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Abstract. Increasingly, a number of applications across computer sciences
and other science and engineering disciplines rely on, or can potentially ben-
efit from, analysis and monitoring of data streams. We view the problem of
flexible and adaptive processing of distributed data streams as a grid com-
puting problem. In our recent work, we have been developing a middleware,
GATES (Grid-based AdapTive Execution on Streams), for enabling grid-
based processing of distributed data streams.

This paper reports an application study using the GATES middleware sys-
tem. We focus on the problem of intrusion detection. We have created a
distributed and self-adaptive real-time implementation of the algorithm pro-
posed by Eskin using our middleware. The main observations from our ex-
periments are as follows. First, our distributed implementation can achieve
detection rates which are very close to the detection rate by a centralized
algorithm. Second, our implementation is able to effectively adjust the adap-
tation parameters.

1 Introduction

Increasingly, a number of applications across computer sciences and other science
and engineering disciplines rely on, or can potentially benefit from, analysis and
monitoring of data streams. In the stream model of processing, data arrives continu-
ously and needs to be processed in real-time, i.e., the processing rate must match the
arrival rate. There are several trends contributing to the emergence of this model.
First, scientific simulations and increasing numbers of high precision data collection
instruments (e.g. sensors attached to satellites and medical imaging modalities) are
generating data continuously, and at a high rate. The second is the rapid improve-
ments in the technologies for Wide Area Networking (WAN). As a result, often the
data can be transmitted faster than it can be stored or accessed from disks within
a cluster.

The important characteristics that apply across a number of stream-based ap-
plications are: 1) the data arrives continuously, 24 hours a day and 7 days a week,
2) the volume of data is enormous, typically tens or hundreds of gigabytes a day,
and the desired analysis could also require large computations, 3) often, this data
arrives at a distributed set of locations, and all data cannot be communicated to a
single site, 4) it is often not feasible to store all data for processing at a later time,
thereby, requiring analysis in real-time.

We view the problem of flexible and adaptive processing of distributed data
streams as a grid computing problem. We believe that a distributed and networked
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collection of computing resources can be used for analysis or processing of these
data streams. Computing resources close to the source of a data stream can be
used for initial processing of the data stream, thereby reducing the volume of data
that needs to be communicated. Other computing resources can be used for more
expensive and/or centralized processing of data from all sources.

In our recent work, we have been developing a middleware for enabling grid-based
processing of distributed data streams [1,2]. Our system is referred to as GATES
(Grid-based AdapTive Execution on Streams). One of the important characteristic
of this middleware is that it can enable an application to achieve the best accu-
racy, while maintaining the real-time constraint. For this, the middleware allows
the application developers to expose one or more adaptation parameters. An adap-
tation parameter is a tunable parameter whose value can be modified to increase
the processing rate, and in most cases, reduce the accuracy of the processing. Ex-
amples of such adaptation parameters are, rate of sampling, i.e., what fraction of
data-items are actually processed, and size of summary structure at an intermediate
stage, which means how much information is retained after a processing stage. The
middleware automatically adjusts the values of these parameters to meet the real-
time constraint on processing, through a self-adaptation algorithm. Self-adaptation
algorithms currently implemented in the middleware are described in our earlier
papers [1,2].

This paper reports an application study using the GATES middleware system.
We focus on the problem of intrusion detection, which a widely studied problem
in computer security and data mining [3]. We have created a distributed and self-
adaptive real-time implementation of the algorithm proposed by Eskin [4]. This
implementation generates local models using data received at each node, and then
combines these local models to create a global model. We use the functionality of
GATES in two different ways. First, as network records typically arrive at multiple
locations, a flexible distributed implementation can avoid high communication costs
associated with a centralized implementation. Second, as data arrival rates can vary
significantly, it is important for an intrusion detection implementation to choose the
right trade-off between accuracy and processing rate, to continue to meet real-time
constraints.

