
PAM-SoC: A Toolchain for Predicting MPSoC
Performance?

Ana Lucia Varbanescu, Henk Sips, and Arjan van Gemund

Department of Computer Science, Delft University of Technology, The Netherlands
A.L.Varbanescu@tudelft.nl

Abstract. In the past, research on Multiprocessor Systems-on-Chip
(MPSoC) has focused mainly on increasing the available processing po-
wer on a chip, while less effort was put into specific system-level per-
formance analysis, or into behavior prediction. This paper introduces
PAM-SoC, a light-weight performance predictor for MPSoC system-level
performance. Being based on Pamela, a static performance predictor for
parallel applications, PAM-SoC can compute its prediction in seconds for
cases when cycle-accurate simulation takes tens of minutes. The paper
includes a set of PAM-SoC validation experiments, as well as two sets of
experiments to show how PAM-SoC can be used for either application
tuning or MPSoC platform tuning in early system design phases.

1 Introduction

Systems-on-Chips (SoCs) are built to answer the increased processing power
requirements of real-time embedded applications by integrating (most of) the
functions of a complete electronic system on a single chip [1]. Multiprocessor
SoCs (MPSoCs) are SoCs that integrate several programmable processors, ad-
ding more flexibility and programmability to these devices. Currently, consumer
electronics, automotive and dedicated industrial control systems are foreseen as
the main consumers of MPSoC technology.

So far, MPSoC research was focused mainly on hardware issues, allowing de-
signers to prove their skills in squeezing as much processing power as possible on
a single chip. As a result, many different platforms have emerged [2, 3]: IXP2850
Network Processor (Intel), OMAP (Texas Instruments), NexperiaTM(Philips),
NomadikTM(STMicroelectronics), or Cell (IBM/Sony/Toshiba).

Currently, MPSoCs face a difficult challenge: predictable programmability in
terms of performance. Unfortunately, integrating more resources on the same
chip does not directly increase performance. It does, however, increase the ana-
lysis complexity and the software design time. On top of this complexity, the
inherent hardware imbalance between the almost unlimited available processing
power and the severely limited on-chip memory may induce performance gaps
that have not been foreseen during design. Furthermore, MPSoCs lack dedica-
ted performance analysis methodologies. Most of the current analysis is based
? The research is part of the Scalp project http://scalp.ewi.tudelft.nl funded by STW-

Progress.

Fig. 1. The Pamela symbolic cost estimation

on simulations, a time-consuming solution that also requires specific well-defined
benchmarks (not yet available), and specific programming models (emerging [4]),
in order to provide meaningful conclusions. In other words, current performance
analysis is expensive and cumbersome, thus difficult to use in any system design
flow feedback loops.

This paper presents PAM-SoC, a light semi-static performance prediction
toolchain that computes system-level performance estimations for applications
running on MPSoCs. PAM-SoC is based on Pamela[5], a static performance
prediction methodology for general purpose parallel platforms (GPPPs). By cou-
pling an application model with the target machine model, Pamela computes
the lower bound of the execution time of the application on the target archi-
tecture. To address the specifics of MPSoCs, PAM-SoC includes new techniques
for machine modeling and tools for gathering memory behavior statistics. In
its prediction, PAM-SoC trades accuracy for estimation speed: in cases when
cycle-accurate simulation would take tens of minutes, application behavior can
be estimated in tens of seconds. Thus, PAM-SoC can be part of the MPSoC
design flow, for either application or architecture tuning.

The paper is organized as follows: Section 2 briefly presents the Pamela
methodology. Section 3 introduces the PAM-SoC predictor, discussing the appli-
cation and machine modeling in detail. Section 4 presents the validation process
of PAM-SoC and two interesting usage scenarios. Section 5 presents related work,
while Section 6 draws the conclusions and presents future work directions.

2 Pamela Methodology

Pamela (PerformAnce ModEling LAnguage) [6] is a performance simulation for-
malism that facilitates symbolic cost modeling, featuring a modeling language, a
compiler, and a performance analysis technique. The Pamela model of a Series-
Parallel (SP) program[7] is a set of explicit, algebraic performance expressions in
terms of program parameters (e.g., problem size), and machine parameters (e.g.,
number of processors). These expressions are automatically compiled into a sym-
bolic cost model, that can be further reduced and compiled into a time-domain
cost model and, finally, evaluated into a time estimate. Note that Pamela mo-
dels trade prediction accuracy for the lowest possible solution complexity. Fig. 1
presents the Pamela methodology.

