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Abstract. In order to design a high scalable video delivery technol-
ogy for VoD systems, two representative solutions have been developed:
multicast and P2P. Each of them has limitations when it has to imple-
ment VCR interactions to offer true-VoD services. With multicast de-
livery schemes, part of system resources has to be exclusively allocated
in order to implement VCR operations, therefore the initial VoD sys-
tem performance is considerably reduced. The P2P technology is able
to decentralize the video delivery process among all the clients. How-
ever, P2P solutions are for video streaming systems in Internet and do
not implement VCR interactivity. Therefore, P2P solutions are not suit-
able for true-VoD systems. In this paper, we propose the design of VCR
mechanisms for a P2P multicast delivery scheme. The new mechanisms
coordinate all the clients to implement the VCR operations using mul-
ticast communications. We compared our design with previous schemes
and the results show that our approach is able to reduce the resource
requirements by up to 16%.

1 Introduction

Recent advances in high-performance network and video codification technology
have made it feasible for the Video on Demand (VoD) server to implement the
interaction capabilities of a classic Video Cassette Recorder (VCR), offering the
true-VoD service. However, VCR interactions, such as pause or fast forward,
increase the resource requirements in the delivery process and reduce the VoD
system performance.

Certain researchers have proposed delivery policies that take advantage of the
multicast feature. A multicast scheme allows clients to share delivery channels
and decrease the server and network resource requirements. Patching multicast
policy [3], for example, dynamically assigns clients to join on-going multicast
channels and patches the missing portion of video with a unicast channel. The
disadvantage of a multicast solution is the complexity of implementing interac-
tive operations, because there is not a dedicated channel per client.
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In [2], the authors introduce techniques to implement jump operations. The
techniques are able to join the client with another on-going multicast channel (B-
Channels), after a jump operation. The B-Channel has to be delivering the de-
sired new playback point of the client. Emergency channels (I-Channels) are used
in case no such B-Channel exists. Split and Merge (SAM) in [7], is a protocol
to merge I-Channels with B-Channels, reducing the cost of a VCR operation.
In SAM, the merge process is performed by synchronized buffers that are stat-
ically allocated in the central access nodes. The centralized buffer management
of SAM is not scalable (the VCR request blocking probability grows linearly
in accordance with the VCR frequency). In [1], the authors decentralize buffer
among clients to reducing the merging time and the VCR operation resource
requirements. In [4], the authors analyze the optimal number of I-Channels that
a multicast VoD system has to allocate in order to implement VCR operations.
Despite the fact that multicast policies are able to offer true-VoD with VCR,
part of the server resource is, exclusively, allocated for VCR interactions. Con-
sequently, VCR operations considerably reduce the system global performance.

Most recently, the peer-to-peer (P2P) paradigm has been proposed to de-
centralize the delivery process to all clients. Delivery schemes like Chaining, Di-
rectStream o P2Cast [6] are the most representatives. In these schemes, clients
cache the most recently received video information in the buffer and forward
it to the next clients using unicast channels. Other P2P architectures such as
CoopNet and PROMISE[5] assumes that a single sender does not have enough
outbound-bandwidth to send one video and use n senders to aggregate the neces-
sary bandwidth. All previous P2P schemes use unicast communications between
clients producing a high network overhead. Furthermore, since a client just sends
data to only one client, the unicast P2P schemes achieve poor client collaboration
efficiency. In [9], we proposed a P2P delivery scheme, called DDCM. In DDCM,
each client (one peer) is able to send video information to a set of m clients using
only one multicast channel. Furthermore, the DDCM is able to synchronize a
set of clients (n peers) to create one collaboration group to replace the server
in order to send video information to m peers, providing a collaboration mecha-
nism from n-peers to m-peers. In [10], the collaboration mechanisms of DDCM
are incorporated in a distributed VoD architecture with multiple service nodes.
Each service node is able to create an independent P2P system to extend the
global scalability.