We have carried-out a number of experiments to evaluate our distributed imple-
mentation. The main observations from our experiments are as follows. First, our
distributed implementation can achieve detection rates which are very close to the
detection rate by a centralized algorithm. Second, our implementation is able to
adjust the adaptation parameters. When the rate of data arrival is low, it chooses
a small value of the adaptation parameter, EM convergence threshold, resulting in
the best detection rate. On the other hand, when the data arrival rate is very high,
it chooses a larger value of this parameter, resulting in somewhat lower accuracy,
but still maintaining the same rate of processing.

2 Anomaly Detection Algorithm

Intrusion detection problem has been extensively studied in recent years. There
are many different approaches for modeling normal and anomalous data, based on
which the detections are carried out. A survey and comparison of anomaly detection
techniques can be found in[3].



Intrusion detection on GATES 3

Input: k, # of EM clusters, D = {d1,da,...,dn}, set of n 10 — dimentional points,
A, probability for the set of intrusions, ¢, anomaly detection threshold.
Output: intrusion detection result.
var
M; = probability distribution for normal elements at time t
A; = probability distribution for anomalous elements at time t
C: = number of intrusions detected at time t
begin
M; = GMM generated by Expectation Maximization (EM) algorithm on D
A; = a uniform distribution
Logistic Regression (LR) on D using 3 categorical attributes
fort =1ton
LL(D) = [Mflog(1 =X\ + 37\ log(Pare (i) + |AdllogO) + 3, log(Pai(w:)
My = My—1 — xy
A = A U Tt
if (LL; — LL;—1) > ¢

then
Cy=Ct +1
else
My = M1
Ay = At

if (the result says 0 but LR says 1)
then d; is intrusion
else if (the result says 1 but LR says 0)
then d; is normal
else d; remains the same from the result
endfor
end

Fig. 1. Pseudo-code for the Anomaly Detection Algorithm

Our goal in this paper is to demonstrate that distributed and adaptive versions
of anomaly detection can be implemented using our middleware, GATES. For this
purpose, we have chosen an existing algorithm by Eskin [4]. One reason for choosing
this algorithm is that many other anomaly detection approaches require training
models over clean data. This can lead to problems since online data is not clean
and once the anomalies hidden in the data have been detected as normal, further
detections will also fail. Eskin’s algorithm, in comparison, has the advantage that it
can identify anomalies without clean data.

We now briefly describe this algorithm. This method identifies anomalies buried
within the dataset. An assumption is made that the number of normal elements
in the data set is significantly larger than the number of anomalous elements. The
pseudo-code for the algorithm is shown in Figure 1. We use Gaussian Mixture Model
(GMM) to represent the distribution of the normal elements in the dataset. This is
because it has the property of being able to represent any distribution as long as
the number of Gaussians in the mixture is large enough[5]. Further details of the use
of EM algorithm to generate GMM can be found in [6]. Once we have the model,
anomaly detection begins with first assuming every element is normal. Motivated by
the model of anomalies, we use GMM to test each element to determine whether it is
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an intrusion or not. This is based on the difference of the loglikelihood by treating it
as a normal element and as an intrusion. As compared to Eskin’s original algorithm,
we also use logistic regression[7] to further improve the performance of the algorithm.

3 GATES Middleware and Distributed Anomaly Detection
Implementation

In this section, we initially describe the GATES middleware system, and then de-
scribe our distributed anomaly detection implementation.

3.1 Overview of the GATES System

GATES (Grid-based AdapTive Execution on Streams) is a middleware that supports
the flexible and adaptive analysis of distributed data streams. A key goal is to able
to allow the most accurate analysis while still meet the real-time constraint. For this
purpose, GATES applies self-adaptation algorithm. In summary, GATES has the
following features:

— It is designed to use the existing grid standards and tools to the extent possible.
Specifically, GATES is built on the Open Grid Services Architecture (OGSA)
model and uses the initial version of Globus Toolkits (GT) 3.0’s API functions.
Therefore, all components of GATES, including applications, exist in the form
of Grid services.

— It supports distributed processing of one or more data streams, by facilitating
applications that comprise a set of stages. For analyzing more than one data
stream, at least two stages are required. Each stage accepts data from one or
more input streams and outputs zero or more streams. The first stage is applied
near sources of individual streams, and the second stage is used for computing
the final results. However, based upon the number and types of streams and the
available resources, applications can also take more than two steps. GATES’s
APIs are designed to facilitate specification of such stages.

