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Abstract. This paper addresses the problem of efficient collective
scheduling of file transfers requested by a batch of tasks. Our work tar-
gets a heterogeneous collection of storage and compute clusters. The goal
is to minimize the overall time to transfer files to their respective desti-
nation nodes. Two scheduling schemes are proposed and experimentally
evaluated against an existing approach, the Insertion Scheduling. The
first is a 0-1 Integer Programming based approach which is based on the
idea of time-expanded networks. This scheme achieves the minimum to-
tal file transfer time, but has significant scheduling overhead. To address
this issue, we propose a maximum weight graph matching based heuristic
approach. This scheme is able to perform as well as insertion scheduling
and has much lower scheduling overhead. We conclude that the heuristic
scheme is a better fit for larger workloads and systems.

1 Introduction

Data centers consisting of collections of storage and compute clusters provide
a viable environment for hosting large scientific datasets and providing analy-
sis services. Scientific datasets are typically stored as a set of files, distributed
across multiple storage nodes. Data analysis is carried out by downloading sub-
sets of datasets from storage systems to compute systems. Analysis tasks are
then executed on local data. A data center should be able to support efficient
execution of batches of analysis tasks, in which a task requests a set of files and
the sets of files requested by different tasks may overlap (i.e., tasks may share
files). Efficient execution of such a batch of tasks involves addressing two key
problems. The first problem is the mapping of tasks to compute nodes such that
the volume of overall data transfer is minimized. The second one is the trans-
fer of files from storage nodes to compute nodes. The staging of files should be
carefully scheduled and executed to minimize the contention, while accounting
for the topology and the heterogeneity of bandwidths in the system.
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Fig. 1. Scheduling problem.

In our earlier work, we looked at the problem of scheduling and mapping a
batch of data-intensive tasks [1]. This paper addresses the file transfer schedul-
ing problem, given a mapping of tasks to nodes. In other words, it focuses on
the second phase of the overall problem. We propose two approaches. The first
one formulates the problem using 0-1 Integer Programming (IP) by employing
the concept of time-expanded networks [2]. The second approach employs max-
weighted graph matching to yield a schedule which tries to minimize contention
and maximize the parallelism in the system. We carry out an experimental eval-
uation of these algorithms, comparing them against the insertion scheduling
heuristic [1]. Our results show that the IP formulation results in better sched-
ules, but introduces high scheduling overhead. The second approach performs
as well as the insertion scheduling and also takes much less time to compute a
schedule thereby making it a good choice for larger workloads and systems.

2 Problem Definition and Related Work

Problem Definition: We target batches consisting of independent sequential
tasks. Each task requests a subset of files from a dataset and can be executed
on any of the compute nodes. The files required by a task should be staged to
the node where the task is allocated. We assume a single port model wherein
multiple requests to the same node are serialized. A heterogeneous multi-cluster
environment consisting of compute and storage nodes is represented by graph
G = (V, E), referred to here as a platform graph. Here, V is the set of nodes and
E is the set of edges. We assume that the graph G is connected. We employ a
store and forward model of file transfer which implies that if a file f� needs to
be transferred from a node vi to a non-adjacent node vj , the file is routed along
one of the multiple possible paths between vi and vj . A copy of the file is left
in each intermediate node thereby increasing the number of replicas of each file
leading to potentially higher parallelism for other requests.

The input to the scheduler is a set of two tuples R = {< f�, vi >} represent-
ing that the file f� needs to be transferred to the node vi . The initial mapping of
files to nodes (storage and/or compute nodes, if the file has been replicated on a



compute node for a previous request) is represented by the set D = {< f�, vj >} ,
which means that the file f� is initially present on the node vj . Our objective is
to find and efficiently execute a schedule that will minimize the total file trans-
fer time. The schedule comprises of a set of four tuples < vi, vj , f�, t > , each
tuple consisting of a source node, a destination node, a file to be transferred and
the file transfer start time. The file transfer scheduling optimization problem is
NP − complete . Please refer to the technical report [3] for the proof. Fig. 1
shows an illustration of the problem.

