
Linear Hashtable Motion Estimation Algorithm for
Distributed Video Processing

Yunsong Wu1,2, Graham Megson2

1 Jiangxi Science & Technology Normal University

Nanchang, China
2 School of Systems Engineering, Reading University

Reading, UK
{sir02yw, g.m.megson}@rdg.ac.uk

Abstract. This paper presents a parallel Linear Hashtable Motion Estimation
Algorithm (LHMEA). Most parallel video compression algorithms focus on
Group of Picture (GOP). Based on LHMEA we proposed earlier [1][2], we
developed a parallel motion estimation algorithm focus inside of frame. We
divide each reference frames into equally sized regions. These regions are going
to be processed in parallel to increase the encoding speed significantly. The
theory and practice speed up of parallel LHMEA according to the number of
PCs in the cluster are compared and discussed. Motion Vectors (MV) are
generated from the first-pass LHMEA and used as predictors for second-pass
Hexagonal Search (HEXBS) motion estimation, which only searches a small
number of Macroblocks (MBs). We evaluated distributed parallel
implementation of LHMEA of TPA for real time video compression.

Keywords: Parallel Algorithm, Distributed Computing, Distributed Video
Coding, Linear Hashtable, Motion Estimation

1 Introduction

In this paper, a parallel Linear Hashtable Motion Estimation Algorithm (LHMEA) for
the Two-Pass Algorithm (TPA) constituted by LHMEA and Hexagonal Search
(HEXBS) to predict motion vectors for inter-coding [1] is proposed. The objective of
the motion estimation scheme is to achieve good quality video with very low
computational time and low transmission rate. It is hard to find software solutions that
efficiently code high-quality video in real-time or faster. We propose and evaluate
distributed parallel implementations of the LHMEA of TPA on clusters of
workstations for real time video compression as test. It discusses how distributed
video coding on load balanced multiprocessor systems can help, especially on motion
estimation. The software platform used for these is the Parallel Virtual Machines
(PVM) programming model and C respectively. The effect of load balancing for
improved performance will also be discussed. This paper is only concerned with the
Block Matching Algorithms (BMA), which is widely used in MPEG2, MPEG4, and
H.263. In BMA, each block of the current video frame is compared to blocks in

reference frame in the vicinity of its corresponding position. It is highly desired to
speed up the process of compression without introducing serious distortion. The
HEXBS is a widely accepted fast motion estimation algorithm [2]. The Linear
Algorithm and Hexagonal Search Based Two-Pass Algorithm (LAHSBTPA)
previously proposed has an improvement over the HEXBS on compression rate,
PSNR and compression time. In the last 20 years, many fast algorithms have been
proposed to reduce the exhaustive checking of candidate Motion Vectors (MV). Such
as Two Level Search (TS), Two Dimensional Logarithmic Search (DLS) and
Subsample Search (SS) [3], the Three-Step Search (TSS), Four-Step Search (4SS) [4],
Block-Based Gradient Descent Search (BBGDS) [5], and Diamond Search (DS) [6],
[7] algorithms. A very interesting method called HEXBS has been proposed by Zhu,
Lin, and Chau [8]. The fast BMA increases the search speed by taking the nature of
most real-world sequences into account while also maintain a prediction quality
comparable to Full Search. Most algorithms suffer from being easily trapped in a non-
optimum solution. LHMEA based TPA sorts out this problem. Normally video
encoders are very effective reducing the size of the video stream, but the processing
cost is very high for high quality video sequences. Although there are hardware video
encoders available, they have severe restrictions (resolution, coding options, etc). A
more flexible choice is to use distributed parallel implementations. Processing video
with high performance distributed computing has great potential and good future, but
the studies in these fields mainly concentrated on Group of Pictures (GOP) separation.

To take advantage of the potential processing power of distributed computing, we
use distributed programming techniques based on message passing. We have used
PVM because there are free implementations available and it is a widely accepted
standard.

Various image and video compression algorithms use parallel processing.
Approaches used can largely be divided into four areas. The first is the use of special
purpose architectures designed specially for image and video compression. An
example of this is the use of an array of DSP chips to implement a version of MPEG.
The second approach is the use of VLSI techniques. The third approach is algorithm
driven, in which the structure of the compression algorithm describes the architecture,
e.g. pyramid algorithms. The fourth approach is the implementation of algorithms on
high performance parallel computers.

