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Abstract. Distributed Hash Tables (DHTs) provide a scalable solution for data 
sharing in large scale distributed systems, e.g. P2P systems. However, they only 
provide good support for exact-match queries, and it is hard to support complex 
queries such as top-k queries. In this paper, we propose a family of algorithms 
which deal with efficient processing of top-k queries in DHTs. We evaluated 
the performance of our solution through implementation over a 64-node cluster 
and simulation. Our performance evaluation shows very good performance, in 
terms of communication cost and response time. 

1 Introduction 

Distributed Hash Tables (DHTs), e.g. CAN  [20] and Chord  [23], provide an efficient 
solution for data location and lookup in large-scale P2P systems. While there are 
significant implementation differences between DHTs, they all map a given key onto 
a peer p using a hash function and can lookup p efficiently, usually in O(log n) 
routing hops where n is the number of peers  [13]. DHTs typically provide two basic 
operations  [13]: put(key, data) stores a pair (key, data) in the DHT using some hash 
function; get(key) retrieves the data associated with key in the DHT. These operations 
enable supporting exact-match queries only. Recently, much work has been devoted 
to supporting more complex queries in DHTs such as range queries  [11] and join 
queries  [15]. However, efficient evaluation of more complex queries in DHTs is still 
an open problem  [5]. 

An important kind of complex queries is top-k queries. Given a dataset D and a 
scoring function f, a top-k query retrieves the k tuples in D with the highest scores 
according to f. Top-k queries have attracted much interest in many different areas 
such as network and system monitoring  [2] [6], information retrieval  [3] [16], sensor 
networks  [22] [24],  multimedia databases  [7] [12] [19], spatial data analysis  [14], data 
streams  [18], etc. The main reason for such interest is that they avoid overwhelming 
the user with large numbers of uninteresting answers which are resource-consuming. 
Most of the efficient approaches for top-k query processing in centralized and 
distributed systems, e.g. [4] [6] [8] [17], are based on the Threshold Algorithm (TA) 
 [10] [12] [19]. TA is applicable for queries where the scoring function is monotonic, 
i.e., any increase in the value of the input does not decrease the value of the output. 

In a large-scale P2P system, top-k queries can be very useful  [3]. For example 
assume a community of car dealers who want to take advantage of a DHT to share 
some data about the used cars which they are willing to sell. Assume they agree on a 
common Car description in relational format. The Cars relation includes attributes 
such as car-id, price, mileage, mark, model, picture, etc. Suppose a user wants to 
submit the following query to obtain the 10 top answers ranked by a scoring function 
over price and mileage:  
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             SELECT   car-id, price, mileage FROM   Cars 
       WHERE  price < 3000  AND mileage < 60000 
       ORDER BY scoring-function(price, mileage) STOP AFTER 10 

The user specifies the scoring function according to the criteria of interest. For 
instance, in the query above, the scoring function could be (- (20∗price + mileage)).  

The problem of top-k queries has been addressed in unstructured P2P networks, 
e.g. in  [1], and also super-peer networks, e.g. in  [3]. However, the specific nature of 
DHTs, i.e. data storage and retrieval based on hash functions, makes it quite 
challenging to support top-k queries  [5]. A simple solution for supporting top-k 
queries in DHTs is to retrieve all tuples of the relations involved in the query, 
compute the score of each retrieved tuple, and finally return the k tuples whose scores 
are the highest. However, this solution cannot scale up to a large number of stored 
tuples. Another solution is to store all tuples of a relation in the DHT by using the 
same key (e.g. relation's name), thus all tuples are stored at the same peer. Then, top-k 
queries can be processed at the central peer using well-known centralized algorithms. 
However, the central peer becomes a bottleneck and a single point of failure. 

What we need is an efficient solution which can scale up to large numbers of peers 
and avoids any centralized data storage. In this paper, we propose such a solution for 
top-k query processing in DHTs. Our main contributions are the followings: 
• We propose a data storage mechanism that not only provides good support for 

exact-match queries, but also enables efficient execution of top-k queries using 
our algorithms. It stores relational data in the DHT in a fully decentralized way, 
and avoids skewed distribution of data among peers.  