In this paper, we propose mechanisms to implement VCR operations in the
DDCM scheme. In our design, any client actively collaborates with the server to
implement the join-back process of VCR operations. The new mechanisms are
able to create local channels to send different playback points of one video. The
jump operations could be implemented by the local channels without requiring
the server resource. In a pause operation, a client extends the service time and,
consequently it also extends the collaboration time. The mechanisms are able
take advantage of pause operations to increase the client collaboration efficiency
and reduce the system resource requirement. The reduced resource requirement
by pause operations is used implement fast-forward and reverse operations. In



our study, we evaluated DDCM performance with new VCR mechanisms, com-
pared with Patching policy. With a normal VOD system workload and with new
VCR mechanisms, the experimental results show our approach is able to reduce
the requirement up to 16%.

The remainder of this paper is organized as follows: we dedicate the section
2 to show the key ideas behind our VCR operation mechanisms. Performance
evaluation is shown in section 3. In section 4, we indicate the main conclusions
of our results and future studies.

2 P2P VoD Architecture to Provide VCR Operations

Our VoD architecture is based on multicast communications and client collab-
orations that decentralize the video information delivery process. Our design
is not a server-less P2P architecture; the server has every video in the service
catalogue. The server is responsible for establishing every client collaboration
process. The collaboration scheme is designed as two policies: Patch Collabora-
tion Manager (PCM) and Multicast Channel Distributed Branching (MCDB).
The objective of PCM is to create multicast channels to service groups of clients,
and allows clients to collaborate with the server in the delivery of portions of
video. The objective of MCDB, however, is to establish a group of clients to
eliminate on-going multicast channels that have been created by PCM.

In the explanation, we assume that video is encoded with a Constant Bit-
Rate (CBR). The video information is delivered with invariable size network
packets and a video is composed by L wideo blocks. Furthermore, we assume
that each client has local buffers to cache a limited number of video blocks.

Different VCR operations, such as slow motion, are considered in [1], but
we concentrate our explanation on jump forward, jump backward, fast forward,
fast reverse and pause which are the most typical VCR operations. We will first
explain the jump operation and then we will comment on other VCR opera-
tions that could be implemented with jumps. The explanation of our new VCR
mechanisms consists of 4 points. We dedicate first two points (Section 2.1 and
2.2) to overview the client collaboration mechanism, third point to presenting
details about the jump operation and the last point to discuss remaining VCR,
operations.

2.1 New Client Admission by PCM

Fig.1a shows the main idea of PCM. When the server is sending video block
3 to the channel Ch3, the client (C4) sends a control message to the server,
indicating the video of interest and the size of the local buffer. The PCM tries to
find an on-going multicast channel that is sending the requested video to service
the client. Only on-going multicast channels (Ch3) with offset (O(C3h)) smaller
than client-buffer size could be used to service the client request. The O(Ch3) of
channel Ch3 is the number of the video block that the channel Ch3 is currently
sending. The multicast channel is called Complete Stream. The client will not
receive the first portion of the video from the Complete Stream, since these
video blocks (1, 2 and 3) have already been delivered by the server; therefore the



Server

Fig. 1. a) PCM Collaboration Process. b)MCDB Collaboration Process

server needs another channel to send the first portion of the video (the channel
is called Patch Stream). In order to create the Patch Stream, the server finds a
collaborator and requests the client’s collaboration. The collaborator(C3) has to
have the desired video blocks and enough bandwidth to create the Patch Stream.
If there is no any available collaborator, the server creates the Patch Stream
using server resources. Finally, the client joins the Complete Stream, establishes
communication with the collaborator and starts receiving video blocks.

In the establishment of client collaboration by PCM, the policy needs infor-
mation about clients’ availability for collaboration. In our design, the server uses
a table structure (Collaborator_Table) to register the information about wvideo
blocks that are cached by each client in its buffer. Each client is responsible
for announcing their availability to collaborate with server. The announcement
message is sent only once after the client admission or after a VCR operation;
the network overhead is therefore negligible.

2.2 Branching Process of MCDB Policy

Fig.1b shows the main idea behind the MCDB. The MCDB periodically checks
the Collaborator_Table in order to find out if there are enough collaborators to
replace some on-going multicast channels. Every channel having another channel
that is sending the same video, but with a larger offset, is a candidate to be
replaced by MCDB. The MCDB replaces an on-going multicast channel (Ch2)
with a local multicast channel Ch2. In order to create the local channel, a group
of collaborative clients are synchronized to cache video blocks from another
multicasting channel (Chl). The cached blocks are delivered by the collaborative
clients to generate the channel Ch2. When Ch2 is replaced by Ch2, we say that
Ch2 is branched from Chl and Ch2 is a branch-channel of Chl.

