
Tying Memory Management to Parallel
Programming Models

Ioannis E. Venetis? and Theodore S. Papatheodorou

High Performance Information Systems Laboratory
Department of Computer Engineering and Informatics

University of Patras, Rion 26500, Greece
http://www.hpclab.ceid.upatras.gr

Abstract. Stand-alone threading libraries lack sophisticated memory
management techniques. In this paper, we present a methodology that
allows threading libraries that implement non-preemptive parallel pro-
gramming models to reduce their memory requirements, based on the
properties of those models. We applied the methodology to NthLib,
which is an implementation of the Nano-Threads programming model,
and evaluated it on an Intel based multiprocessor system with Hyper-
Threading and on the SMTSIM simulator. Our results indicate that not
only memory requirements drop drastically, but that execution time also
improves, compared to the original implementation. This allows more
fine-grained, but also larger numbers of parallel tasks to be created.

1 Introduction

Efficiency of parallel programming models has traditionally been measured in
terms of two important metrics. On the one hand, execution time is used to indi-
cate whether threading libraries and parallel applications have been implemented
effectively. On the other hand, the amount of resources that are required to ex-
press and execute parallel tasks has also been of great importance. Especially
usage of memory, which might be a scarce resource on some parallel systems,
has been carefully analyzed in several cases. Work conducted towards this direc-
tion, mainly targets threading libraries that support multithreaded languages,
i.e., parallel languages that support dynamic thread creation. This is due to the
fact that the accompanying compilers are able to perform powerful analysis of
memory requirements per function and propagate this information to the library.

In contrast, stand-alone threading libraries lack the knowledge about the
memory requirements of an application and must therefore be pessimistic about
them. Due to this fact, two different paths to implement such libraries have
emerged. The basic requirement of the first one is to reduce execution time at
all costs. Libraries implemented under this scheme, which we will refer to as

? This work has been carried out while the first author was supported by a grant from
the ’Alexander S. Onassis’ Public Benefit Foundation and the European Commission
through the ’POP’ IST project (Grant No.: IST-2001-33071).



Descriptor on Stack (DOS), usually allocate a large region of memory during
thread creation. This region is logically divided into two parts, one describing
the parallel task (Descriptor) and the other being the stack of the task during
execution. Although common sense suggests that this is a fast method to cre-
ate threads, memory requirements are often excessive. Taking into account that
contemporary stand-alone threading libraries set the default stack size some-
where between 1 and 4MB, makes it obvious that those libraries cannot support
large numbers of threads. In order to overcome this problem, supporters of the
second implementation strategy suggest that the first priority should be to min-
imize memory requirements, even if execution time suffers. In this case, during
thread creation time, only a small descriptor is allocated and initialized, whereas
a larger stack is assigned to the task when it is selected to run. We will refer to
this strategy as Lazy Stack Allocation (LSA). Effectively, stacks are traded in
favour of smaller descriptors.

Current developments in computer architecture, such as Simultaneous Mul-
tiThreading (SMT) [8], HyperThreading [3] and multicore processors, allow effi-
cient execution of more fine-grained parallelism, in addition to a larger number
of parallel tasks. This allows applications to express more of their inherent par-
allelism, creating a number of threads that might exceed the number of available
execution contexts (ECs). Our view is to create an infrastructure that will allow
stand-alone threading libraries to efficiently support the above execution scheme.
In addition to these observations, taking into account that the above architec-
tures usually have a lower memory per EC ratio, leads us to the conclusion that
the LSA implementation strategy is more appropriate for such systems. How-
ever, those libraries are usually slower, thus invalidating the means provided by
modern processors to efficiently execute parallel tasks. Hence, it becomes obvi-
ous that a new approach to tackle this problem is necessary, which will combine
the benefits of both approaches.

In this paper we present a methodology that allows stand-alone threading
libraries that implement non-preemptive parallel programming models to reduce
their memory requirements. This is accomplished by taking into consideration
the properties of this specific parallel programming paradigm. A prerequisite,
however, is that threading libraries should be LSA enabled. Firstly, we present a
method to convert a DOS into a LSA enabled library. In addition, this method
takes into account an important factor that greatly affects speed of DOS enabled
libraries, i.e., their self-identification mechanism. Based on this, we take a step
further, compared to previous approaches, introducing two methods that reduce
memory requirements even more. The first one allows us to compute a priori
the total number of stacks that are required to run an application. The second
one improves on LSA, by directly handing the stack of a terminating thread to
the next one that should run on a processor. We will refer to this method as
Direct Stack Reuse (DSR). We demonstrate for the first time, to the best of our
knowledge, that LSA and DSR enabled libraries can actually outperform DOS
enabled libraries, in terms of both, execution time and memory requirements.