• We propose a family of three algorithms which deal with efficient processing of 
top-k queries in DHTs. The first algorithm efficiently supports top-k queries with 
monotonic scoring functions. The second one supports top-k queries with a much 
larger class of scoring functions. We propose two optimizing strategies that reduce 
significantly the communication cost of the latter algorithm. We analytically prove 
that the algorithm finds correctly the k highest scored tuples. We propose a third 
algorithm for the cases where only a small set of relations' attributes are used in 
scoring functions. At the expense of incurring a small amount of redundancy on 
the DHT, the third algorithm yields much performance gains in terms of response 
time and communication cost.  

• We evaluated the performance of our algorithms through implementation over a 
64-node cluster and simulation using SimJava up to 10,000 peers.  The results 
show the effectiveness of our solution for processing top-k queries in DHTs. 

The rest of this paper is organized as follows. In Section 2, we present our 
mechanism for storing the shared data in a DHT. In Section 3, we present our 
algorithms for processing top-k queries in DHTs. Section 4 describes a performance 
evaluation of our algorithms through implementation over a 64-node cluster and 
simulation using SimJava. Section 5 concludes. 

2 Data Storage Mechanism 

In this section, we propose a mechanism for storing relational data in the DHT. This 
mechanism not only provides good support for exact-match queries, it also enables 
efficient execution of our top-k query processing algorithms. In our data storage 
mechanism, peers store their relational data in the DHT with two complementary 
methods: tuple storage and attribute-value storage. In this paper, we assume that the 
data which are stored in the DHT are highly available by using yet proposed 
approaches, e.g. using multiple hash functions as in  [20]. 



       

2.1 Tuple Storage 

With the tuple storage method, each tuple of a relation is entirely stored in the DHT 
using its tuple identifier (e.g. its primary key) as the storage key. This enables looking 
up a tuple by its identifier. Let R be a relation name and A be the set of its attributes. 
Let T be the set of tuples of R and id(t) be a function that denotes the identifier of a 
tuple t∈T. Let h be a hash function that hashes its inputs into a DHT key, i.e. a 
number which can be mapped by the DHT onto a peer. For storing relation R, each 
tuple t∈T is entirely stored in the DHT where the storage key is h(R, id(t)), i.e. the 
hash of the relation name and the tuple identifier. Hereafter, the key by which we 
store a tuple in the DHT is called tuple storage key.  

Tuple storage allows us to answer exact-match queries on the tuple identifier. For 
example, consider relation Car(car-id, price, mileage, …)  in which car-id is the 
primary key. If we store the tuples of this relation in the DHT using the tuple storage 
method, we are able to answer to exact match queries on car-id attribute, e.g. "Is there 
any car whose car-id is equal to 20?". But, it does not help answering exact-match 
queries on other attributes, e.g. "Is there any car whose price is 2000?". Attribute-
value storage helps answering such queries. 

A straightforward extension to tuple storage is to partition (fragment) the relation 
horizontally and store all tuples of each partition with the same key, thereby at the 
same peer. The key for storing the tuples of each partition can be constructed as for 
attribute-value storage which we describe in the next section. For very large numbers 
of tuples, this extension can be much more efficient than storing each tuple in the 
DHT with a different key. 

2.2 Attribute-Value Storage 

Attribute-value storage stores individually the attributes that may appear in a query’s 
equality predicate or in a query's scoring function in the DHT. Thus, like database 
secondary indices, it allows checking for the existence of tuples using attribute values. 
Our attribute-value storage method has two important properties. 1) after retrieving an 
attribute value from the DHT, peers can retrieve easily the corresponding tuple of the 
attribute value; 2) attribute values that are relatively “close” are stored at the same 
peer. To satisfy the first property, the key used for storing the entire tuple, i.e. tuple 
storage key, is stored along with the attribute value. The second property is satisfied 
by using the concept of domain partitioning as follows. Consider an attribute a and let 
Da be its domain of values. Assume there is a total order < on Da, e.g. Da is numeric, 
string, date, etc. Da is partitioned into n nonempty sub-domains d1, d2, …, dn such that 
their union is equal to Da, the intersection of any two different sub-domains is empty, 
and for each v1∈di and v2∈dj, if i<j then we have v1<v2. For example, the attribute 
“mileage”, whose domain is integer values in [0..300K], can be partitioned into 30 
sub-domains [0..10K), [10K..20K), …, [290K..300K]. Given a value v, the sub-
domain to which v belongs is denoted by sd(a, v). The number of sub-domains of an 
attribute and the lower bound of each sub-domain are known to all peers of the DHT. 
Therefore, given an attribute a and a value v, any peer can locally compute sd(a, v). 

