(x) denote a 3D image, where x = (z,y, 2)
is the coordinate vector. The structure tensor of I is a symmetric positive semi-definite
matrix given by:
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JVI)=VI-VI" = | I.I, I? I,I. (1)
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where I, = &L, 1, = g—é, I, = &L are the derivatives of the image with respect to z, y
and z, respectively.
The eigen-analysis of the structure tensor allows determination of the local struc-
tural features in the image [1]:

J(VI) = [Vl Vo V3] . 0 U2 0 . [Vl Vo V3]T (2)



The orthogonal eigenvectors v, va, vs provide the preferred local orientations, and
the corresponding eigenvalues i1, po, p3 (@8SSume pq > po > p3) provide the average
contrast along these directions. The first eigenvector v, represents the direction of the
maximum variance. Therefore, v represents the direction normal to the local feature
(see Fig. 1).
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Fig. 1. Local structure found by eigen-analysis of the structure tensor. v1, vz, vs are the corre-
sponding eigenvectors. vy is the direction normal to the local structure.

2.2 Concept of diffusion in image processing

Diffusion is a physical process that equilibrates concentration differences as a function
of time, without creating or destroying mass. In image processing, density values play
the role of concentration. This observation is expressed by the diffusion equation [1]:

I, = div(D - VI) ®)

where I; = % denotes the derivative of the image I with respect to the time ¢, VI is the
gradient vector, D is a square matrix called diffusion tensor and div is the divergence

operator:
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In AND the smoothing depends on both the strength of the gradient and its direction

measured at a local scale. The diffusion tensor D is therefore defined as a function of
the structure tensor J:

div(f)

A 00
D= [Vl Vo V3] . 0 )\2 0 . [Vl Vo V3]T (4)
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where v; denotes the eigenvectors of the structure tensor. The values of the eigenval-
ues \; define the strength of the smoothing along the direction of the corresponding
eigenvector v;. The values of A; rank from 0 (no smoothing) to 1 (strong smoothing).



Therefore, this approach allows smoothing to take place anisotropically according
to the eigenvectors determined from the local structure of the image. Consequently,
AND allows smoothing on the edges: Smoothing runs along the edges so that they are
not only preserved but smoothed. AND has turned out, by far, the most effective denois-
ing method by its capabilities for structure preservation and feature enhancement [1,
8-10].

2.3 Edge Enhancing Diffusion

One of the most common ways of setting up the diffusion tensor D gives rise to the
so-called Edge Enhancing Diffusion (EED) approach [1]. The primary effects of EED
are edge preservation and enhancement. Here strong smoothing is applied along the
preferred directions of the local structure, (the second and third eigenvectors, vo and
v3). The strength of the smoothing along the normal of the structure, i.e. the eigenvector
v1, depends on the gradient: the higher the value is, the lower the smoothing strength
is. Consequently, \; are then setup as: A1 = g(|VI]), A2 = 1 and A3 = 1, with g being
a monotonically decreasing function, such as g(x) = 1/+/(1 + 22/K?), where K > 0
acts as a contrast parameter [1]; Structures with |VI| > K are regarded as edges,
otherwise they are considered to belong to the interior of a region. Therefore, smoothing
along edges is preferred over smoothing across them, hence edges are preserved and
enhanced.

2.4 Numerical discretization of the diffusion equation

The diffusion equation, Eq. (3), can be numerically solved using finite differences. The
term I, = % can be replaced by an Euler forward difference approximation. The result-
ing explicit scheme allows calculation of subsequent versions of the image iteratively:

st =715 41 (%(DHL«) + aﬁ(Dme) + aﬁ(Dl?)IZ)
+8_1(D21I9”) + 8_1(D22Il/) + 3—y(D231z) ®)
+2(Ds1 1) + 2(Dso1,) + o (Dssl))

where s is the iteration index, = denotes the time step size, I® denotes the image at time
ts = s, the terms I, I, I, are the derivatives of the image /¢ with respect to x, y
and z, respectively. Finally, the D,,,, terms represent the components of the diffusion
tensor D*. The standard scheme to approximate the spatial derivatives (-Z, a% and Z)
is based on central differences.