Modeling. The Pamela modeling language is a process-oriented language de-
signed to capture concurrency and timing behavior of parallel systems. Data

Fig. 2. The PAM-SoC toolchain

computations from the original source code are modeled into the application
model in terms of their resource requirements and workload. The available re-
sources and their usage policies are specified by the machine model.

Any Pamela model is written as a set of process equations, composed from
use and delay basic processes, using sequential, parallel, and conditional com-
position operators. The construct use(Resource,t) stands for exclusive acqui-
sition of Resource for t units of (virtual) time. The construct delay(t) stalls
program execution for t units of (virtual) time. A machine model is expressed in
terms of available resources and an abstract instruction set (AIS) for using these
resources. The application model of the parallel program is implemented using
an (automated) translator from the source instruction set to the machine AIS.
The example below illustrates the modeling of a block-wise parallel addition
computation y =

∑N
i=1 xi on a machine with P processors and shared memory

mem:

// application model: // machine model
par (p=1,P) { load=use(mem,taccess)

seq (i=1,N/P) { load ; add } ; add=delay(tadd)
store }

Symbolic Compilation and Evaluation. A Pamela model is translated into
a time-domain performance model by substituting every process equation by a
numeric equation that models the execution time associated with the original
process. The result is a new Pamela model that only comprises numeric equa-
tions, as the original process and resource equations are no longer present.
The Pamela compiler can further reduce and evaluate this model for different
numerical values of the parameters, computing the lower bound of the applica-
tion execution time. The analytic approach underlying the translation, together
with the algebraic reduction engine that drastically optimizes the evaluation
time, are detailed in [8].

3 The PAM-SoC toolchain

Using Pamela for MPSoC performance predictions is quite difficult because of
the architecture and application modeling efforts required. Details that can be

Resources

Processing units Communication Memory

SPU’sProcessors

Unit_1 Unit_n

L1’s L2 (shared)

Coherency Refill Victimize

OffChip MemoryComm.
channels

L2 banksSnooping

Fig. 3. The extended set of resources to be included in a PAM-SoC machine model

safely ignored for GPPP models, as they do not have a major influence on the
overall performance, may have a significant influence on MPSoC behavior. As a
consequence, for correct modeling of MPSoC applications and architectures, we
have extended Pamela with new techniques and additional memory behavior
tools. The resulting PAM-SoC toolchain is presented in Fig. 2. In this section
we will further detail its specific components.

3.1 MPSoC Machine Modeling
The successfull modeling of a machine architecture starts with accurate detec-
tion of its important contention points, i.e., system resources that may limit
performance when used concurrently. Such resources can be modeled at various
degrees of detail, i.e., granularities, by modeling more or less from their internal
sub-resources. The model granularity is an essential parameter in the speed-
to-accuracy balance of the prediction: a finer model leads to a more accurate
prediction (due to better specification of its contention points), but it is evalua-
ted slower (due to its increased complexity). Thus, a model granularity boundary
should be established for any architecture, so that the prediction is is still fast
and sufficiently accurate. This boundary is usually set empirically and/or based
on a set of validation experiments.

Previous GPPPs experiments with Pamela typically used coarse models, ba-
sed on three types of system resources: the processing units, the communication
channels and the memories. For MPSoC platforms, we have established a new,
extended set of resources to be included in the machine model, as seen in Fig. 3.
The new granularity boundaries (the leaf-level in the resource tree in Fig. 3)
preserve a good speed-to-accuracy balance, as proved by various experiments we
did [9], while allowing drastic simplification of the MPSoC machine modeling
procedure. Some additional comments with respect to the machine modeling are
the following:
• When on-chip programmable processors have subunits able to work in parallel,

they should be modeled separately, especially when analyzing applications that
specifically stress them.

• The communication channels require no further detailing for shared-bus archi-
tectures. For more complex communication systems, involving networks-on-
chips or switch boxes, several channels may be acting in parallel. In this case,
they have to be detected and modeled separately.