The TPA which we have proposed has achieved best result in all the algorithms in
the survey. To further improve the result and speed, the most suitable and easiest way
is using parallel algorithm to implement the algorithm on high performance parallel
computers. In the first-pass coding of TPA, LHMEA is employed to search all
Macroblocks (MB) in the picture. Because LHMEA is based on a linear algorithm,
which fully utilizes optimized computer’s structure based on addition, so it is easy to
be paralleled. Meanwhile HEXBS is one of the best motion estimation methods to
date. The new method proposed in this paper achieves the best results so far among
all the algorithms investigated on compression rate, time and PSNR.

Contributions from this paper are:
1. The TPA achieves the best results among all investigated BMA algorithms.
2. Improved Hashtable is used in video encoding.
3. The parallel algorithm improves LHMEA of TPA. It implements and shows
better compression speed, and fair compression rate and PSNR than original TPA.

4. Work load balancing algorithm is implemented in the hashtable image
encoding process.

The rest of the paper is organized as follows. Section 2 continues with an
introduction to improved LHMEA and TPA and gives experimental result showing
TPA’s advantage over other algorithms. The proposed parallel algorithm and its
implementation for LHMEA are introduced in Section 3. Experimental results
showing paralleled hashtable compared with the original are also included in Section3.
The paper concludes in Section 4 with some remarks and discussions about the
proposed scheme.

1 Sequential and Parallel Implementation of Linear Hashtable
Motion Estimation Algorithm (LHMEA)

Our method attempts to predict the motion vectors using linear algorithm.[1][2] It uses
hashtable method into video compression. After investigating of most traditional and
on-the-edge motion estimation methods, we use latest optimization criterion and
prediction search method. Spatially MBs’ information is used to generate the best
motion vectors[8]. We designed a vector hashtable lookup matching algorithm which
is more efficient method to perform an exhaustive search: it considers every
macroblock in the search window. This block-matching algorithm calculates each
block to set up a hashtable. It is a dictionary in which keys are mapped to array
positions by a hash function. We try to find as few variables as possible to represent
the whole macroblock. Through some preprocessing steps, “integral projections” are
calculated for each macroblock. These projections are different according to different
algorithm. The aim of these algorithms is to find best projection function. The
algorithms we present here has 2 projections. One of them is the massive projection,
which is a scalar denoting the sum of all pixels in the macroblock. It is also DC
coefficient of macroblock. The other is A of Y=Ax+B (y is luminance, x is location.)
Each of these projections is mathematically related to the error metric. Under certain
conditions, the value of the projection indicates whether or not the candidate
macroblock will do better than best-so-far match.

2.1 Sequential Implementation of LHMEA

The followings are the pseudo code, theory time, practical time calculation of linear
hashtable motion estimation algorithm. The algorithm is used in pre-computation part
of in MPEG codec and implemented in both sequential and parallel ways. In the
program, we try to use polynomial approximation to get such y=mx+c; y is luminance
value of all pixels; x is the location of pixel in macroblocks. The way of scan y is from
left to right, from top to button. Coefficients m and c are what we are looking for. As
shown in the figure below.

In this function y=f(x), x will be from 0 to 255 in a 16*16 pixels macroblock,
y=f(x)=mx+c.

Fig. 1. Linear algorithm for discrete algorithm

∑∑∑

∑∑∑

===

===

−

−
= N

i
i

N

i
i

N

i
i

N

i
i

N

i
i

N

i
ii

xxxN

yxyxN
m

000

2

000

**

)(*
(1)

∑∑∑

∑∑∑∑

===

====

−

−
= N

i
i

N

i
i

N

i
i

N

i
ii

N

i
i

N

i
i

N

i
i

xxxN

yxxxy
c

000

2

000

2

0

**

(2)

Here we state the pseudo code to calculate the hashtable function: The function to

implement the algorithm is encapsulated in MyMotionSearchPreComputation Mpeg-
Frame *frame)

Sequential Code:
Step 1: if ((psearchAlg == VECTOR_HASH || psearchAlg == HEX_VECTOR_HASH ||

psearchAlg == HEX) && (frame->type == I_FRAME || frame->type == P_FRAME))
Step 2: EnterTimeCount(0)

Step 3, Paral: if (IsSetUpHashTablePVM) { call PVM Motion Search PreComputation;}
else{

Step 4: if(HashTableSearchType) InitMHashTable();
Step 5: for (y = 0; y < Fsize_y - 16; y++) {
Step 6: for (x = 0; x < Fsize_x - 16; x++)
Step 7: { call different hashtable setup functions }
Step 8:if (use HashTable) { add M,C,X,Y into hashtable }}}}
Step 9: LeaveTimeCount(0);

MB is transferred by hash function to hash coefficients, M,C,X,Y generated are
added into hashtable.