In this traditional explicit scheme for solving the partial differential equation Eq. (3),
the stability is an issue [1]. The maximum time step that is allowed is 7 < 0.5/Ny,
where Ny is the number of dimensions of the problem. In our case, we are dealing
with a three-dimensional problem, so Ny = 3. In the experiments carried out in this
work, we used a conservative value of 7 = 0.1. As far as the number of iterations is
concerned, a range of 60-100 iterations is typically used in 3D problems [1, 8-10] with
that value of 7.

For illustration purposes, Fig. 2 shows the result of the application of 60 iterations
of AND to a volume of a mitochondrion, a cell organelle, that was obtained by electron



Fig. 2. Left: a slice from a volume of a mitochondrion obtained by electron microscope tomogra-
phy; Right: the same slice from the volume filtered with anisotropic nonlinear diffusion.

microscope tomography [16]. The enhancement in visualizing a slice of the volume is
apparent (left: slice from the original volume; right: slice from the filtered volume).

2.5 Thealgorithm of the diffusion approach

In this work, we propose an optimized algorithm for solving the PDE in Eq. (5) that
computes the volume by z-planes, where —without loss of generality— the z-axis is the
direction of the larger image dimension NV, >= N, N,,. The proposed sequential al-
gorithm consists of the following steps:

Dos=0...n—1
Dok =1...N, I* processing the volume by z-planes */
1. Compute the structure tensor J (Egs. (1) and (2)).
2. Compute the diffusion tensor D from J; (Eq. (4)).
3. Compute the resulting z-plane of the image Iz“, at step (s + 1) from step
s by means of Eq. (5). The resulting z-plane of the image corresponds to
the diffusiontime t ;1) = (s + 1)7
End Do
End Do

where s and k& denote the index of the iteration and the index of the z-plane respectively.
The algorithm is executed iteratively for a number of iterations n. The final image is
obtained after a total diffusion time 7' = n7. Note from Eq. (5) that I;™" is only
a function of I} _,, I; _, I}, I, I}, ,. Our implementation minimizes the memory
usage by allocating and computing only the necessary data for updating each single
z-plane. Hereinafter, the body of this nested loop is denoted as IZ“ = AND(I}).

3 Paralle implementation of AND

In this work, AND have been implemented using three parallel programming models:
(1) shared address space model based on Pthreads,(2) message passing model, where
MPI is applied for message passing between different processors; and (3) hybrid model



that uses Pthreads at the node level while MPI is only applied for message passing be-
tween processors from different and/or the same nodes. Essentially, the parallel strate-
gies are based on domain decomposition. They consist in distributing the input 3D vol-
ume among the processors by blocks of consecutive z-planes, and every processor then
applies the AND algorithm to its own block. At the end of every iteration, depending
on the specific implementation, boundaries planes must be updated from neighbor pro-
cessors for their processing in the subsequent iteration. Next, the main characteristics
of every parallel code are described:

-Pure Pthreads code. A single thread is mapped onto each processor of the system.
The shared address space model allows all the processors to access the shared whole 3D
volume. The thread running in each processor updates its corresponding z-planes of the
shared volume. Transparently, the neighbor threads then have their boundary z-planes
updated thanks to the shared memory. To ensure consistency of the data throughout the
algorithm, an additional structure has been defined to hold the boundary z-planes before
the neighbors modify them.

-Pure MPI code. Here, one process is spawned on each processor. Each processor
then updates its own block of z-planes. The update of a given local z-plane 7+ is only
a function of 7;; and its four neighbor z-planes, I;_,, I;;_,, I}, and I} ,. Updating the
boundary z-planes of the block would imply many communications during one update
step. To avoid excessive communications, each processor allocates four additional z-
planes to hold the two neighbor z-planes of the two boundaries. At the end of each
iteration, the processor then exchanges the updated four boundary z-planes with the
immediate neighbor processors by MPI point-to-point communications.