• The memory system is usually based on individual L1’s, an L2 shared cache
(maybe banked) and off-chip memory (eventually accessed by dedicated L2
Refill and L2 Victimize engines). If hardware snooping coherency is enforced,
two more dedicated modules become of importance: the Snooping and the
Coherency engines. Any of these components present in the architecture must
be also included in the model.

After identifying model resources, the AIS has to be specified as a set of rules for
using these resources, requiring (1) in-depth knowledge on the functionality of
the architecture, for detecting the resource accesses an instruction performs, and
(2) resource latencies. As an example, Table 1 presents a snippet from a (possible)
AIS, considering an architecture with: several identical programmable processors
(Procs(p)), each one having parallel arithmetic (ALU(p)) and multiplication
(MUL(p)) units and its own L1(p) cache; several Specialized Functional Units
(SFU(s)); a shared L2 cache, banked, with dedicated Refill and Victimize
engines; virtually infinite off-chip memory (mem).

Table 1. Snippet from an AIS for a generic MPSoC

Operation Model

p: ADD use(ALU(p), tADD)

p: MUL use(MUL(p), tMUL)

s: EXEC use(SFU(s), tSFU)

p: accessL1(addr) use(L1(p), thit
L1 ∗ hratio

L1 + tmiss
L1 ∗ (1− hratio

L1))

p: accessL2(addr) use(L2(bank(addr)), thit
L2 ∗ hratio

L2 + tmiss ∗ (1− hratio
L2))

p: refillL2(addr) use(Refill, tRD
Mem)

p: victimizeL2(addr) use(Victimize, victimizationratio ∗ tWR
Mem)

p: READ(addr) accessL1(addr);

if (missL1) { accessL2(addr);

if (missL2) {

if (victimize) victimizeL2(addr);

refillL2(addr)}}

The cache hit/miss behavior cannot be evaluated using the cache (direc-
tory) state, because Pamela, being algebraic, is a state-less formalism. Thus,
we compute a probabilistic average cache latency, depending on the cache hit
ratio, hratio, and on the hit/miss latencies, thit and tmiss. Also the if branches
in the READ(addr) model are addressed in a probabilistic manner. For example,
if(missL1) is replaced by a quantification with (1 − hratio

L1), which is the pro-
bability that this condition is true. All these probabilistic models are based
on memory behavior parameters which are both application- and architecture-
dependent. PAM-SoC uses an additional tool for computing these parameters,
which is presented in Section 3.3.

3.2 Application modeling

Translating an application implemented in a high-level programming language
to its Pamela application model (as well as writing a Pamela model from

scratch) implies two distinct phases: (1) modeling the application as a series-
parallel graph of processes, and (2) modeling each of the processes in terms of
Pamela machine instructions. However, modeling an existing application to its
Pamela model is a translation from one instruction set to another, and it can
be automated if both instruction sets are fully specified as exemplified in [5].

3.3 The memory statistics

For computing its prediction, PAM-SoC uses two types of numerical parameters:
(1) the hardware latencies (measured under no-contention conditions), and (2)
the memory statistics. While the former have been also required by GPPP mo-
dels, the latter become of importance mainly for modeling MPSoC platforms.
The hardware latencies are fixed values for a given architecture and can be ei-
ther obtained from the hardware specification itself (i.e., theoretical latencies)
or by means of micro-benchmarking (i.e., measured latencies). We have based
our experiments on the theoretical latencies.
The memory statistics are both machine- and application-dependent, and they
have to be computed/evaluated on a per-application basis. For this, we have
built MemBE, a custom light-weight Memory system Behavior Emulator able
to obtain memory statistics like cache hit ratios, snooping success ratios, or vi-
timization ratios, with good speed and satisfactory accuracy. MemBE is built as
a multi-threaded application that permits the (re)configuration of a custom me-
mory hierarchy using the memory components supported by PAM-SoC. MemBE
emulates the memory system of the target architecture and executes a memory-
skeleton version of the analyzed application1. The memory skeleton is stripped of
any data-processing, which allows MemBE to run faster and to focus exclusively
on monitoring the application data-path.