Related Work: Giersch et al. [4] address scheduling of a collection of tasks
sharing files onto heterogeneous clusters. Their work proposed extensions to the
MinMin heuristic [5] to lower the scheduling cost. In our past work, we looked
at the problem of scheduling a batch of data-intensive tasks on homogeneous
clusters [1]. Our prime focus was to address the first phase of the overall problem
that is to accomplish task mapping. GridFTP [6] is a protocol which enables high
performance data movement by employing techniques like multiple TCP streams
per transfer and striped transfers. In contrast, our work is complementary to
GridFTP and can be applied in conjunction with it.

3 Scheduling Schemes

3.1 Insertion Scheduling Based Approach

Giersch et al. [4] employ an insertion scheduling scheme to schedule file transfers.
In our past work [1], we developed a Gantt chart based heuristic based on a
similar idea which is applied in the conjunction with the task mapping schemes.
The basic idea was to memorize the duration and the start time of file transfers
for each link and use this information to generate schedules for pending requests.

The transfer completion time (TCT ) to transfer a file f� from a node vi

to a node vj , TCT�ij , is estimated as the sum of the earliest time a transfer
can start and the actual transfer time. At each step, the algorithm chooses a
file, destination node pair < f�, vk > and schedules the transfer of file f� to
node vk . To accomplish this, it finds the expected transfer completion time
TCT of each file in the input request set on its respective destination node and
among them chooses the < f�, vk > pair with the minimum expected transfer
completion time. This process is then repeated until all the file transfers have
been scheduled. For a platform graph G = (V, E) and an input request set R ,
the complexity of insertion scheduling is O(|R|2 × |V | × (|E|+ |V |log(|V |))) [3].

3.2 0-1 Integer Programming-based Approach

In the following discussion we use subscripts i and j for nodes, e for edges, �
for files and t for time. We represent time in discrete units and the smallest unit
of time represents the least time taken to transfer a file from a source node to a
destination node among all files and node pairs. In our formulation, we make use
of the concept of time-expanded networks [2]. A time-expanded network captures



the temporal aspects of network flow such that flows over time in the original
network can be treated as flows in the time-expanded network. Let T ∗ denote
the upper bound on the total completion time of all the file transfers. For each
file f� to be transferred, we construct a time expanded network G′

l = (V ′
l , E′

l)
as follows. For each node vi in the system and each time t = 0, ..., T ∗ , we add a
vertex vit to the graph G′

l . For an edge e = {vi, vj} connecting any two nodes vi

and vj , T imelij represents the transfer time of file f� on the link e = {vi, vj} .
We add a directed edge (vit, vjt′ ) to the time expanded network G′

l if t′ ≤ T ∗ ,
where t′ = t + T imelij . The objective function of the 0-1 IP scheme is to the
minimize the overall file transfer time FileT ransferT ime =

∑
(∀t) Busyt under

a set of constraints. It solves for the following set of variables: 1) Busyt , which
is a binary variable. Busyt = 1, if there is a file transfer which is finished at
time t or a later point in time. 2) X�it , which is a binary variable. X�it = 1,
if file f� is available on node vi at time t , and 0 otherwise. 3) Y�e , which is a
binary variable. Y�e = 1, if the edge e in the time expanded network G′

l is used
to transfer the file f� , and 0 otherwise. The constraints for 0-1 IP are:

At t=0, certain files are present on certain nodes.

(∀�)(∀i, < f�, vi >∈ D)X�i0 = 1 (1)

A file f� is present on a node vi at time t either if it is already present on the
node at time t − 1 or due to the file transfer of the file f� to the node vi from
one of the nodes vj such that the file transfer is finished at time t . I�it is the
set of directed edges incident on the node vit in the time-expanded network G′

l .

(∀�)(∀i)(∀t)X�it = (
∑

(∀e,e∈I�it)

Y�e) + X�it−1 (2)

At time t = T ∗ , each file must be present at its respective destination nodes.