The rest of this paper is organized as follows: Section 2 presents related work,
with respect to memory management techniques under several parallel program-



ming models. Section 3 presents how to apply our methodology to convert DOS
into LSA enabled libraries. In Section 4 and Section 5 we present how to fur-
ther reduce memory requirements. In Section 6 we experimentally evaluate our
approach. Finally, in Section 7 we conclude our paper.

2 Related Work

As already mentioned, much work has been done to reduce memory requirements
in threading libraries that support multithreaded languages. For example, in the
Lazy Task Creation [5] model, a thread is implemented as a serial call to a
function, which allows it to run in the stack of the parent. If, however, the
child suspends execution or more parallelism is required, the recorded return
address of the parent is assigned to another processor and the corresponding
stack frames are copied, in order for the parent to continue execution. The Lazy
Threads [2] model employs several representations of parallelism and makes the
compiler responsible for selecting the most efficient in each case. Accordingly,
the compiler decides which is the best representation of a stack, after statically
analyzing each function. For serial execution, a conventional stack is used, for
threads with small and medium sized data a structure know as a stacklet is used,
whereas for larger data sets a separate memory region is allocated. The usual case
is to use a stacklet, which is a memory region that can hold more stack frames.
However, initialization and release of a stacklet are quite expensive operations.
The Capriccio [10] threading library also uses data from static analysis of the
compiler. Similarly to the previous model, more stack frames are put in each
memory region, with the associated management cost. A new region is allocated
at the check points that the compiler inserts, according to the performed analysis.
However, Capriccio implements an 1:N model, where more user-level threads are
executed on top of only one kernel-level entity. Hence, true parallelism cannot
be exploited and some of the optimizations are not valid in M:N models.

An interesting approach, that tries to simplify development of compilers for
multithreaded languages, is the one proposed in StackThreads [7]. It provides
basic functionality to compilers, in order to map the execution model of multi-
threaded languages to the execution model of the C programming language. More
advanced management of stack frames can be built on top of this functionality.
Memory is managed in the library, through the information that the compiler
has to pass to it. Although generality is an important concern in StackThreads,
that work targets a different set of threading libraries than our work.

With respect to stand-alone threading libraries, TiNy Threads [1] targets
the Cyclops64 system, which has extremely limited memory. Only 4800KB are
available for 150 ECs. It uses the DOS model and due to increased memory
requirements has to limit the number of threads that can be created, actually
invalidating the objective of the architecture. In threading libraries that are
preemptive, such as POSIX threads, threads are usually created and immediately
put into a ready queue for execution. In these cases, more threads than there
are processors are usually active. This, in turn, implies that a large number of



stacks must be available, in order to keep the state of threads that have run but
are currently preempted. As a consequence, separation of descriptors and stacks
can only be applied to efficiently recycle objects in such cases and not reduce
usage of memory. In this paper, however, we target non-preemptive threading
libraries, which have well defined entry and exit points for a thread. Exploiting
this property, is what differentiates our work from previous approaches.

3 Retaining a Fast Self-Identification Mechanism

DOS enabled libraries are thought to be fast for two reasons. Firstly, no stack
has to be assigned to each thread before execution, because it has already been
allocated at thread creation time. Secondly, the allocated memory region, that
is split between the descriptor and the stack, is usually aligned at the region’s
size. This allows a thread to quickly perform self-identification, i.e., find the
starting address of it’s own descriptor and acquire important information about
it’s status. For example, if a 1MB(=220 bytes) memory region is allocated, the
starting address should have it’s 20 last bits zero. Self-identification is performed
in this case by reading the current value of the Stack Pointer and clearing the
last 20 bits. The result is always the starting address of the memory region.
Adding the size of the memory region and subtracting the size of the descriptor,
returns the starting address of the latter. By dereferencing this value, all the
information contained in the descriptor can be obtained. For a more detailed
description of the mechanism, including figures, we refer the reader to [9].