4 Experiments and results

In this section we present the validation experiments for our PAM-SoC toolchain,
as well as two sets of design-space exploration experiments, one for architecture
tuning and one for application tuning, respectively.

4.1 Validation experiments

The validation process of PAM-SoC aims to prove its abilities to correctly pre-
dict application behavior on a given MPSoC platform. For these experiments,
we have modeled the Wasabi platform, one tile of the CAKE architecture from
Philips [10, 11]. A Wasabi chip is a shared-memory MPSoC, having 1-8 pro-
grammable processors, several SFUs, and various interfaces. The tile memory
hierarchy has three levels: (1) private L1’s for each processor, (2) one shared
on-chip L2 cache, available to all processors, and (3) one off-chip memory mo-
dule. Hardware consistency between all L1’s and L2 is enforced. For software

1 Currently, the application simplification from the source code to the memory-
skeleton is done by hand. In principle, we believe that Pamela and MemBE can
both start from a common, autmatically-generated application model.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Processors

Matrix addition

Ideal speedup
300x300 Elements (m)
300x300 Elements (p)

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Processors

RGB to Grey scale Conversion

Ideal speedup
800x600 Pixels (m)
800x600 Pixels (p)

(a) (b)

Fig. 4. Predicted and measured speedup for (a) matrix addition and (b) RGB-to-Grey
conversion

support, Wasabi runs eCos2, a modular open-source Real-Time Operating Sys-
tem (RTOS), which has embedded support for multithreading. Programming is
done in C/C++, using eCos synchronization system calls and the default eCos
thread scheduler.

The simulation experiments have been run on Wasabi’s configurable cycle-
accurate simulator, provided by Philips. For our experiments, we have chosen
a fixed memory configuration (L1’s are 256KB, L2 is 2MB, and the off-chip
memory is 256MB) and we have used up to 8 identical Trimedia processors3.

For validation, we have implemented a set of six simple benchmark appli-
cations, each of them being a possible component of a more complex, real-life
MPSoC application. These applications are: (1) element-wise matrix addi-
tion - memory intensive, (2) matrix multiplication - computation intensive,
(3) RGB-to-YIQ conversion - a color-space transformation filter, from the
EEMBC Consumer suite4, (4) RGB-to-Grey conversion - another color-space
transformation, (5) high-pass Grey filter - an image convolution filter, from
the EEMBC Digital Entertainment suite5, and (6) filter chain - a chain of
three filters (YIQ-to-RGB, RGB-to-Grey, high-pass Grey) successively applied
on the same input data. All benchmark applications have been implemented
for shared-memory (to comply with the Wasabi memory system), using the SP-
programming model and exploiting data-parallelism only (no task parallelism,
which is a natural choice for the case of these one-task applications).

The results of PAM-SoC prediction and Wasabi simulation for matrix addi-
tion and RGB-to-Grey transformation are presented together in Fig. 4. Due to
space limitation, we have only included these two graphs, for the two applica-
tions that clearly exhibit memory contention and therefore show the prediction
abilities of PAM-SoC. The complete set of graphs (for all the applications) and
experiment results are presented in [9]. For all the applications, the behavior

2 http://ecos.sourceware.org/
3 TriMedia is a family of Philips VLIW processors optimized for multimedia processing
4 http://www.eembc.org/benchmark/consumer.asp
5 http://www.eembc.org/benchmark/digital entertainment.asp

Table 2. Simulation vs. prediction times [s]

Application Data size Tsim TMemBE TPam TPAMSoC Speed-up

MADD 3x1024x1024 words 94 2 1 3 31.3
MMUL 3x512x512 words 8366 310 2 312 26.8
RGB-to-YIQ 6x1120x840 bytes 90 7 4 11 8.1
RGB-to-Grey 4x1120x840 bytes 62 3 1 4 15.5
Grey-Filter 2x1120x840 bytes 113 6 4 10 11.3
Filter chain 8x1120x840 bytes 347 20 12 32 10.8