-Hybrid code. The hybrid strategy has been designed in such a way that one MPI
process is spawned on each node, and the MPI process then creates as many Pthreads
processes as the number of processors in the node. The block of z-planes assigned to
the node is shared by all the threads running in the node. Every thread updates its own
subset of the block of z-planes, similarly to the shared address space strategy above
described. At the end of the iteration, all the threads running in a node are joined. The
boundary z-planes are then exchanged among the immediate neighbor nodes by MPI
point-to-point communications. The outline of the hybrid code would be as follows:

1. Distribute 7° among nodes, N*¢ = [N, /P] + 4 planes are assigned to each node.
2.Dos=0...n—1

(a) Each thread initializes its auxiliary data structures.

(b) Dok =1...N" = [(NP? — 4)/T I* each thread */

It = AND(I})
End Do

(c) Interchange boundary z-planes between neighbor nodes.
3. End Do
4. Collect the image.

where N*@ and N denote the local number of z-planes of the volume in every node
and in every thread respectively, P and 7" denotes the number of nodes and processors
inside one node respectively, and I° denotes the original 3D volume, n denotes the
number of iterations, and AN D() represents the diffusion algorithm.



In this strategy, it is necessary to control the data distribution at two levels: (1) at
the node level, since the total number of z-planes is distributed among nodes, and (2)
at the processor level inside the node, as each thread updates its subset of z-planes by
applying the AND process.

4 Evaluation of the parallel implementation of AND

In this section, we evaluate the performance of three parallel implementations of the
AND method: (1) Pure MPI AND-code, (2) Pure Pthreads AND-code and (3) Hybrid
AND-code. The evaluation has been carried out on two parallel platforms:

-Distributed Shared Memory (DSM) platform SGI Altix 3700 Bx2 of 8 processors
1600 MHz Intel Itanium 2 Rev with 128 GB RAM. The Altix 3700 computer system
is based on a Distributed Shared Memory architecture and uses a cache-coherent Non-
Uniform Memory Access (NUMA) where the latency of processors to access to local
memory is lower than the latency to access to global memory (or remote memory) [21].

-Cluster of symmetric biprocessors of Intel(R) Xeon(TM) 3.06 GHz with 2 GB
RAM, 512 KB cache. Nodes are interconnected via two Gigabit Ethernet networks, one
for data (NFS) and the other for computation. The architecture of this cluster is based
on a UMA access, where all processors have equally fast (symmetric) access to the
memory in the node.

Dimensions of volumes in biomedicine and structural cellular biology usually range
between 256x256x256 and 640x640x640. Typical values for n are around 60-100 iter-
ations with 7 = 0.1, where n is the number of iterations needed to denoise the volume
for an acceptable result [9, 10]. In this work, two test volumes with cubic symmetry
of sizes 256x256x256 and 640x640x640 have been selected to carry out the evaluation
process. Hereinafter, these volumes will be referenced by the size of their edges.

4.1 Distributed shared memory platform: Altix 3700

Let mpi be the number of MPI processes and pt the number of Pthreads processes. To
evaluate the hybrid implementation for a fixed number of processors p, several combi-
nations of values of mpi and pt are possible. Experimental performance results were
measured for several combinations of mpi and pt for a fixed p, obtaining similar behav-
ior. In the results shown here, we focus on the case with pt = 2 Pthreads processes, and
we only increment the number of MPI processes. Fig. 3 shows the speedup achieved
by the pure MPI, pure Pthreads and hybrid implementations, for the two volumes, on
a 8-processor SGI Altix 3700 Bx2. As it can be seen, in general the three parallel im-
plementations have very good performance. They all approach the ideal linear speedup,
with slightly better behavior for the message passing implementation. For the volume
640, some curves exhibit slight levels of superspeedup. Finally, the volume size has
turned out to have a very low influence on the speedup. The excellent behavior shown
by the message passing version may be thanks to the high speed interconnection tech-
nology used in this computer [21]. In summary, the three parallel strategies present very
good levels of scalability on this computer platform.
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Fig. 3. Speedup on a SGI Altix 3700 Bx2 of the pure MPI, Pure Pthreads and hybrid codes for
the volumes 256 and 640.