(∀�)(∀i, < f�, vi >∈ R)X�iT∗ = 1 (3)

A file f� can be transferred from the node vi at time t only if its present on
the node vi at time t . In addition, at most one outgoing arc is allowed from a
node vi at time t . O�it is the set of directed edges outgoing from the node vit

in the time-expanded network G′
l .

(∀�)(∀t)(
∑

(∀e,e∈O�it)

Y�e) ≤ X�it (4)

A file f� once staged to a node vi remains available on the node.

(∀�)(∀i)(∀t)X�it ≤ X�it+1 (5)

Each node vi can be involved in at most one send or receive at a time t . Let
C�it be the set of all incoming and outgoing arcs of the time-expanded network
G′

l that would make the node vi busy during the time [t, t + 1). Note that this
includes all arcs that start at time t′ ≤ t , end at a time t′ ≥ (t +1), and having
vi as its source or target node.



Algorithm 1 Maximum Weighted Matching based Scheduling Heuristic
Require: Platform G = (V, E) and an input request set consisting of < f�, vi > pairs
1: while there exists a pending request do
2: for each pending request < f�, vi > do
3: Run the Modified Dijkstra’s algorithm on Graph G for the request < f�, vi > .

Let Path�i denote the file transfer path which yields the earliest completion
time for the request.

4: Create a file transfer graph G′ = (V ′, E′) as follows.
5: for each pending request < f�, vi > do
6: Let nodes vi1 and vi2 comprise the first hop of the file transfer path Path�i .
7: V ′ = V ′ ∪ {vi1, vi2} .
8: Add an edge with weight 1

TCT
between vi1 and vi2 in G′ . Here, TCT denotes

the minimum completion time of the request
9: Run the Max-weighted matching algorithm on the Graph G′ to get a Matching

10: Schedule the chosen set of edges belonging to the Matching

(∀t)(∀i)(
∑

(∀�)(∀e,e∈C�it)

Y�e) ≤ Busyt (6)

The objective function is such that the network may be busy for, say, 5
time steps with Busy1 = ... = Busy5 = 1, be idle for the next 10 time steps,
Busy6 = ... = Busy15 = 0, and finishing the transfer in the next 2 time steps,
Busy16 = Busy17 = 1. This would lead to objective value 7, which is seemingly
wrong since the network is busy even at time t = 17. To address this problem,
we introduce the following constraint.

(∀t)Busyt ≥ Busyt+1 (7)

3.3 Max-Weighted Matching Based Scheduling Scheme (MMSS)

The MMSS is an iterative algorithm and employs max-weighted matching as
illustrated in Algorithm 1. For a graph G = (V, E), we define the set M ∈ E as
a matching of Graph G , if no two edges in M have a common vertex. The weight
of the matching is the sum of the weights of the edges which form the matching.
A maximum weighted matching is defined as the matching of maximum weight.

In each iteration, the algorithm creates a file transfer graph G′ = (V, E′)
whose vertices v′ ∈ V correspond to the nodes in the system and whose edges e′

correspond to file transfers. Each input request can possibly consist of multiple
hops, i.e., a set of intermediate nodes can be used to transfer the file to its final
destination. An input request < f�, vi > is considered as pending, if the file f�

is not yet present on the node vi . For each such pending request, the algorithm
computes the path Path�i of file transfer which yields the minimum transfer
time for the file f� onto the node vi . This step requires running a variant of
Dijkstra’s shortest path algorithm on G to find which one of the multiple possible
sources to stage the file from. The file transfer corresponding to the first hop



of the path Path�i is then added as an edge to G′ between the corresponding
pair of vertices in G′ . Note that for a multi-hop request, the first hop changes
with time as the file gets closer to its destination node. The weight of an edge
in the file transfer graph corresponding to an input request is 1

TCT where TCT
is the expected minimum completion time of the request. The idea behind this
weight assignment is to give higher priority to file transfers which can finish early.
Finally, the algorithm employs max-weighted matching on the file transfer graph
to obtain a set of non-contending ready file transfers and schedules them. In this
work, we modify the Dijkstra’s algorithm to take into account the wait times of
the source and the destination nodes as well as the link bandwidths. Once a file
transfer is scheduled between a source and a destination node, the wait time on
both the nodes is incremented by the expected file transfer time, which is simply
the size of the file divided by the bandwidth. Therefore, the transfer completion
time for an unscheduled transfer between a source-destination pair is the sum
of the earliest idle time (which is simply the maximum of the wait times on the
two nodes) and the expected file transfer time. This procedure works iteratively
until all the file transfers have been scheduled.