trend is correctly predicted by PAM-SoC. The average error between simulation
and prediction is within 19%, while the maximum is less than 25% These de-
viations are due to (1) the differences between the theoretical Wasabi latencies
and the ones implemented in the simulator (50-70%), (2) the averaging of the
memory behavior data, and (3) the Pamela accuracy-for-speed trade. While
Fig. 4 demonstrates how PAM-SoC is accurate in terms of application beha-
vior, Table 2 emphasizes the important speed-up of PAM-SoC prediction time
(TPAMSoC = TMemBE +TPam) compared to the cycle-accurate simulation time,
Tsim, for the considered benchmark applications and the largest data sets we
have measured. While a further increase of the data set size leads to a signifi-
cant increase for Tsim (tens of minutes), it has a minor impact on TPam (seconds)
and leads to a moderate increase of TMemBE (tens of seconds up to minutes).
Because MemBE is at its first version, there is still much room for improve-
ment, by porting it on a parallel machine and/or by including more aggressive
optimizations. In the future, alternative cache simulators or analytical methods
(when/if available) may even replace MemBE for computing memory statistics.

4.2 Design space exploration
PAM-SoC can be successfully used for early design space exploration, both for
architecture tuning, where architectural choices effects can be evaluated for a
given application, and for application tuning where application implementation
choices effects can be evaluated for a given architecture.

Architecture tuning. For architecture tuning, we have considered a hypothe-
tical system with up to eight identical programmable processors, each processor
having its own L1 cache, a fast shared on-chip L2 cache and practically unlimited
external memory (i.e., off-chip). We have modeled three variants of this hypothe-
tical system, named M1, M2, and M3, and we have estimated the performance
of a benchmark application (matrix addition, implemented using 1-dim block
distribution) on each of them. In this experiment we have chosen to tune the
memory configuration of the architecture for these different models, but different
processing and/or communication configurations can be evaluated in a similar
manner.
M1 is a basic model presented in Fig. 5(a), being a good starting point for mo-
deling any MPSoC architecture. Its key abstraction is the correct approximation
of the off-chip memory latencies - for both READ and WRITE operations.
M2 is an improved version of M1, presented in Fig. 5(b). It has multiple in-
terleaved banks for the L2 cache (providing concurrent access to addresses that

(a) (b) (c)

Fig. 5. The hypothetical MPSoCs: (a) M1, (b) M2, (c) M3

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

P
re

di
ct

ed
 S

pe
ed

up

Processors

Matrix Addition

M1, 256 x 256
M1, 512 x 512
M2, 256 x 256
M2, 512 x 512
M3, 256 x 256
M3, 512 x 512

Fig. 6. Architecture tuning results
(predicted)

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Processors

High-pass Grey filter

Ideal speedup
Row stride (m)
Row stride (p)

Column stride (m)
Column stride (p)

Fig. 7. Application tuning results
(predicted vs. measured)

do not belong to the same bank) and buffered memory access to the external
memory. Due to these changes, we expect the execution of an application to
speed-up on M2 compared to M1. The M2 model can be adapted to suite
any MPSoC architecture with shared banked on-chip memory, if the number of
banks, the sizes of the on-chip buffers, and the banking interleaving scheme are
adapted for the target machine.
M3, presented in Fig. 5(c), has hardware-enforced cache coherency, based on
a snooping protocol. The snooping mechanism may increase performance for
successful snoopings, when an eventual L1-to-L1 transfer is replacing a slower
L2-to-L1 fetch. On the other hand, the L1-to-L2 coherency writes may slow
down the application execution. Furthermore, due to the L2-to-Memory transfers
performed by the Victimize (for WRITE) and Refill (for READ) engines, two
new contention points are added. Overall, because matrix addition has almost no
successfull snoopings, the application execution on M3 is slowed down compared
to its run on M2. M3 covers the most complex variants of a three-level memory
hierarchy to be found in shared memory MPSoCs. Fig. 6 shows that PAM-SoC
is able to correctly (intuitively) predict the behavior of the given application
on these three models. Unfortunately, we could not run validation experiments
for the same data sets because these would require cycle-accurate simulators for

M1, M2, and M36, which are not available. However, previous Pamela results
[5] provide ample evidence that PAM-SoC will not predict a wrong relative order
in terms of performance: it either correctly identifies the best architecture for
the given application, or it cannot distinguish one single best architecture.