In the example of Fig.1b, we have two channels (Chl and Ch2) that are
separated by a gap of 2 video blocks®. In order to replace channel Ch2, MCDB
selects clients C1 and C2 to create a group of collaborators. Clients C1 and C2
are both able to cache 2 blocks and a total of 4 video blocks can be cached by

3 The separation or gap (G(Ch2,Chl)) between two channels is calculated as
O(Ch1) — O(Ch2), being O(Ch1) > O(Ch2).



E Ch1:30 4 E Ch1: 30, E Chl:30 4
H erver H

Servel \ H Serve, W
]

Collaoratori
Ch2: 20

Cc2

=

!
)
Cc1—»|17]

Ch4: 12}
h3:10_: Ch3: 10 : Server cp3. 10‘5

a) ' b) : o)

Fig. 2. Jump Operation: Serviced by a) the Client Buffer. b) by PCM. c¢) by MCDB.

these two collaborators. The C1 caches every block of C'hl whose block-number
is 4i+1 or 4i + 2, being i = [0..L/4 — 1]. For example, C1 has to cache blocks 1,
2, 5, 6 and so on. C2 caches every block of C'’hl whose block-number is 47 4 3 or
4i+4 (3,4, 7, 8 and so on). All the cached blocks have to be in the collaborator’s
buffer for a period of time. In this case, the period of time is the playback time
of 2 video-blocks. After the period of time, the cached blocks are delivered to
channel Ch2 which is used to replace Ch2. It is not difficult to see that the
MCDB is able to create multiple local multicast channels with different offsets
to collaborate the delivery process of several points of a video. In the case of
Fig.1b, the offset of the local multicast channels (Ch2) is 2 video-blocks lower
than Chl’s.

In the branching process, two parameters are determined by the MCDB: 1)
The client collaboration buffer size (Bc;,). It is the buffer size of client C; used
by MCDB. 2) Accumulated buffer size (BL) is the total size of the collaborative
buffer (3 . coq Bei, being CG the group of clients). The value of these two
parameters is determined by MCDB under 2 constraints: a) A client cannot use
more buffer than it has. b) A client only uses one channel in the collaboration
process. For more details, see [9].

2.3 Jump Forward/Backward Operation

The Fig.2a shows how the server delivers minute 30 of a video with a multicast
channel (Ch1). The branch-channel (Ch2) is created by MCDB and is delivering
minute 20 of the video. The local multicast channel (Ch3) is branched from Ch2.
There are 3 situations depending on the new playback position after a jump.

Situation 1: The client wants to jump to a position whose information is
already in the client buffer. In Fig.2a, client C1 is receiving information from
Ch2 and has cached video information from 17 to 20 in the buffer. Client C1
is playing minute 17 when it performs a jump forward operation to minute 19.
In this case, the video information in the buffer is enough to perform the jump
operation. The client skips minute 17 and 18 and immediately starts playing
minute 19.

Situation 2: In this case, the information in the buffer is not able to perform
the jump operation, so the client contacts with the server and the server uses the



PCM policy to service the jump operation. The PCM policy finds an on-going
multicast channel in which the offset is bigger than the new playback point, and
finds a collaborator to send the Patch Stream. Fig.2b shows the delivery process
after the jump forward operation of C2 to minute 27. In this example, the client
will join multicast Chl to receive information from minute 30. A collaborator
will send the video of minute 27, 28 and 29. If the server is not able to find a
collaborator, the server creates a unicast channel to deliver the Patch Stream.

Situation 3: In this case, the PCM policy is not able to service the client
with a new playback position. The server opens a new multicast channel to send
the video information and triggers the MCDB policy. The MCDB policy forms
a new collaborative group and the new multicast channel will finally be replaced
by a local branch-channel. Fig.2c shows C3’s jump backward action to minute 12.
Notice that the PCM is not able to service the jump action because we assumed
that C3 is not able to cache more than 5 minutes of video.