We employ Gabow’s O(|V |3) implementation of the Edmond’s algorithm for
computing maximal matching on graphs [7]. The worst case complexity of the
matching based heuristic is O(|R| × (|V |4)). For furthur details, please refer to
the technical report [3]. The number of input requests |R| is typically orders of
magnitude higher than the number of vertices |V | . Therefore, in practice, the
matching based heuristic is expected to perform much faster than the insertion
scheduling approach presented in Section 3.1.

4 Experimental Results

For experimental evaluation, we used both randomly generated workloads as
well as workloads derived from two application classes: satellite data processing
(SAT) and biomedical image analysis (IA) [1, 8]. For IA, we implemented a
program to emulate studies that involve analysis on images obtained from MRI
and CT scans. A 1 Terabyte dataset was created which emulates a study in-
volving 2000 patients and images acquired over several days from MRI and CT
scans. The sizes of images were 10 MB and 100 MB for MRI and CT scans,
respectively. Images were distributed among all the storage nodes in a round
robin fashion. To generate datasets for SAT, we employed an emulator devel-
oped in [8]. For SAT, the 250GB dataset was distributed across the storage
nodes using a Hilbert-curve based declustering method. Each file in the dataset
was 50 MB. To generate the input file request set for the two application do-
mains, we apply our task-mapping technique [1] to map a batch of tasks onto a
set of compute nodes. Since each task is associated with a set of files, the task
mapping provides information about the destination nodes for each file.

In addition to the three schemes; the integer programming (IP ), the graph
matching based approach (Matching ), and the insertion scheduling approach
(Insertion), we implemented a base scheme, referred to here as Indep local .



This is a relatively simpler scheduling scheme where each destination node knows
the set of files it needs and makes requests for each of them one by one. The
destination nodes acting as clients do not interact with each other before making
their respective requests. In the experiments, IP uses the feaspump solver [9],
available through the NEOS Optimization Server [10] to compute the schedule.
The upper bound T ∗ defined in Section 3.2 was set to be value obtained by
Matching . Since the feaspump solver gives feasible solutions which may not be
optimal, we apply binary search in conjunction with the solver to get the optimal
value of the objective function.
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Fig. 2. (a) Performance of all schemes for a randomly generated workload, (b) Perfor-
mance of all schemes with varying network heterogeneity

Fig 2(a) compares the different schemes in terms of the overall file transfer
time (in seconds). These experiments were conducted on randomly generated
workloads. The initial distribution of files on the nodes was also chosen ran-
domly. The input request set consisted of 50 file transfers each involving 1GB
files. The results show that IP results in the best schedule. This is because IP
is able to integrate the global information of the input request set and the plat-
form topology into the objective function. Matching performs quite similar to
Insertion ; it yields a schedule that minimizes end-point contention, since the
graph matching ensures that each at step, a set of non-conflicting transfers are
chosen. Indep local performs the worst as expected.

Fig 2(b) shows the performance of the schemes when network heterogene-
ity is varied. This experiment was conducted using 12 nodes by employing the
workload used in Figure 2(a). Since the workload was random, each of the 12
nodes could possibly act as sources for some files and destinations for others. We
abstracted the platform graph (see Section 2) as a fully-connected network and
emulated heterogeneity by randomly choosing half of the links to have double
and triple the communication bandwidth as compared to the remaining links.
These are denoted by (1 : 2) and (1 : 3) in the results; (1 : 1) corresponds to a
homogeneous network case. On the cluster machine used for the experiments, the
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Fig. 3. Performance of different schemes for IA workload with (a) varying number of
nodes, (b) varying number of file transfers

network heterogeneity is achieved by transferring proportionally smaller amounts
of data on the faster links followed by locally padding the rest of bytes to the
file. The experimental results show that the performance gap between IP and
the other approaches decreases with increasing heterogeneity. At low heterogene-
ity, IP performs better because it explores a much larger search space thereby
achieving a better global solution. However, as the extent of heterogeneity in-
creases, the search space of efficient solutions becomes more and more restricted
to faster links and all the schemes take that into account.