Application tuning The aim of application tuning experiments is to try eva-
luate several possible implementations of the same application and choose the
best one. To prove the use of PAM-SoC for application tuning, we have used
the model of the Wasabi platform and we have implemented the high-pass Grey
filter mentioned in Section 4.1 using row and column stride distribution. For
this example, based on the PAM-SoC predictions (which are validated by the
simulation results), we can decide that row-stride distribution is the best for the
Wasabi architecture. Similarly, the experiments like, for example, matrix addi-
tion (see Fig. 4(a)), can detect the maximum number of processors to be used
for the computation. Fig. 7 shows how PAM-SoC correctly detects the appli-
cation implementation effects on the given architecture. The simulation results
that validate the predictions are also included in the graph.

5 Related Work

Because performance prediction and analysis specifically targeted to MPSoCs
is still young, we relate our work to more mature adjacent fields, namely (1)
performance prediction for parallel applications, (2) MPSoC performance eva-
luation and design space exploration techniques, and (3) methods for estimating
embedded systems performance.

For static performance prediction of (scientific) parallel applications, we di-
rect the reader to Pamela and its related work, to be found in [5, 12, 13]. Most
of these methodologies are difficult to adapt for MPSoCs and their applica-
tions, mainly because of the sheer complexity of the hardware platforms. On
the practical side, we name the PERC framework [14], close to PAM-SoC in
both objectives and realization, as it aims to estimate parallel application be-
havior by combining machine and application models with the aid of behavior
statistics; however, because PERC is intended for scientific applications running
on high-performance computers, its analysis granularity is too coarse for direct
applicability to MPSoCs.

MPSoC performance analysis is still relying heavily on simulation. MPSoC
designers and producers deliver proprietary toolchains, while generic frameworks,
like [15, 16], provide complex solutions for hardware/software co-simulation and
integrated performance estimation. Although very accurate, these simulations
are still expensive in terms of computation time. Many hybrid performance
estimation techniques have been developed in the context of design space ex-
ploration of both MPSoC-specific applications and architectures [17, 18]. For
example, an interesting hybrid co-simulation solution, similar to PAM-SoC in
combining performance estimation with simulation techniques, is presented in
[19]. The reduction in complexity is obtained by simulating the architecture
6 Wasabi is a variant of M3, but its simulator is implemented as a combination of M2

and M3

at the functional level, with approximate timing behavior which, compared to
PAM-SoC, is much coarser. Other MPSoC performance analysis methods are
dedicated to estimate the performance of MPSoC components, such as on-chip
communication [20, 21] or memory systems [22]. An available solution for formal
system-level performance verification of MPSoCs is presented in [23], but their
approach aims to verify the performance of the hardware system, not to estimate
its application-specific behavior.

Although there is no clear border between embedded systems and MPSoC
platforms, most of the existing performance evaluation methods for embedded
systems, like those presented in [24, 25], have not been tested/adapted for MP-
SoCs, so there are no clear results in this direction.

6 Conclusions and Future Work

In this paper we have presented PAM-SoC, the first toolchain (to the best of our
knowledge) for MPSoCs semi-static performance prediction.

Static performance prediction for MPSoCs is motivated by its reduced cost,
which allows it to be a part of the design loop. Even though static performance
predictors trade accuracy for estimation cost, a behavior estimation within mi-
nutes is more valuable, in the early design phases, than an hours-long simulation
with very precise results. We have shown how PAM-SoC is used to predict the
performance of MPSoC platforms. To validate the methodology, we have mode-
led a real MPSoC platform and compared the PAM-SoC prediction results for
a set of six benchmark applications with the simulation results. Furthermore,
we have presented the successful results of PAM-SoC in two early design ex-
ploration use-cases, namely application tuning and architecture tuning. For the
future, we plan to enhance PAM-SoC by exploring three directions: (1) to mo-
del and test more complex applications, for further validation/improvement of
PAM-SoC, (2) to make the modeling process as automatic as possible, and (3)
to investigate how can PAM-SoC become a truly static performance predictor.

Acknowledgements. We would like to thank Paul Stravers and Philips Research for
providing the Wasabi simulator, and for the help and support we got for understanding
the details of the architecture, support that allowed us to properly model the system.