Our first requirement, while switching to a LSA model, is to retain a fast
self-identification mechanism. In order to achieve this goal, our methodology
requires us to follow two steps. Firstly, stacks should be aligned as in the DOS
model. We must point out that the stack under LSA is actually the same as the
memory region in the DOS model, whereas descriptors are allocated separately.
Secondly, after a thread has been selected to run and a stack has been assigned
to it, a pointer to the descriptor (instead of the descriptor itself) should be put
at the top of the stack. Thus, self-identification is performed almost in the same
manner as in DOS enabled libraries. The difference lies in the last step, where
the size of a pointer is subtracted from the computed value, instead of the size of
a descriptor. This returns a pointer to the descriptor, which can be dereferenced,
as in the DOS case. Hence, this mechanism is as fast as the original one.

4 Direct Stack Reuse

DOS requires a large memory region for each thread. If more threads than pro-
cessors are created, this leads to unnecessarily high memory consumption. In
contrast, LSA, in combination with the fact that a non-preemptive model guar-
antees that a thread will not be interrupted, allows the stack of a terminating
thread to be inserted into a recycling queue and another stack to be assigned to
the next thread. The same process is repeated for every thread that terminates,



on each processor. Hence, LSA requires only two stacks per processor. If, how-
ever, only one thread is created for each processor, LSA will use the recycled
stack when a new thread finally arrives, thus the number of stacks will be equal
to the DOS case, in addition to a number of small descriptors.

LSA is a widely used method to reduce memory usage. However, with non-
preemptive models more improvements can be achieved. Our second require-
ment, when switching to a LSA model, is to reduce the time required to assign
a stack to a thread that is ready to run. When a context-switch occurs, under
a non-preemptive model, a thread is actually terminating and it’s stack is not
needed anymore. Due to this observation, it is obvious that the stack of that
thread can be directly reused by the new thread, without accessing queues or
allocating a new one. This reduces time to find a stack for the new thread. Set-
ting up the stack in this case, is as expensive as in the DOS case. The difference
is that initialization just happens at a different point in the execution path.

Two important points have to be made clear, the first being that DSR can
only be applied if LSA is also active. The second point is that DSR is a com-
plementary mechanism to the recycling queues. Someone could conclude that
recycling queues could be dropped from a library, since each thread directly
uses the stack of the previous thread. However, there are cases where recycling
queues are necessary. For example, a thread might block and voluntarily release
the processor it is running on. In this case, the user-level scheduler selects a new
thread for that processor. Obviously, the stack of the thread that blocked must
be preserved, in order for it to be able to resume execution. Hence, the newly
selected thread needs a new stack, which it will request from the queues.

5 Calculating the Number of Required Stacks

Although LSA already contributes to reduced memory requirements and DSR
improves on that, eliminating one stack per processor for switching to a new
thread, the non-preemptive nature of the programming models that are con-
sidered allow us to go even further. Specifically, it is possible to calculate a
priori the number of required stacks that are necessary to run an application.
To demonstrate this, we will use as an example NthLib [4], a threading library
that implements the Nano-Threads programming model [6]. However, this spe-
cialization has an effect only in the initialization phase of a library. During
context-switches, the following reasoning applies to every threading library.

Suppose that initially only LSA is enabled and that an application requests
P processors. In this case, the library must create P−1 Virtual Processors (VPs)
more, since the first VP is the one that started the application. Currently, the
requirements for the initialization phase are one stack for the first VP and two
for each other, giving a total of 2 · P − 1. If DSR is also enabled, then there
is no need for additional stacks. If not, then as soon as a VP, except of the
first one, receives the first user-level thread for execution, one of the stacks is
recycled, as it is thought to be the stack of the previous thread. Therefore, only
one more stack is required per VP to perform context-switches, which sums up



to (2 · P − 1) + (P − 1) = 3 · P − 2. Finally, one more stack is required for the
main thread, because it voluntarily blocks and joins the other VPs in the parallel
phase. Therefore, the final sums are 3 · P − 1 for LSA and 2 · P for DSR.