In three situations, a client could need the portion of buffer that is currently
collaborating with the server. In such a case, the client notifies the server and
stops the collaboration. Furthermore, if the buffer is not completely used in the
VCR operation, the client starts caching the video information from the new
playback point. Once the buffer is filled, the client sends a control message to
the server to announce the new collaborative buffer capacity.

2.4 Pause and Fast Forward/Reverse Operations
The behaviour of the pause operation is quite similar to a jump. In this case,
the new playback position is determined by the time that the client makes the
pause. During a pause, the client continues buffering the video information. If
the client is collaborating with the server, the client stops the collaboration and
use all the buffer to cache more video information. However, the client-buffer
could eventually overflow. In such a situation, the client temporarily stops the
service. After the pause operation, the client consumes all the video blocks in
the local buffer and then performs a jump action to the point where the video
information is no longer in the local buffer. The jump action is then managed
as a normal jump operation.

In order to implement fast forward and reverse, we assume that the server has
a VCR-version for each video. The VCR-version of a video requires the same bit-
rate as a normal video but with a shorter playback time and lower frame rate. In
the case of fast reverse, the video is encoded in the reverse order. The advantage
of this technique is its flexibility to implement any speed of fast playback and it
does not need more client network incoming bandwidth. However, it has more
storage requirements. When a client issues a fast forward, the client contacts with
the server to start the delivery process of the VCR-version of the video. After
the VCR operation, the new playback point of the normal video is calculated
and the client issues a jump operation.

3 Performance Evaluation

In this section, we show the simulation results. We have designed and imple-
mented an object-oriented VoD simulator. Patching and PCM+MCDB with



new VCR mechanisms are incorporated in the simulator that is also used in [10].
The experimental study, we evaluated VCR operations’ influence and calculated
the resource requirements to offer a true-VoD service. We took into account dif-
ferent type as well as the frequency and the duration of VCR operations. The
comparative evaluation is based on the Server Stress and Client Stress. They
are defined as the average amount of server and client bandwidth (Mbps) used
to service all client requests.

3.1 Workload and User Behaviour Model

We assumed that the inter-arrival time of client requests follows a Poisson ar-
rival process with a mean of %, where ) is the request rate. We used Zipf-like
distribution to model video popularity. The probability of the i*"* most popular

video being chosen is — L — where N is the catalogue size and z is the skew
iz T

Z j=1 3%
factor that adjusts the prz)bability function. For the whole study, the default
skew factor and the video length were fixed at 0.729 (typical video shop distri-
bution) and 90 minutes, respectively. We assumed that each video was encoded
in MPEG-2 and requires 1.5 Mbps and the service time is fixed at 24 hours. We
assumed that each client is able to cache 5 minutes of the MPEG-2 video.
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Fig. 3. Client Behaviour Model

We assumed that the client interaction behaviour follows the model in Fig.3
which was used in [8]. The model does not try to reflect reality but includes
the most common VCR operations and is able to capture two parameters: 1)
VCR operation frequency. 2) the duration of each VCR operation. The VCR
operation frequency is modelled by P;’s and the duration is evaluated by M;’s.
The value of Miff and W indicates the average time, in seconds, that a client
uses Fast Forward/Reverse. The amount of original video, in units of time, that
is visualized in a Fast Forward/Reverse action depends on the fast visualization
speed and the duration of the VCR operation. We assumed that the speed of
any fast visualization is 2X. In the case of Jump Forward and Jump Backward,
the value of M indicates the average length of video, in seconds, that will be
skipped. Following this model, a client starts to visualize the video during a
mean of Mp,, seconds, after this, the client issues a VCR operation with a
probability of 1 — P4, or continues with playback. We assumed that the client




always returns normal playback after a VCR action and that the duration of

each VCR action is uniformly distributed in the interval [M; x 0.5 — M; x 1.5].