The key which is used for storing an attribute value in the DHT is constructed as 
follows. Let R be a relation, a be an attribute of R, and v be the value of a in a tuple t, 
then the key for storing v in the DHT is h(R, a, sd(a, v)), i.e. the hash of the relation 
name, attribute name and the sub-domain to which v belongs. Therefore, the attribute 
values that belong to the same sub-domain are stored with the same key. Thus, they 
are maintained at the same peer. 

The values of the attributes, for which we do an attribute-value storage, are stored 
two times in the DHT, i.e. once upon tuple storage and once upon attribute-value 
storage. However, this controlled redundancy allows us to answer exact-match 
queries on these attributes. 



       

2.3 Uniform Distribution of Attribute-Values 

The method which we use for partitioning attribute domains should avoid skewed 
distribution of attribute values within sub-domains, which may yield load unbalance 
among peers. For instance, simply dividing the domain into n equal-width sub-
domains, as we did for attribute “mileage” above, may yield attribute storage skew. 
Using histogram-based information that describes the distribution of the values of an 
attribute, we can do a better partitioning that uniformly distributes the values within 
the sub-domains. Formally, let pa(v) be the probability density function that describes 
the probability that attribute a takes a value equal to v. Let lb(d) be a function that 
denotes the lower bound of a sub-domain d, to obtain a uniform partitioning we 
choose the sub-domains d1, d2, …, dn such that: 
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By these n-1 equations, the lower bounds are chosen in such a way that the sub-
domains have equal cumulative numbers of values. We know that the lower bound of 
d1 is equal to the lower bound of Da, so lb(d1) is determined. Thus, we have n-1 
equations with n-1 variables, i.e. lb(d2),…, lb(dn). By solving the equations, we can 
determine the value of lb(d2),…, lb(dn). 

3 Top-k Query Processing Algorithms 

In this section, we first propose DHTop1, an algorithm for efficient executions of top-
k queries whose scoring function is monotonic. Then, based on DHTop1, we propose 
the DHTop2 algorithm which supports a much larger group of scoring functions. 
Finally, we propose the DHTop3 algorithm which exploits a small amount of 
redundancy in the DHT to yield high performance gains in the execution of top-k 
queries. 

3.1 DHTop1 Algorithm 

Let Q be a given top-k query, f be its scoring function, and pint be the peer at which 
Q is issued. Let scoring attributes be the attributes that are used in f. We assume that 
the values of the scoring attributes are stored in the DHT by attribute-value storage. 
DHTop1 starts at pint and proceeds in two phases as follows: 

1. For each scoring attribute α do  

Create a list Lα and add all sub-domains of α to it; 

Remove from Lα the sub-domains which do not satisfy Q's condition; 

Sort Lα in descending order of its sub-domains; 

2. end-condition := false;  

For each scoring attribute α do in parallel 

i := 1;  

n := number of sub-domains in Lα; 

While (end-condition = false) and (i ≤ n) do  

Send Q to the peer p that maintains the α values whose sub-domain is  
Lα[i]. p returns to pint its values of α which satisfy Q’s condition, one 
by one in descending order, along with their corresponding tuple 
storage key; 

v := the first α value returned by p; 

While (v ≠ null) and (end-condition = false) do 
• Retrieve the corresponding tuple of v and compute its score. If it 



       

is one of the k highest scores, then record the tuple in a list Y; 
• If there are k tuples in Y whose scores are higher than the 

threshold then set end-condition to true and return to the user 
these k tuples; 

• If end-condition is false then set v to the next α value returned 
by p; 

• If v is null (i.e. all values returned by p have been received) then 
set i:= i + 1; 

 The threshold we use is inspired from the TA algorithm  [10] and is computed as 
follows. Let α1, α2, …, αm be the scoring attributes. Let v1, v2, …, vm be the last values 
received respectively for attributes α1, α2, …, αm. The threshold is defined as δ = f(v1, 
v2, …, vm). After receiving each attribute value, the threshold value is recomputed.  