Figure 3 shows the scalability results with varying number of compute nodes
and varying number of input requests. Since IP takes too long to execute even
for moderately-sized workloads, we show results for the other three schemes only.
To analyze the scalability of Matching with respect to the number of compute
nodes, we ran experiments with an IA workload consisting of around 250 tasks
over 4, 8, 12, 16 compute nodes and 6 storage nodes. Note that the Figure 3
shows the performance in terms of two metrics, namely the total file transfer time
and the non-overlapped scheduling time. The non-overlapped scheduling time is
the difference between the end-to-end execution time and the total file transfer
time. The end-to-end execution time is defined as the elapsed time between the
instant when the scheduler accepts a batch of requests to the instant when all
the requests have been completed. In other words, the non-overlapped scheduling
time is the perceived scheduling overhead.

For Insertion , the end-to-end execution time is simply the sum of the
scheduling time and the total file transfer time. Insertion generates the entire
schedule once at the beginning followed by the transfer of files. For Matching ,
on the other hand, the schedule is generated iteratively while the file transfers
are taking place. Therefore, the non-overlapped scheduling time is negligible and
the end-to-end execution time closely matches the overall file transfer time. Fig-
ure 3(a) shows that Matching performs significantly better than Insertion in
terms of the end-to-end execution time. This is because, non-overlapped schedul-
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Fig. 4. (a) Performance of different schemes for SAT workload with varying number
of nodes, (b) Performance of all schemes by employing a bipartite platform graph
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ing time in Matching is very small. In terms of the total file transfer time,
the performance of Matching is quite close to Insertion . Figure 3(b) shows
the results with increasing number of requests for an IA workload. We observe
that Matching is able to perform much better than Insertion . This is be-
cause Insertion has a quadratic dependence of its complexity on the number of
requests as opposed to Matching which has a linear dependence.

Fig 4(a) shows the performance results for a SAT workload in terms of the
total file transfer time and the non-overlapped scheduling time. We observe that
Matching outperforms Insertion by upto 20% in terms of the total file transfer
time. In terms of the end-to-end execution time, Matching does significantly
better. Fig 4(b) shows the results in terms of total file transfer time on a bipar-
tite platform graph for all the schemes. The bipartite topology was emulated by
having two distinct subsets of nodes with links only across the two sets. We em-
ployed a randomly generated workload with multiple destination node mappings
for each file. The results show expected trends except that the performance of
Indep Local is much worse than the other approaches. This is because each file



needs to be sent to multiple different destinations, thereby leading to increased
contention due to multiple simultaneous requests for the same file. Fig 5 shows
the scheduling times for various schemes. The scheduling time shown is the ac-
tual time spent in generating the schedule. IP has a high scheduling overhead
for larger configurations, due to its exponential complexity. The scheduling time
of Insertion is higher than that of Matching , as expected.

5 Conclusions

We proposed two strategies for collectively scheduling a set of file transfer re-
quests made by a batch of data-intensive tasks on heterogeneous systems - one
approach employs 0-1 Integer Programming and the other employs max-weighted
matching. The results show that the IP formulation results in the best overall file
transfer time. However, it suffers from high scheduling time. The matching based
approach results in slightly higher file transfer times, but is much faster than
the IP based approach. Moreover, the matching based approach is able to match
the performance of Insertion scheduling with a much lower scheduling overhead.
Our conclusion is that the IP based approach is attractive for small workloads,
while the matching based approach is preferable for large scale workloads.
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