3.2 VCR Interaction Effect

In this section, we evaluate PCM+MCDB performance with VCR operations. All
the probabilities (P;) of the clients behaviour model are fixed at 0.1 except Ppqy,
which is 0.5. The time of each VCR interaction is set at 5 minutes, including
playback. With these values of P; and M;, each client could perform an average
of 18 VCR operations during playback. We changed the client request rate from
1 to 40 requests per minute. The video catalogue is fixed at 200 videos.
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Fig. 4. VCR Interaction Effect on: a) Server Stress. b) Client Stress.

Fig.4a shows the server stress in servicing 200 videos. Without any VCR
operation, the Patching policy demands 1818Mbps in order to serve 30 re-
quests per minute. Compared with a Patching policy, PCM+MCDB reduces
it by 29% (1282Mbps vs. 1818Mbps). With VCR operations and with Patching,
the server stress increase up to 3117Mbps. With our mechanism, the server stress
is reduced to 2654Mbps; 15% lower.

Fig.4b shows the client stress generated by PCM+MCDB policy. The Patch-
ing policy does not introduce any local overhead. With VCR operation, the
client stress of our approach reduce about only 59Mbps(10%).These results in-
dicate that the VCR operations do not affect the client collaboration capacity
to decentralize the system load. The explanation for this result is:

1. The pause operations increase the service time of clients and, consequently,
the time of the collaboration.

2. With jump forward operations, client service time is lower, so the client will
reduce the collaboration time. However, part of the video information is also
skipped, requiring less server resource.

3. In jump backward operations, the increase in server resource due to the re-
play of part of the video information could be rewarded with an increase in
collaboration time.

4. The same explanation of jump forward/backward is applicable to fast for-
ward /reverse. Even though, these VCR operations require extra server stress
to send VCR-version of video.



3.3 VCR Interaction Frequency and Duration Effect

In this section, we evaluate the effect of VCR frequency and duration on server
stress. We set the client request rate at 20 requests per minute.
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Fig. 5. a) VCR Interaction Probability Effect. b) VCR Interaction Duration Effect.

Fig.5a shows server stress in accordance with the P;s value. Different lines
indicate the different durations of each VCR operation (5, 10 and 15 minutes).
The value of P; determines the number of fast forward/reverse operations that
introduce extra server stress. As we can see, the server stress increases accord-
ing with the VCR frequency. However, the increase also depends on the VCR
durations. With M; = 15Min the value of P; does not affect the server stress.
These results suggest that when the duration of fast view operations is long, our
approach is able to create client collaborations to decentralize these operations.

Fig.5b shows server stress in accordance with the M;s value. Different lines
indicate different VCR interaction frequencies. The duration of VCR operations
affects the server resource requirements for implementing VCR operations and
client collaboration times. On the one hand, a longer duration of VCR operations
means that the server has to send more VCR-version of video information to
implement fast forward and reverse. On the other hand, a longer duration of
a pause operation increases the client collaboration time, thus reducing server
stress. As we can see in Fig.5b, there are two different tendencies. The first
tendency is when the duration is longer than buffer size. In this case, a longer
duration means less server stress and suggests that the VCR mechanism is able
to efficiently use the increase in client collaboration time to reduce server stress.
The second tendency happens with M; < 5Min. In this case, a longer duration
increases server stress because the short jumps could be implemented with local
buffer of the clients.

4 Conclusions and Future Works

We have proposed and evaluated distributed VCR mechanisms to provide true-
VoD in a P2P architecture. Our mechanisms enable clients to efficiently collab-
orate with VoD servers to implement VCR operations.



Offering multiple videos, experimental results show that PCM+MCDB P2P
delivery scheme achieves a reduction in server resource of up to 29%, compared
with Patching. Several common VCR operations are analyzed in the experimen-
tal study. The experimental results show our mechanisms are very suitable to
implement VCR operations with long durations because PCM+MCDB P2P de-
livery scheme is able to take advantage of the extra client collaboration time,
introduced by VCR operations. Comparing with the Patching policy, our mech-
anisms are able to reduce server resource requirements up to 16%.

We have started several future research projects. First, we are developing a
VoD system prototype with the P2P VCR mechanisms. Even though the par-
tial experimental results in laboratory with the prototype have demonstrated
the validity of the simulation results, we have to continue working on its im-
plementation. Secondly, we are studying a mechanism to encourage clients to
collaborate with the server even they are not playing any video.
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