Let N be the number of stored tuples and m be the number of scoring attributes. In 
a way similar to  [9], we can prove that, in the worst case, the number of tuples which 
should be retrieved by DHTop1 is O(N

(m-1)/m
 ∗ k

1/m
), which is sub-linear in the number 

of tuples. Due to space limitations we omit the proof. In average case, the execution 
time of DHTop1 is much better than an algorithm that retrieves all tuples (see Section 
4). 

We have proved that the DHTop1 works correctly for top-k queries with 
monotonic scoring functions. The proof is similar to the proof which we give for the 
correctness of the DHTop2 algorithm in the following section. 

3.2 DHTop2 

DHTop1 efficiently executes top-k queries whose scoring function is monotonic, i.e. 
any increase in the value of the input does not decrease the value of the output. For 
example the function f(x1, x2) = x1 + x2 is monotonic, but f(x1, x2) = x1 - x2 is not 
monotonic because an increase in the value of x2 decreases the output of the function.  
Many of the popular aggregation functions, e.g. Min, Max, Average, are monotonic. 
However, there are many useful functions that are not monotonic including most of 
linear functions. In this section, we propose the algorithm DHTop2 which works with 
a super-set of monotonic functions. We call these functions IODEV scoring functions. 

3.2.1 IODEV Scoring Functions 

To define IOD-EV scoring functions, we need the two following definitions. 

Definition 1 (Increasing wrt variable x): A scoring function is increasing wrt 
variable x if any increase in the value of x does not decrease the output of the scoring 
function. 

Definition 2 (Decreasing wrt variable x): A scoring function is decreasing wrt 
variable x if any increase in the value of x does not increase the output of the scoring 
function. 

For example the function f(x1, x2) = x1 - x2 is increasing wrt x1 and decreasing wrt 
x2. Now we can define IOD-EV scoring functions. 

Definition 3 (Increasing Or Decreasing wrt Each Variable (IOD-EV)): A scoring 
function f is IOD-EV if for each variable x, f is increasing wrt x or decreasing wrt x. 

For example, the functions f(x1, x2) = x1 - x2 and f(x1, x2) = (x1)
3
 – (x2)

3 are IOD-
EV. The set of monotonic scoring functions is a subset of IOD-EV functions because 
a monotonic scoring function is increasing wrt every variable, thus it is IOD-EV. The 
linear functions are also IOD-EV. This can be demonstrated as follows. A linear 
function can be written as f(x1, x2, …, xm) = a0 + a1x1 + a2x2 + …+ amxm where a0, a1, 
…, am are constant values. For each variable xi if its coefficient ai is positive then f is 
increasing wrt xi, otherwise it is decreasing wrt xi. Thus, all linear functions are IOD-
EV. 



       

3.2.2 Algorithm 

Let Q be a given top-k query, and f be its scoring function. Assume f is IOD-EV, then 
DHTop2 algorithm is obtained from DHTop1 by performing the following 
modifications: 

• In Phase 1, the sorting of Lα is done as follows. If the scoring function f is 
increasing wrt α then Lα is sorted in descending order of the lower bound of its 
sub-domains. Otherwise Lα is sorted in ascending order. Let lb(d) denote the 
lower bound of a sub-domain d, and Lα[i] denote the ith sub-domain of Lα. At 
the end of this step, Lα is as follows. If f is increasing wrt α then lb(Lα[i]) ≥ 
lb(Lα[i+1]) for i≥1. And if f is decreasing wrt α then lb(Lα[i]) ≤ lb(Lα[i+1]) 
for i≥1. 

• In Phase 2, the peer p, which maintains the α values whose sub-domain is Lα[i], 
returns the attribute values to pint in the following order. If f is increasing wrt α 
then p returns the α  values in descending order. Otherwise, it returns them in 
ascending order. 