This information can be used by threading libraries. During initialization,
allocation of all stacks can be performed at once. In order to enforce the memory
alignment requirements of the library, some additional pages of memory must be
allocated. However, after the first stack has been correctly aligned, all subsequent
stacks in that memory region will also be aligned. This is in contrast to DOS,
where additional memory has to be allocated for each new thread, which is
wasted. If we were to free that memory, execution time would suffer. Since the
application is still in a serial phase, stacks can be put into the corresponding
recycling queues without using any locking mechanism. This has two advantages.
Firstly, the library requests only once memory for stacks. Memory allocators are
usually slow when large memory areas are requested. Under DOS, this cost
is paid for every thread. Under LSA and DSR, the cost is amortized among all
threads that will run on the allocated stacks. Secondly, each processor is assigned
the total number of stacks it requires during execution. This reduces contention
on the recycling queues of the stacks to the minimum. Finally, it is a priori
known that all allocated stacks will be used and no memory will be wasted.

Although the number of stacks can be predicted, the number of descriptors
cannot. Despite that fact, we propose a similar pre-allocation technique for them.
The first time a descriptor is requested, a larger area of memory is allocated.
However, in contrast to stacks, all descriptors that fit into this area are not di-
rectly put into queues, due to the fact that mutual exclusion would be necessary.
In addition, only the main thread of an application usually creates threads, hence
spreading descriptors among all recycling queues would be inefficient. Therefore,
each time a descriptor is needed, and none can be found in a recycling queue,
we atomically increase the base address of the allocated area by the size of a
descriptor and return the previous address. Since contention is very low, due to
the fact that usually only one thread creates others, this atomic operation is very
likely to complete very fast. Only when the allocated area is exhausted, does the
library request more memory for descriptors. Currently, 2 ·P descriptors can fit
into the area that is each time allocated in the new implementation of NthLib.
In combination with the fact that a descriptor is only 512 bytes large, one can
conclude that this is an effective method to reduce the number of expensive
memory allocation requests, without actually sacrificing memory.

6 Experimental Evaluation

In order to evaluate the efficiency of our methodology, we applied it to NthLib.
The original implementation of NthLib is DOS based. The new implementation
has been developed so as to support all designs that were described, i.e., DOS,
LSA and DSR. The one that is each time used is defined during compilation of
the library. Supporting all designs was intentional, in order to make comparison
among them easier. Having only one library, makes our results independent of
other differences and details that two separate implementations would have.



Table 1. Hardware configuration of the experimentation platform.

Intel processor based system SMTSIM

Processors 4 Intel Xeon MP HTs, 2 GHz, 1 Alpha based,
2 execution contexts/processor 8 execution contexts

L1 Data Cache 8KB shared, 4-way assoc. 32KB, 2-way assoc.,
10-cycle miss latency

L1 Inst. Cache 12KB shared execution trace 32KB, 2-way assoc.,
10-cycle miss latency

L2 Cache 512KB shared, unified, 256KB, 2-way assoc.,
8-way assoc. 15-cycle miss latency

L3 Cache 1MB shared, unified, 2MB, 2-way assoc.,
8-way assoc. 125-cycle miss latency

D-TLB 64 entries 128 entries

I-TLB 2x64 entries 48 entries

DRAM 2GB Depends on host system

The first system we used to evaluate our approach is a 4-processor, Hyper-
Threading enabled system, running Linux 2.6.8. The second one is SMTSIM [8],
a simulator that implements an Alpha processor with 8 ECs. More detailed hard-
ware characteristics for both systems are summarized in Table 1. The compiler
used is gcc 4.0.2 for both platforms, at the highest optimization level (-O3).

Due to space limitations, we present results for only one benchmark. We refer
the reader to [9], for a more detailed description of applying our methodology to
NthLib and a more thorough evaluation. The benchmark that we used, which we
will refer to as Empty , follows the fork/join model. The master thread creates one
million empty nano-threads, whereas the slave processors dispatch and execute
them. The master thread blocks after it has created all threads, hence calling
the user-level scheduler and joining the other processors to execute threads. This
benchmark is appropriate for estimating the pure run-time overhead of thread
management in NthLib. Moreover, it can be used to determine the number of
stacks that an application requires and to estimate the minimum number of
descriptors that must be allocated. This is due to the fact that nano-threads
perform no computation in this benchmark. Therefore, they are consumed as
fast as possible by the slave processors and are immediately recycled.