In previous research methods, when people try to find a block that best matches a
predefined block in the current frame, matching was performed by SAD (calculating
difference between current block and reference block). In Linear Hashtable Motion
Estimation Algorithm (LHMEA), we only need to compare two coefficients of two
blocks. In current existing methods, the MB moves inside a search window centered on
the position of the current block in the current frame. In LHMEA, the coefficients
move inside hashtable to find matched blocks. If coefficients are powerful enough to

hold enough information of MB, motion estimators should be accurate. So LHMEA
increases speed and accuracy to a large extent.

From the pseudo code above, we can get calculation time in theory:

The precomputation complexity is the function (3)

seqseqseqseqseqseqseq snsnT φφ ××=),,((3)

The variables inside the function are

1. : reference frame number, which is also number of I, P frames seqn

2. : frame size, which in the program is seqs

)_()_(framelengthframewidth × (4)

3. seqφ : the complexity to calculate the hash function per macroblock, which will
be explained later.

So the complexity of the linear hashtable motion estimation algorithm depends on
the three variables.

To demonstrate the complexity of calculation, the following example is given:

The video sequence used in the experimentation is three YUV (352x240 pixels) test
sequence, which is known as Flower Garden sequence. There are 150 frames in the
original sequences, which sub sampled to the 4:1:1 format in the YUV color space.
The video sequence was divided into several sections (GOPs), each of which contained
15 frames to be compressed and a reference frame. A frame pattern of
IBBPBBIBBPBBPBB was used. The average time is defined as the overall execution
time of the group, including the I/O time, the computation time and the
communications time. The motion vector search algorithm used is the LHMEA based
TPA and produces integer pixel motion vectors.

We calculate it in details here to demonstrate how it is working.

seqn =50 out of 150 frames.

=seqs)__()__(sizeMBframelengthsizeMBframewidth −×− =75264.

According to the complexity of calculate Macroblock,

 seqφ depends on the hash function calculation method.

For the coefficients m and c we mentioned earlier:

∑∑∑

∑∑∑

===

===

−

−
= N

i
i

N

i
i

N

i
i

N

i
i

N

i
i

N

i
ii

xxxN

yxyxN
m

000

2

000

**

)(*
 (1)

∑∑∑

∑∑∑∑

===

====

−

−
= N

i
i

N

i
i

N

i
i

N

i
ii

N

i
i

N

i
i

N

i
i

xxxN

yxxxy
c

000

2

000

2

0

**

 (2)

In the C codec, We only calculate and , because for a 16x16

macroblock, , , N, can be pre-calculated

before calling the function.

∑
=

∗
N

i
ii yx

0
)(∑

=

N

i
iy

0

∑
=

N

i
ix

0
∑
=

N

i
ix

0

2 ∑∑ ∑
== =

∗−
N

i
i

N

i

N

i
ii xxxN

00 0

2*

In the codec, pseudo code decides the complexity of seqφ is as following:

so seqφ =16*16*[1 (*)+5 (+)]+ 4 (*)+2 (+)

for(iy=0;iy<MB_size;iy++){
 for(ix=0;ix<MB_size;ix++){

temp1= frame->ref_y[y+iy][x+ix];
 sum_yi += temp1;
 sum_xiyi += count* temp1;
 count ++; } }
 (*pnowBuildTable)[y][x].B = 0.125*sum_yi;

(*pnowBuildTable)[y][x].A
=(12*sum_xiyi-6*(total_size+1)*sum_yi)>>10;

In this example total sequential time in theory is

),,(φsnTseq

=))(dim_
2

ensionframeseqseq Msn × tyoncomplexihashfunctiensionMBseq N γφ ×× dim_
2((5)

= tyoncomplexihashfunctiensionMBensionframeseq NMn γ××× dim_
2

dim_
2

(6)