Example. Consider a relation R(a, b, c) such that the domain of the attributes a and b 
is the real values in [0..10]. Assume that the domain of attribute a is partitioned into 4 
sub-domains d1=[0..3), d2=[3..5), d3=[5..8) and d4=[8..10]. Assume the domain of 
attribute b is partitioned into 5 sub-domains d'1=[0..3), d'2=[3..5), d'3=[5..6), d'4=[6..8) 
and d'5=[8..10). Consider the following query Q which is issued at pint: 

SELECT   *    FROM    R  
WHERE  a < 6  AND b < 5  
ORDER BY (a-b)     STOP AFTER  5 

In the above query, the scoring attributes are a and b. The scoring function, i.e. 
f=a-b, is increasing wrt a and decreasing wrt b. Thus, in Phase 1, La is sorted in 
descending order and Lb in ascending order. At the end of Phase 1, we have La=<d3, 
d2, d1> and Lb=<d'1, d'2>. Notice that some of the sub-domains of a (and b) are 
removed from La (and Lb) due to Q's condition, e.g. d4 is removed from La because of 
a<6 in Q’s condition. 

3.2.3 Proof of Correctness 

Let us now prove the correctness of the DHTop2 algorithm for top-k queries with 
IOD-EV scoring functions. For this, we prove the following lemma. 

Lemma 1: Let f be an IOD-EV scoring function, vi and v'i be two values of a scoring 
attribute ai such that vi is retrieved by DHTop2, and v'i is retrieved after vi or it is not 
retrieved by DHTop2, then we have f(x1, x2,…, xi-1, v'i, xi+1,…, xm) ≤  f(x1, x2,…, xi-1, vi, 
xi+1,…, xm) for any value xj ,1≤j≤m and j≠i. In other words, if we only change the 
value of ai by replacing vi with v'i, the output of the scoring function decreases or does 
not change. 

Proof: With respect to the possible values vi and v'i , there are two cases to consider. 
In the first case, vi and v'i belong to two different sub-domains, e.g. d1 and d2 
respectively. Thus, d1 is before d2 in Lai. If f is increasing wrt ai, then considering the 
first phase of the algorithm, we have lb(d1) ≥ lb(d2). Thus, we have vi ≥ v'i and since f 
is increasing wrt ai, we have f(x1, x2,…, xi-1, v'i, xi+1,…, xm) ≤  f(x1, x2,…, xi-1, vi, xi+1,…, 
xm), i.e. increasing the value of ai does not decrease the output of the function. Now, if 
f is decreasing wrt ai, then considering the first phase of the algorithm, we have lb(d1) 
≤ lb(d2). Thus vi ≤ v'i and since f is decreasing wrt ai, we have f(x1, x2,…, xi-1, v'i, 
xi+1,…, xm) ≤  f(x1, x2,…, xi-1, vi, xi+1,…, xm). The second case is when vi and v'i belong 
to the same sub-domain. If f is increasing wrt ai, then considering the second phase of 
the algorithm, we have vi ≥ v'i and thus f(x1, x2,…, xi-1, v'i, xi+1,…, xm) ≤  f(x1, x2,…, xi-1, 
vi, xi+1,…, xm). If f is decreasing wrt ai then we have vi ≤ v'i and thus f(x1, x2,…, xi-1, v'i, 
xi+1,…, xm) ≤  f(x1, x2,…, xi-1, vi, xi+1,…, xm).□ 

 



       

The following theorem provides the correctness of our algorithm. 
 
Theorem 1: If f is an IOD-EV scoring function, then DHTop2 finds the k top tuples 
correctly.  
Proof: the proof is by contradiction. Let Y be the set of k top tuples obtained by 
DHTop2, and t' be the tuple in Y whose score is the lowest. We assume there is a 
tuple t''∉Y such that its score is greater than t', and we show that this assumption 
yields to a contradiction. Let a1, a2, …, am be the scoring attributes. Let v1, v2, …, vm 
be the last values, i.e. before ending the algorithm, retrieved respectively for attributes 
a1, a2, …, am. Let v'1, v'2, …, v'm be the values of the attributes a1, a2, …, am in t', 
respectively. Let v''1, v''2, …, v''m be the values of attributes a1, a2, …, am in t'', 
respectively. Since t'' is not in Y, it was not retrieved during the execution of our 
algorithm. Thus, none of its values, i.e. v''1, v''2, …, v''m, was retrieved by pint, because 
if the value of any attribute of a tuple was retrieved, the entire tuple would have been 
retrieved by the algorithm. By applying Lemma 1 on attribute a1 we have f(v1, v2, …, 
vm) ≥ f(v''1, v2, …, vm). By applying Lemma 1 on attribute a2, we have f(v''1, v2, v3,…, 
vm) ≥ f(v''1, v''2, v3,…, vm). By continuing the application of Lemma 1 on attributes 
a3,…, am, we have f(v1, v2, …, vm) ≥ f(v''1, v2, …, vm) ≥ f(v''1, v''2, …, vm) ≥… ≥ f(v''1, 
v''2, …, v''m-1, vm) ≥ f(v''1, v''2, …, v''m-1, v''m). Therefore, we have f(v1, v2, …, vm) ≥ 
f(v''1, v''2, …, v''m). According to the end condition of the algorithm, we have f(v'1, v'2, 
…, v'm)≥ f(v1, v2, …, vm), and by comparing this inequality with the former one, we 
have f(v'1, v'2, …, v'm)≥ f(v''1, v''2, …, v''m). In other words, the score of tuple t' is 
greater than that of t'', which yields to a contradiction.□ 