— It flexibly achieves the best accuracy that is possible while maintaining the real-
time constraint on the analysis. To do this, the system monitors the arrival rate
at each source, the available computing resources and memory, as well as the
available network bandwidth. Then it automatically adjusts the accuracy of the
analysis by tuning the parameter within a certain range specified by the user.

The self-adaptation algorithm used in GATES has been evaluated using a num-
ber of stream-based data mining applications, including counting samples and find-
ing frequent itemsets in distributed data streams, using data stream processing for
computational steering, and clustering evolving data streams[1,2]. Results from the
evaluation show that GATES is able to self-adapt effectively, and achieve the highest
accuracy possible while maintaining the real-time processing constraint, regardless
of the resource availability, network bandwidth, or processing power.

3.2 Real-time Distributed Intrusion Detection on GATES

The use of GATES middleware can provide two advantages in implementing intru-
sion detection. First, it can allow a distributed implementation. Many scenarios for
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intrusion detection involve data arriving at multiple locations. One possible solution
for handling such cases is to forward all data to a single node, however, this can
result in high communication and computation overheads. Second, it can allow for
an adaptive implementation, which can trade-off rate of processing and accuracy.
Therefore, it can allow the implementation to meet real-time constraints, and allow
best accuracy for the given data arrival rate and available computational resources.

S Combiner

eyep.

Producer Producer

Fig. 2. Communication Topology for the Distributed Intrusion Detection Application

Figure 2 shows the hierarchical structure of the real-time distributed intrusion
detection application built on GATES. Our implementation is composed of three
stages. The entire procedure of the intrusion detection is divided into a data prepro-
cessing stage, a stage which performs local model generation and detects intrusions,
and a global model generation stage. We now describe each of these stages in more
details.

Producer is simply the data source, where some initial preprocessing can be per-
formed. We chose 10 out of 41 attributes (7 continuous and 3 categorical) for each
network data record. The attributes with the most significant variance are included
as they most likely to contain more information for distinguishing intrusions from
normal data. The filtered data is sent to the second stage.

Collector first collects the data from the Producer and applies the EM algorithm
to generate local GMMs. These are then used in the anomaly detection algorithm
we described earlier, for detecting local intrusions. Another function of this stage
is to forward samples, i.e. normal data points which have been detected as local
intrusions, to the final stage. The goal is to allow the global model to capture their
distribution. Finally, once the global model is generated, it is sent back to this stage.
Here, the anomaly detection algorithm is applied again to get the global intrusions.

Note that the global model is improved iteratively, i.e., we approach closer to
the true probability distribution after each iteration, and have greater accuracy in
intrusion detection.

Combiner generates the global model based on the local model parameters and
samples. For GMM, the local model parameters used are the mean vector, covariance
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matrix for each Gaussian model, and their weights contributing to the mixture. We
use Kullback-Leibler(KL)-divergence [8] as the measurement to decide how similar
two distributions are. KL-divergence is the most natural comparison measure since
it is linearly related to the average loglikelihood of the data generated by one model
with respect to the other. It is also a well-behaved differentiable function of the
model parameters, unlike the other measures. Hence, we combine two local models
if the KL-divergence between them is below a user-defined threshold, in which case,
a modification has to be made to the global model. Otherwise, new models would
be added in. The Combiner sends back the global model to the Collector to end the
processing associated with each iteration.

As we stated earlier, GATES uses programmer declared adaptation parameters
to achieve self-adaptation. In our implementation, we have used two different adap-
tation parameters. The first parameter is the rate of sampling between the Collector
and the Combiner. If the Collector sends a very large number of samples to the Com-
biner, it increases the communication as well as the computations at the Combiner
stage. On the other hand, a very small number of samples will result in a less ac-
curate global model. Similarly, the convergence threshold for the EM algorithm also
impacts the accuracy and the processing rate. The smaller the value of this param-
eter, the more accurate local model we can get, which also leads to a better global
model. However, a small value of this parameter also results in more computations
for the EM algorithm to converge, making the Collector overloaded.