Fig. 1 summarizes the results for this benchmark. They are normalized with
the time of the slowest benchmark, which is when LSA is enabled and the bench-
mark is run on one EC. The absolute execution times in this case were 2,56
seconds for the Intel based system and 643,5 million simulated clock cycles for
SMTSIM. The stack size used for each nano-thread was set in all runs to the
quite small size of 32KB, in order to allow the benchmark to successfully com-
plete in most cases under the DOS scheme. If either LSA or DSR is enabled,
pre-allocation of stacks and descriptors is also enabled. For SMTSIM, the hori-
zontal axis represents the number of ECs used. For the Intel based system, the
numbers of physical processors and ECs used on each one of them are mentioned.
For example, (4, 1) means that 1 EC was used on each one of the 4 physical pro-



0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

(1,1) (1,2) (2,1) (2,2) (4,1) (3,2) (4,1/2) (4,2)

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

DOS LSA DSR

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 2 4 6 8

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

DOS LSA DSR

Fig. 1. Normalized execution time for Empty on the Intel based system and SMTSIM.

cessors. A special case is the one denoted with (4, 1/2), where 2 ECs were used
on 2 physical processors and 1 EC on the other 2 physical processors. Finally,
notice that the benchmark could not complete when DOS was enabled and it
was run on one processor, due to excessive memory requirements. The master
thread must first create all threads in this case, before blocking to execute them.

The results indicate that LSA and DSR are from 2,65% (DSR, (4,1)) up
to 12,54% (DSR, (2,1)) faster than DOS, on the Intel platform. For SMTSIM,
the range is between 14,66% (DSR, 4) and 21,82% (LSA, 8). The exception oc-
curs when two ECs are used on only one processor. In this case, DSR is 3,49%
and LSA 40,41% slower than DOS, for the Intel platform, whereas for SMTSIM
the difference is 2,48% and 12,38% respectively. More detailed measurements
revealed that the cause of this inefficiency is the contention on the recycling
queues of both, the stacks and the descriptors. Under LSA and DSR, nano-
threads are created and also start executing faster after they have been selected
to run. This means that both ECs try to acquire access to the queues in smaller
time intervals. In combination with the fact that resources of the processor are
shared between the ECs and one of them may stall, if a resource is not available,
explains this odd behavior. DSR is faster than LSA in this case, due to the fact
that stacks are not recycled but directly reused. This alleviates the queueing
system significantly. Moreover, the differences for SMTSIM are smaller, com-
pared to the Intel platform. Additionally, we observe that execution time rises,
as more ECs are used, although with a smaller pace in the case of SMTSIM.
The fact that SMTSIM exhibits better behaviour in all cases can be attributed
to the following facts. Firstly, SMTSIM simulates 8 ECs on one processor. The
Intel platform, in contrast, is a SMP system, where communication costs among
processors are quite higher. Secondly, resources of the simulated processor in
SMTSIM are dynamically shared among ECs. In the second system, however,
resources of a processor are statically divided between both ECs. Therefore, even
if a resource is available on one of them, the other cannot take advantage of it.
Lastly, SMTSIM uses a very efficient hardware implementation of locks, based
on the concept of a lockbox [8], which is exploited in our library and significantly
reduces synchronization time among threads.



Table 2. The number of required Stacks (S) and Descriptors (D) for Empty .

Intel processor based system
DOS LSA DSR

S S D S D

(1,1) - 3 1000003 2 1000003

(1,2) 13012 6 284877 4 204662

(2,1) 9602 6 176701 4 107078

(2,2) 7342 10 104896 8 76378

(4,1) 10909 10 80893 8 73132

(3,2) 9993 16 73760 12 86505

(4,1/2) 8558 16 70684 12 76668

(4,2) 10496 22 65270 16 73812

SMTSIM
DOS LSA DSR

S S D S D

1 - 3 1000003 2 1000003

2 8 5 31 3 15

4 9 7 14 7 14

6 11 11 16 11 15

8 13 13 17 12 16

The other important factor that our implementation tries to minimize, apart
from execution time, is usage of memory. Table 2 summarizes the memory re-
quirements of our benchmark. Starting with the results for the Intel platform,
it becomes obvious that savings in memory are significant. The biggest differ-
ence between DOS and LSA appears when both ECs are used on each one of
the physical processors and is 90,07%. The biggest difference between DOS and
DSR appears when one EC is used on all physical processors and is 89,45%. The
smallest difference appears in both cases when one EC is used on each of two
physical processors and is 65,75% for LSA and 75,39% for DSR.