3.2.4 Optimizations 

In order to further reduce the communication cost of the DHTop2 algorithm, we 
propose two optimizing strategies: batch retrieval of attribute values and retrieving 
each tuple at most once. 

Batch retrieval of attribute values (BRAV). In Phase 2 of the basic version of 
DHTop2, the values of the scoring attributes are returned to pint one by one, i.e. each 
value in a message. Since each message has its own overhead, e.g. latency, returning 
only one value per message is very costly. To reduce such overhead, we modify Phase 
2 of the algorithm such that the peer, which maintains the values of a sub-domain, 
sends the attribute values to pint in a batch fashion, e.g. k values per message. 

Retrieving each tuple at most once (RTO). In Phase 2 of the basic version of 
DHTop2, after retrieving each value of a scoring attribute, the corresponding tuple of 
that value is retrieved.  Since there may be several scoring attributes, a tuple may be 
retrieved several times. However, after the first retrieval of the tuple and comparing 
its score with the k highest scores, there is no need to retrieve it again because either 
the tuple is in the set Y or its score cannot be one of the k highest scores. Thus, to 
optimize our algorithm, we change Phase 2 such that pint maintains in a list the 
identifiers of all tuples which have yet been retrieved. Before retrieving a tuple, pint 
checks the list, and if the identifier of the tuple is in the list, it does not retrieve the 
tuple. 

3.3 DHTop3 

By analyzing many scoring functions in useful queries, we observed that only a small 
set of a relation's attributes are likely to be used for scoring. For instance, the 
attributes typically used for scoring used cars are price and mileage. In addition to 
their small number, these attributes typically have small size, e.g. numerical. Based on 
this observation, we modify our storage mechanism such that the value of the 
attributes typically used for scoring are stored upon each attribute-value storage, e.g. 
upon storing the price value, we store the value of both price and mileage in the DHT. 



       

Formally, let R be a relation, and Asf be the set of attributes of R which are typically 
used for scoring. Let t be a tuple of R, and V be the set of values of attributes of Asf in 
tuple t. Let v∈V be the value of a∈ Asf in tuple t. Upon storing v by the modified 
attribute-value storage, we store all values involved in V in the DHT. Like with the 
basic attribute-value storage, we also store the storage key of t along with V.  

With the modified attribute-value storage, the values of the attributes involved in 
Asf  are stored Asf times in the DHT.  At the expense of this redundancy, which is 
usually low because Asf is small, we can now compute a tuple score at peers that 
maintain the attribute values without having to retrieve the tuple. 

Relying on the modified attribute-value storage, we develop a top-k query 
processing algorithm, called DHTop3, based on DHTop2 by performing the following 
modifications in the second phase. The peer p, which maintains the attribute values of 
sub-domain Lα[i], computes the scores of the corresponding tuple of each attribute 
value, and returns the scores along with the attribute values to pint. Thus, pint no longer 
needs to retrieve the corresponding tuple of the received values; it only keeps the 
storage keys of the k highest scored tuples in the set Y and continues until the end 
condition holds. Finally, pint retrieves from the DHT the k tuples whose storage keys 
are maintained in Y. 

4 Performance Evaluation 

We evaluated the performance of the algorithms, which we proposed in the pervious 
section, through implementation and simulation. The implementation over a 64-node 
cluster was useful to validate our algorithms and calibrate the simulator. The 
simulator allows us to study scale up to high numbers of peers (up to 10,000 peers). 