Note that the self-adaptation algorithm in GATES can only adjust one parameter
at a time. Thus, in our experiments, we keep one of them fixed, while allowing the
middleware to adjust the other.

4 Experimental Evaluation

This section presents results from the real-time distributed intrusion detection appli-
cation built on GATES. We had several goals in our experiments. First, we wanted
to demonstrate that distributed implementations can achieve high accuracy. Sec-
ond, we wanted to evaluate the middleware’s ability to adjust the two adaptation
parameters, under different conditions. Finally, we also evaluate the improvements
in accuracy achieved through logistic regression, which is an area where we had
improved Eskin’s algorithm.

The dataset we used is KDD-CUP’99 Network Intrusion Detection data, which
contains a wide variety of intrusions simulated in a military network environment.
It consists of approximately 4,900,000 network connection records with more than
80% as intrusions. Each connection record has 41 attributes, including categorical
and continuous ones. According the requirement from the anomaly detection algo-
rithm[4], the majority distribution should have at least 90% of the entire dataset.
Therefore, we randomly duplicate the normal data and choose part of the intrusion
data, which result in a data set with 335,892 records in total and only 9.04% are
intrusions. Each type of intrusion is evenly distributed and comes in a burst.

We conducted our experiments in a Linux cluster. Each node has a Pentium
ITT 933MHz CPU with 512MB of main memory and 300GB local disk space. The
interconnection network is a switched 100Mb/s Ethernet. In all our experiments, the
number of mixtures used in the centralized anomaly detection algorithm is 3 and
the distributed version also results in the same number of mixtures.
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4.1 Experiment 1: Adjustable EM threshold vs. Fixed sampling rate
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Fig. 3. Adaptation of EM Threshold with Different Data Production Rates

In this experiment, we fix the sampling rates at certain values and let GATES
adjust the EM threshold. The data production (arrival) rates vary from 100kb/s,
80kb/s, 50kb/s, 30kb/s to 10kb/s. Figure 3 shows how the EM threshold parameter
converges to the ideal values with different data production rates. As expected, when
the production rate is small, EM threshold converges to a smaller value since it can
have enough time to perform the EM algorithm without being overloaded from
its upstream. Also notice that the smallest EM threshold GATES converges to is
0.000012, which is very close to the EM threshold used in the centralized algorithm,
0.00001.

The detailed results, including processing time, detection rate, and false positive
rate, are shown in Table 1. A centralized version, with no time constraints, takes
923 seconds, and is able to detect 97.63% of the intrusions. It also has a 8.08% rate
of false positives. The best accuracy from the distributed version is 95.36%, which
is quite close to the accuracy of the centralized version. The best accuracy obtained
under other (higher) data rates is at least 91.38%, which shows that the middleware
is able to tradeoff processing rates and accuracy effectively.

Two other observations can be made from this table. First, the false positive
rate is always a fixed fraction of the detection rate, i.e., the higher the detection
rate, the higher is the false positive rate. The false positive rate is not impacted
by whether the implementation is centralized or distributed, or the value of the
adaptation parameters. Second, the trends between the choice of the sampling rate
and detection rate are quite interesting. Across different data production rates, best
accuracy is achieved when sampling rate is 20%. Both lower and higher values of
sampling rates result in lower detection rates. The reason is as follows. When the
sampling rate is higher, the Combiner takes a longer time to compute global models.
As a result, the collector operates with an older model for a longer duration of time.
On the other hand, when the sampling rate is lower, a small number of samples at
the Combiner results in lower quality global models.
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Table 1. Intrusion Detection Results