References

1. Jerraya, A., Wolf, W.: Multiprocessor Systems-on-Chips. Morgan Kaufmann Pu-
blishers (2004)

2. Wolf, W.: The future of multiprocessor systems-on-chips. In: Proc. DAC’04, ACM
Press (2004) 681–685

3. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.:
Introduction to the Cell multiprocessor. IBM Journal of Research and Development
49(4/5) (2005)

4. Nijhuis, M., Bos, H., Bal, H.: Supporting reconfigurable parallel multimedia appli-
cations. In: EuroPAR’06. (2006)

5. van Gemund, A.: Symbolic performance modeling of parallel systems. IEEE TPDS
(2003)

6. van Gemund, A.: Performance Modeling of Parallel Systems. PhD thesis, Delft
University of Technology (1996)

7. Gonzalez-Escribano, A.: Synchronization Architecture in Parallel Programming
Models. PhD thesis, Dpto. Informatica, University of Valladolid (2003)

8. Gautama, H., van Gemund, A.: Static performance prediction of data-dependent
programs. In: Proc. WOSP’00, ACM (2000) 216–226

9. Varbanescu, A.L.: PAM-SoC experiments and results. Technical Report PDS-2006-
001, (Delft University of Technology, http://www.pds.twi.tudelft.nl/reports/)

10. Stravers, P., Hoogerbrugge, J.: Homogeneous multiprocessing and the future of
silicon design paradigms. In: Proc. VLSI-TSA’01. (2001)

11. Borodin, D.: Optimisation of multimedia applications for the Philips Wasabi mul-
tiprocessor system. Master’s thesis, TU Delft (2005)

12. Adve, V.S.: Analyzing the behavior and performance of parallel programs. PhD
thesis, Dept. of Computer Sciences, University of Wisconsin-Madison (1993)

13. Adve, V.S., Vernon, M.K.: A deterministic model for parallel program performance
evaluation. Technical Report TR98-333 (1998)

14. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.:
A framework for performance modeling and prediction. In: Proc. Supercomputing
’02, IEEE Computer Society Press (2002) 1–17

15. Mahadevan, S., Storgaard, M., Madsen, J., Virk, K.: ARTS: A system-level frame-
work for modeling MPSoC components and analysis of their causality. In: Proc.
MASCOTS ’05, IEEE Computer Society (2005) 480–483

16. Pimentel, A.D.: The Artemis workbench for system-level performance evaluation
of embedded systems. Int. Journal of Embedded Systems 1(7) (2005)

17. Gries, M.: Methods for evaluating and covering the design space during early
design development. Technical Report UCB/ERL M03/32, Electronics Research
Lab, University of California at Berkeley (2003)

18. Kienhuis, B.: Design Space Exploration of Stream-based Dataflow Architectures.
PhD thesis, Delft University of Technology (1999)

19. Baghdadi, A., Zergainoh, N.E., Cesario, W.O., Jerraya, A.A.: Combining a perfor-
mance estimation methodology with a hardware/software codesign flow supporting
multiprocessor systems. IEEE TSE 28(9) (2002) 822–831

20. Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., Zafalon, R.: Analyzing on-chip
communication in a MPSoC environment. In: Proc. DATE ’04, IEEE Computer
Society (2004) 20752

21. Pande, P.P., Grecu, C., Jones, M., Ivanov, A., Saleh, R.: Performance evaluation
and design trade-offs for Network-on-Chip interconnect architectures. IEEE TC
54(8) (2005) 1025–1040

22. Loghi, M., Poncino, M.: Exploring energy/performance tradeoffs in shared memory
MPSoCs: Snoop-based cache coherence vs. software solutions. In: Proc. DATE’05,
IEEE Computer Society (2005)

23. Richter, K., Jersak, M., Ernst, R.: A formal approach to MpSoC performance
verification. IEEE Computer 36(4) (2003) 60–67

24. Lazarescu, M., Bammi, J., Harcourt, E., Lavagno, L., Lajolo, M.: Compilation-
based software performance estimation for system level design. In: Proc. IEEE
HLDVT’00. (2000)

25. Thiele, L., Wandeler, E.: Performance Analysis of Embedded Systems. In: The
Embedded Systems Handbook. CRC Press (2004)