In this section, we first describe our experimental setup. Then, we investigate the 
scalability of our algorithms by increasing the number of peers and also by increasing 
the number of tuples which, we store for each relation, in the DHT. Finally, we 
evaluate the performance of our algorithm by varying other parameters such as the 
number of requested tuples, i.e. k, the distribution of attribute values, and the number 
of sub-domains of each attribute. 

4.1 Experimental Setup 

Our implementation and simulation are based on Chord  [23] which is an efficient 
DHT. We tested our algorithms over a cluster of 64 nodes connected by a 1-Gbps 
network. Each node has two Intel Xeon 2.4 GHz processors, and runs the Linux 
operating system. We make each node act as a peer in the DHT.  

To study the scalability of our algorithm far beyond 64 peers, we also implemented 
a simulator using SimJava. After calibration of the simulator, we obtained simulation 
results similar to the implementation results up to 64 peers. Thus, since the simulator 
allows us to study larger systems and due to space limitations, we only report 
simulation results for most of our tests. 

Our default settings for different experimental parameters are shown in Table 1. 
Most of these settings are the same as in  [7]. In our tests, we use a synthetically 
generated relation with six attributes ai, 1≤i≤6 and the domain of the attributes is 
numeric. The default number of tuples of the relation is 100,000 and they are 
randomly generated in two different ways: (1) Uniform data set, and (2) Gaussian 
data set. With (1), the values of attributes are independent of each other, and the 
distribution of the values of each attribute is uniform. This is our default setting. With 
(2), the values of different attributes are independent of each other, and the values for 
each attribute are generated via overlapping multidimensional Gaussian belles. 

In our tests, the top-k query Q is delivered to a randomly selected peer. The 
selectivity of Q over the generated data is 10% and the scoring function specified in Q 
is the linear function f(a1, a2, a3, a4, a5, a6) = a1 + a2 + a3 + a4 + a5 + a6.  Typically, 



       

users are interested in a small number of top answers, thus we set k=10. In our storage 
mechanism, the domain of each attribute is uniformly partitioned into n sub-domains 
and the default value for n is 100. The network parameters of the simulator are shown 
in Table 2. We use parameter values which are typical of P2P systems  [21]. The 
simulator allows us to perform tests up to 10,000 peers, after which the simulation 
data no longer fit in RAM. This is quite sufficient for our tests.  

To evaluate the performance, we measure the following metrics. 1) Response time: 
the time elapsed between the delivery of Q to pint and the end of the algorithm. 2) 
Communication cost: the total number of bytes which are transferred over the 
network for executing a given top-k query.  

Table 1. Default setting of experimental parameters 
Parameter Default values 

Number of tuples 100,000 

K 10 

Number of attributes  6  

Data set Uniform 

Data selectivity 10 % 

Number of attribute’s sub-domains 100 

Table 2. Network parameters of the simulator 
Parameter Default values 

Bandwidth Normally distributed random, Mean = 56 Kbps, Variance = 32 

Latency Normally distributed random, Mean = 150 ms, Variance = 100 

Number of peers  10,000 peers  

We evaluated the performance of our three algorithms DHTop1, DHTop2, and 
DHTop3. We also compared our algorithms with the simple algorithm which we 
introduced in the introduction of this paper. The simple algorithm, which we denote 
as Simple_DHT, retrieves all tuples of the relations involved in the query, computes 
the score of each retrieved tuple, and finally returns the k tuples whose scores are the 
highest.  

4.2 Scale up 

In this section, we investigate the scalability of our algorithm. For this, we study the 
effect of the number of peers and also the number of stored tuples on performance. 

Effect of the Number of Peers 

We used both our implementation and our simulator to study the response time while 
varying the number of peers. Using our implementation over the cluster, we ran 
experiments to study how response time increases with the addition of peers. Figure 1 
shows the response time of our three algorithms and the Simple-DHT algorithm with 
the addition of peers up to 64. In all four algorithms, the response time grows 
logarithmically with the number of peers. However, the response time of our 
algorithms is much better than Simple_DHT. 