Exe. time(sec) | Detection rate | False positive

Centralized 923.0 97.63% 8.08%
Sample rate=40% 667.8 82.79% 5.95%
Distributed | Sample rate=20% 637.2 91.38% 7.39%
Sample rate=16% 618.7 86.48% 6.35%
Producing rate | Sample rate=13% 609.8 83.71% 6.04%
= 100kb/s Sample rate=10% 602.1 82.57% 5.83%
Sample rate=40% 710.1 84.72% 6.22%
Distributed | Sample rate=20% 698.9 92.09% 7.57%
Sample rate=16% 674.2 88.69% 6.83%
Producing rate | Sample rate=13% 653.3 86.21% 6.32%
= 80kb/s Sample rate=10% 642.9 84.58% 6.17%
Sample rate=40% 766.2 88.07% 6.88%
Distributed | Sample rate=20% 738.6 92.44% 7.63%
Sample rate=16% 708.1 90.71% 7.19%
Producing rate | Sample rate=13% 692.6 89.00% 6.95%

= 50kb/s Sample rate=10% 680.4 87.85% 6.%
Sample rate=40% 795.6 90.20% 7.22%
Distributed | Sample rate=20% 766.7 94.63% 7.78%
Sample rate=16% 732.1 93.13% 7.67%
Producing rate | Sample rate=13% 719.8 91.38% 7.55%
= 80kb/s Sample rate=10% 706.9 90.10% 7.10%
Sample rate=40% 862.1 93.74% 7.72%
Distributed | Sample rate=20% 798.9 95.36% 7.90%
Sample rate=16% 762.4 95.16% 7.87%
Producing rate | Sample rate=13% 741.8 94.29% 7.82%
= 10kb/s Sample rate=10% 728.3 93.50% 7.66%

Table 2. Improvements Through Logistic Regression
without L.R. with L.R.
Detection Rate | False Positive | Detection Rate | False Positive

Centralized 92.36% 8.35% 97.63% 8.08%
Producing rate=100kb/s 86.45% 7.64% 91.38% 7.09%
Producing rate=80kb/s 87.12% 7.82% 92.09% 7.57%
Producing rate=50kb/s 87.45% 7.88% 92.44% 7.63%
Producing rate=30kb/s 89.52% 8.04% 94.63% 7.78%
Producing rate=10kb/s 90.21% 8.12% 95.36% 7.90%
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We also now evaluate the benefits of using logistic regression. We have imple-
mented logistic regression using three categorical attributes. The results are shown
in Table 2. The detection rate increases from 92.36% to 97.63% with the false posi-
tive dropping from 8.35% to 8.08% for the centralized version. Comparing the best
results from the real-time distributed intrusion detection implementation, we can
get 95.36% as the detection rate and 7.90% as the false positive rate, compared with
90.21% and 8.12% without using the logistic regression, respectively. The overall
observation is that once a data record fails anomaly test, i.e. either normal data is
detected as intrusion or an intrusion is detected as being normal, the categorical at-
tributes, namely, the protocol type, the service information, and the flag, can correct
the detection results.

Two other observations from our implementation are shown through Figures 4
and 5. Figure 4 shows that as the processing proceeds, we are having smaller KL-
divergence comparing to the true model, namely, the global model generated from
our algorithm is closer to the true model, as expected. As we can see from the
Figure 5, we are getting better detection rates for each processing round. We have
used a ROC curve in this Figure, which is a graphical representation of the false
positive rate versus the detection rate. The reason for our observation is that we
have more data to generate the global model.
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Fig.4. KL-divergence of the Global Fig.5. ROC for the Intrusion Detection
Model Compared to the True Model Application

4.2 Experiment 2: Adjustable sampling rate vs. Fixed EM threshold

The other experiment we carried out involved a fixed EM threshold, and sampling
rate as the adaptation parameter. Again, under different data production rates, we
observed how the middleware is able to converge to a stable value of the adaptation
parameter. The results are shown in Figure 6. As expected, higher data production
levels result in a smaller sampling rate, and lower data production levels result in a
higher sampling rate.
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Fig. 6. Adaptation of Sampling Rate with Different Production Rates

5 Conclusion

This paper has reported an application study using the GATES middleware, which
has been developed for supporting grid-based streaming applications. We have fo-
cused on the problem of intrusion detection. We have created a distributed and
self-adaptive real-time implementation of the algorithm proposed by Eskin using
our middleware. The main observations from our experiments are as follows. First,
our distributed implementation can achieve detection rates which are very close to
the detection rate by a centralized algorithm. Second, our implementation is able to
effectively adjust the adaptation parameters.
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