=50*[(Fsize_x-MB_size)*(Fsize_y-MB_size)]*{16*16*[1 (*)+5 (+)]+ 4 (*)+2 (+)}
=978432000 (*)+4824422400 (+)

Practical sequential time counting:),,(φsnTseq =7.2763(s)

2.2 Parallel Implementation of LHMEA

In the parallel implementation, to parallelize an encoder, we divide each reference
frames (which can be I or P frame) into equally sized regions. Current frames are also
divided into non-overlapped regions. These regions are going to be processed in
parallel to increase the encoding speed significantly. Each region is divided into non-
overlapping range blocks. Each region will be sent to corresponding slaves and
generates its own hashtable table. The slave will be alive until encoding finishes.
Slaves will generate its own hashtable and Motion Vectors table, sending MVs table
back to the master. However, there is an upper limit on the number of PEs that can be
used due to the limited spatial resolution of a video sequence. Also a massive spatial

parallel algorithm usually needs to tolerate a relatively large communication over-head.
In our approach of spatial parallelism, load balancing was implemented to ensure an
equal distribution of the frame data among the processors.

Here we state the pseudo code to calculate the hashtable function in parallel. The
function to implement the algorithm is encapsulated in PreComputation()

Parallel Code:
Input: part of reference frame from master
Output: part of hashtable

Step 1: rcode=pvm_upkint (FrameData,Fsize_X*(rows),1); /*Get Data from Master*/
Step 2: /*Give Data from buffer to Reference Frame, */

for(i=0;i< Fsize_X *(rows);i++)
{prevFrame.ref_y[tempy][tempx] = FrameData[i];}

Step 3: For (i=0;i< rows;i++)
Step 4: for (k=0;k< Fsize_x-16; k++){
Step 5: for(iy=0;iy<16;iy++){
Step 6: for(ix=0;ix<16;ix++)

 {calculate sum_xi*yi and sum_yi for each Pixel;}}
Step 7: calculate M and C for each Pixel;}}}

The structure of the algorithm can be demonstrated in the figure 2.
The reference frame are divided into several parts,

owssearchwindPCsNMBwidthframewidthrows +−= _/)__(

are sent to clients.

 Fig. 2. The Parallel Structure of Hashtable

From the pseudo code above, we can get calculation time in theory:
The precomputation complexity is function

paralparalparalparalparalparalparal snsnT φφ ××=),,((7)
The variables inside the function have similar meaning as in sequential function

1, = paraln seqn
2, : frame size, which is whole frame divided by Number_PCs parals

)_(*)_/)__((framelengthowssearchwindPCsNMBwidthframewidth +−
(8)

3, per macroblock. pseudo code decides the complexity of paralφ = seqφ

Start, Allocate processes

Master process (1) Slave process (N)

Interaction, gain setup
information

Initialize environment and
allocate memory

Broadcast setups Scatters
the data of the frames

Gain the current frame data and
reference frame to be encoded

Setup own part of hashtable based on
reference frame . Size:
((Frame_Size_X/N)+window)*
((Frame_Size_Y/N)+window)

Search in own part of hashtable and
build own part of MV table. Size:
(Frame_Size_X/N)*
(Frame_Size_Y/N)

Send MV table to the master process
Collect data for following

process

Finish? Finish?

Video output Kill slaves

End

Fig. 3. Process of parallel LHMEA setup

Using the same example sequences of frames and number of slaves equal to 4, if
we use 2 slaves, each slave will get rows=352/2 + search window=216 for each. If
we use 4 slaves, each slave will get rows=352/4 + search window, 108,128,128,108
for each. We use biggest one to calculate totally time for slaves.

In this case:
When the number of PCs=2:

paralparalparalparalparalparalparal snsnT φφ ××=),,(

=

)()(dim_
2

dim_
2

tyoncomplexihashfunctiensionMBparalensionframeparalparal NMsn γφ ××× (9)

= tyoncomplexihashfunctiensionMB
ensionframe

paral N
PCsN

Mn γ××× dim_
2dim_

2

_
 (10)

=50*[(rows-MB_size)*(Fsize_x-MB_size)]*{16*16[1(*)+5(+)]+4(*)+4(+)}
50*[124*336]*[260(*)+1284(+)]
= 541632000 (*)+2674828800 (+)

Speedup:
),,(

),,(

paralparalparalparal

seqseqseqseq

snT
snT

φ
φ

τ = =

)(2674828800(*) 541632000
)(4824422400(*) 978432000

++
++

=1.8065

Practical sequential time counting:),,(φsnTseq =7.2763(s)

The figure 4& 5 below are Time Spent, Actual Speed Up, Theory Speed Up
comparison for parallel LHMEA based on the 150 Flower Garden Sequences. PSNR
and compression rate remain the same as sequential algorithm [1][2].