4.2 Cluster of symmetric biprocessors

On the cluster of symmetric biprocessors, the performance has been evaluated only for
two models: message passing model and hybrid model with pt = 2, since on this plat-
form the evaluation of the shared address space model is limited to two processors into
one node. The scalability of both models has been analyzed by means of the speedup
measurements.

Traditionally, the speedup is only referred to the sequential runtime. Recently, a
general concept of speedup has been introduced [22], where the parallel runtime is
used as a reference instead. In this evaluation, this concept is taken into account to
evaluate the performance of AND on the cluster of SMPs. Specifically, for the volume
640, the parallel runtime with four processors is considered as a reference, since it was
not possible to run the codes on fewer than four processors with these volume sizes.
Meanwhile, the sequential runtime is used as reference for the smaller volume 256.

Fig. 4 shows the speedup achieved by the pure MPI code and the hybrid code, for the
test volumes, on the cluster of SMPs described above. In general terms, both strategies
yield good results, with better performance for the hybrid strategy. It is evident from
these figures that the hybrid strategy yields better scalability than the strategy based on
message passing, specially for increasing number of processors.

In order to explain the better behavior of the hybrid strategy compared to the mes-
sage passing one, additional measures of communication times have been obtained as
well (results not shown here). Clearly the penalty due to the communications is stronger
on the message passing implementation than on the hybrid one, specially as the number
of processors increases since only communications between pairs of symmetric proces-
sors are involved for the hybrid code.

The influence of the problem size on the performance was also analyzed, and the
conclusion is that the volume size proves to be relevant on this platform. This behav-
ior is justified by two factors. First, the computational complexity depends linearly on



image size: 640x640x640
— T T

image size: 256x256x256 8
20 [ L 7
* s
27 ’ L
7 7 # 5
25 v
23 i P .
o1 L G—-oO pure mpi /,"‘ ] G—oOpure mpi
A—A hybrid A LS—A _hybrld
19 + + - —+ideal speedup s as | +-—+ideal speedup
Q - 3
517 e °
o} #+ 3
o 15 s aQ
@ 13| / a4
11 + V7
3L
9r 7
7L
5F 2
3L
1 S S O S SO R R 1 T T S R R S S R S B
3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

number of processors number of processors

Fig. 4. Speedup on a cluster of SMPs of the pure MPI and hybrid codes for the volumes 256 and
640.

the volume size whereas the amount of communications is proportional to the size of
a single z-slice. Therefore, for small volumes the penalties from communications are
relevant, specially for the pure MPI code. Second, the local memory hierarchy manage-
ment improves for larger volume sizes and has a stronger impact in the scalability of
both strategies. Therefore, any increase in the problem size is expected to imply a direct
improvement in the speedup of both strategies.

5 Conclusions

In this work, we have presented parallel implementations of AND, using three strate-
gies based on: (1) shared address space, (2) the message passing paradigm and (3) a
hybrid approach. The evaluation has been carried out on two different architectures:
(1) a Distributed Shared Memory platform based on cc-NUMA access and (2) a clus-
ter of Symmetric Biprocessors based on UMA access. In view of the results, we can
conclude that the parallel algorithms present good levels of scalability. Furthermore,
the evaluation allows us to draw the conclusion that for DSM platforms like the Altix
3700 Bx2, all paradigms yield better and similar speedup. Consequently there is no fa-
vorable paradigm for this platform. However, for clusters of SMPs the hybrid paradigm
(Pthreads+MPI) is more suitable than a strategy based solely on the message passing
paradigm.
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