Different results are acquired for SMTSIM, where memory requirements for
all cases are almost identical. This difference, compared to the Intel platform, can
be explained, if we take into consideration that SMTSIM does not run an OS and
delays that origin from it are not accounted for. As an example of the importance
of this fact, we mention that on the Intel platform, a thread is created in about
30000 clock cycles, under the DOS scheme, whereas the time required to insert it
into a ready-queue is only about 250. Almost all of the time to create the thread is
spent in the OS, in order to allocate the required memory. In SMTSIM, however,
this time is not measured and a thread is created in 60 cycles and inserted
into a queue in 100. Therefore, we believe that for fine-grained benchmarks,
that frequently interact with the OS, SMTSIM is not as accurate as required.
Consequently, we believe that the results obtained on the Intel platform, with
respect to memory requirements, reflect better reality. Furthermore, we believe
that differences in execution time between DOS and both, LSA and DSR, would
be higher for SMTSIM, if the time for memory allocation had been taken into
account. However, SMTSIM gives a good estimation of execution times in all
cases and can be used more reliably for applications where each thread has to
perform more computations [9].

7 Conclusions

In this paper we presented a methodology that can be applied to non-preemptive
parallel programming models, in order to reduce their memory requirements. We



used a widely known methodology to convert a DOS into a LSA enabled library,
demonstrating that it is possible to retain a fast self-identification mechanism.
Furthermore, taking into account the fact that most contemporary high perfor-
mance threading libraries implement non-preemptive parallel programming mod-
els, we introduced two more methods to reduce memory requirements. Those are
based on the properties of non-preemptive programming models, which is what
differentiates our work from previous approaches. Specifically, we introduced a
mechanism that allows the stack of a terminating thread to be directly reused
by the thread that is next to be run. In addition, we demonstrated how it is
possible to calculate a priori the total number of stacks that an application re-
quires. The latter can be exploited to reduce the amount of memory that would
otherwise be wasted, due to the alignment requirements of memory regions and
stacks. Finally, our performance evaluation proved that combining all of the
above techniques, not only drastically reduces memory requirements to repre-
sent parallelism in threading libraries, but that it can also be faster than the
traditional DOS approach, in contrast to general belief.

References

1. J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. TiNy Threads: a Thread Vir-
tual Machine for the Cyclops64 Cellular Architecture. In Proceedings of the 5th
Workshop on Massively Parallel Processing, Denver, Colorado, April 2005.

2. S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy Threads: Implementing
a Fast Parallel Call. Journal of Parallel and Distributed Computing, Volume 37,
Issue 1:5–20, August 1996.

3. D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and
M. Upton. Hyper-Threading Technology Architecture and Microarchitecture. Intel
Technology Journal, Volume 6, Issue 1:4–15, February 2002.

4. X. Martorell, J. Labarta, N. Navarro, and E. Ayguade. A Library Implementation
of the Nano-Threads Programming Model. In Proceedings of the 2nd International
EuroPar Conference, pages 644–649, Lyon, France, August 1996.

5. E. Mohr, D. A. Kranz, and Jr. R. H. Halstead. Lazy Task Creation: A Technique
for Increasing the Granularity of Parallel Programs. IEEE Transactions on Parallel
and Distributed Systems, Volume 2, Issue 3:264–280, July 1991.

6. C. Polychronopoulos, N. Bitar, and S. Kleiman. Nanothreads: A User-Level
Threads Architecture. Technical Report 1297, CSRD, University of Illinois at
Urbana-Champaign, 1993.

7. K. Taura, K. Tabata, and A. Yonezawa. Stackthreads/MP : Integrating Futures
into Calling Standards. Technical Report TR 99-01, University of Tokyo, 1999.

8. D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading: Maximizing
On-Chip Parallelism. In Proceedings of the 22nd Annual International Symposium
on Computer Architecture, pages 392–403, S. Margherita Ligure, Italy, 1995.

9. I. E. Venetis and T. S. Papatheodorou. A Time and Memory Efficient Implemen-
tation of the Nano-Threads Programming Model. Technical Report HPCLAB-TR-
210106, High Performance Information Systems Laboratory, January 2006.

10. R. von Behren, J. Condit, F. Zhou, G. Necula, and E. Brewer. Capriccio: Scalable
Threads for Internet Services. In Proceedings of the 19th Symposium on Operating
System Principles, pages 268–281, Bolton Landing, New York, October 2003.