Time Cost(s)

6.4012

4.2182

3.3506
2.9001

2.3801 2.3712
1.8728

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Number_PCs

T
im
e
 C
o
st
(
s)

Time Cost(s)

Fig. 4. Time cost decrease with Number of PCs

Speedup Comparison

1

1.5175
1.9105

2.2072

2.6894 2.6996

3.418

1

1.8064
2.1538

2.6666
3.1111 3.1111

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7

Number_PCs

Sp
ee
d

Up

Ra
t
e

Actual Speed Up

Theory Speed Up

Fig. 5. Actual Speed Up, Theory Speed Up comparison

In theory, the speedup should be in linear increasing with number of PCs. The
reason why it does not match a linear model is that we are not sending exact

Frame/Number_PCs data to slaves, instead, we send Fsize_y/Number_PCs plus
search windows size rows data to slaves. Also it is limited by resolution of images.
More data (widthFramesizewindow __2 ××) will be calculated than the

original frame. In theory, the larger number of PCs, the more redundant data. The
curve of speedup-Number PCs will have less descent when the PCs number increases.

Time cost also depends on the speed of PCs. We use a network of workstations
comprises similar workstations linked together by a common network e.g. Ethernet.
When CPU clock is counted, the faster the PC, the less time it takes.

3 Conclusion

In the paper, a parallel Linear Hashtable Motion Estimation Algorithm (LHMEA) and
Hexagonal Search Based Two-Pass Algorithm (TPA) in video compression is
proposed based on the LHMEA. The hashtable is used in video compression and
implemented with parallel computing in motion estimation. The algorithm searches in
the hashtable to find the motion estimator in-stead of by full search algorithm in whole
frame. Then the LHMEA was implemented in parallel algorithm. The speedup of
paralleled LHMEA is compared to the original sequential LHMEA. The parallel video
coding is implemented inside frame rather than between frames. The key point in the
method is to find suitable hash function to produce the hashtable.

References

1. Yunsong Wu, Graham Megson, “Linear Predicted Hexagonal Search Algorithm with
Moments”, ICIC 2005, Part I, Springer LNCS 3644, pp. 136 – 145, (2005).

2. Yunsong Wu, Megson G, “Two-pass hexagonal algorithm with improved hashtable
structure for motion estimation Pro-ceedings.” IEEE Conference on Advanced Video and
Signal Based Surveillance, pp. 564 – 569, (2005).

3. Ce Zhu, Xiao Lin, Lappui Chau, and Lai-Man Po, “Enhanced Hexagonal Search for Fast
Block Motion Estimation”, IEEE Trans on Circuits and Systems for Video Technology, Vol.
14, No. 10, (Oct 2004)

4. Qiang Peng; Yulin Zhao, “Study on parallel approach in H.26L video encoder”,
PDCAT'2003. Proc of the Fourth International Conference, p:834 – 837 Aug. (2003)

5. K. Shen, L. A. Rowe, E. J. Delp. “A Parallel Implementation of an MPEGI Encoder: Faster
Than Real-Time!”. Proc of the SPIE - The International Society for Optical Engineering,
~01.2419p, p:407-418.

6. M. Ribeiro, 0. Sinnen, L. Sousa. “MPEG-4 Natural Video Parallel Implementation on a
Cluster”. 12th (RECPAD2002), Portugal, June (2002).

7. H. Ning, J. T. Li and S. X. Lin. “A Study of Parallelism in MPEG-4 Video Encoder”,
Journal of Computer Engineering and Applications, Vol 38, pp.9-12, July, (2002)

8. Alexis M. Tourapis, Oscar C. Au, Ming L. Liou, “Predictive Motion Vector Field Adaptive
Search Technique (PMVFAST) Enhancing Block Based Motion Estimation”, Proc Visual
Communications and Image Processing, San Jose, CA, January (2001)