Using simulation, Figure 2 shows the response times of the four algorithms with 
the number of peers increasing up to 10000 and the other parameters set as in Table 1 
and Table 2. Overall, the experimental results correspond qualitatively with the 
simulation results. However, we observed that the response time gained from our 
experiments over the cluster is slightly better than that of simulation, simply because 
of faster communication in the cluster. 

Effect of the Number of Tuples 

We used our simulator to study the response time while varying the number of tuples 
which we store for each relation in the DHT. Figure 3 shows how the response time of 
our three algorithms increases with the number of tuples, using our simulator with the 



       

other parameters set as in Table 1 and Table 2. The number of tuples has a very small 
impact on DHTop3, because it does not need to retrieve stored tuples for computing 
the scores. The impact of the number of tuples on the response time of DHTop2 is 
less than DHTop1 due to the optimizations which we proposed for DHTop2. We also 
tested the communication cost of our algorithms. Using the simulator, Figure 4 
depicts the number of bytes with increasing numbers of tuples, with the other 
parameters set as in Table 1 and Table 2. 

4.3 Effect of other Parameters 

We studied the effect of k, i.e. the number of top tuples requested, on response time. 
Figures 5 shows how the response time increases with k, using our simulator with the 
other parameters set as in Table 1 and Table 2. As expected, the response time of our 
algorithms increases with k because more tuples and attribute values are needed to be 
retrieved in order to obtain k top tuples. However, the increase is very small. 

We investigated the response time of our algorithms over two Uniform and 
Gaussian data sets that we have generated synthetically, as described in Section  4.1.  
Using our simulator, Figure 6 shows the response time of our algorithms over 
Uniform and Gaussian data sets, with the other parameters set as in Table 1 and 2. 
The response time of our algorithms over the Gaussian data set is much better than 
their response time over the Uniform data set. The reason stems from that, in the 
Gaussian distribution, a high percentage of generated values are around the mean 
value and a very small percentage of the values are in the extremes. This 
characteristic of the Gaussian distribution makes the end condition of our algorithms 
hold sooner over the Gaussian data set than over the Uniform data set. 

We studied the effect of the number of attributes’ sub-domains, i.e. n, on 
performance (due to space limitations we do not show the figure). The results show 
that for the case of issuing a lot of simultaneous queries, increasing n reduces the 
average response time because it increases the number of peers that are responsible 
for maintaining the values of an attribute, so the load of each peer decreases. 

5 Conclusion 

In this paper, we addressed the problem of efficient top-k query processing in DHTs. 
We first proposed a mechanism for data storage in DHTs which provides good 

Expe ri m e n ta l  Re s u l ts

k =10

1

10

10 0

10 0 0

10 2 0 3 0 4 0 5 0 6 0

Nu m be r o f pe e rs

R
e
sp

o
n

se
 T

im
e 

(s
)

S imp le_ D HT

D HTo p 1
D HTo p 2

D HTo p 3

Simulation Results

k=10

1

10

100

1000

10000

100000

2K 4K 6K 8K 10K

Number of peers

R
es

p
o

n
se

 T
im

e 

(s
)

Simple_DHT

DHTop1

DHTop2

DHTop3

k=10

10,000 peers

0

10

20

30

40

50

60

70

80

90

100

50K 100K 150K 200K 250K 300K 350K

Number of relation's tuples

R
es

p
o

n
se

 T
im

e 
(s

)

DHTop1

DHTop2

DHTop3

 
 Fig. 1. Response time vs.  

number of peers 

Fig. 2. Response time vs. 

number of peers 

Fig. 3. Response time vs. 

number of relation's tuples 

k=10

10,000 peers

0

5000

10000

15000

20 000

50K 100K 150K 200K 250K 300 K 350K

Number of relation's tuples

C
o

m
m

u
n

ic
a

ti
o

n
 

C
o

st
 (

B
y

te
s)

DHTop1

DHTop2

DHTop3

10,000 peers

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60

k

R
e
sp

o
n

se
 T

im
e
 (

s)

DHTop1

DHTop2

DHTop3

k=10

 10,000 peers

0

10

20

30

40

50

Unifo rm G a us s ia n

Data di s tri bu ti on

R
es

p
o

n
se

 T
im

e 

(s
)

D HTo p 1

D HTo p 2

D HTo p 3

 

 Fig. 4. Communication cost 

vs. number  of relation's 

tuples 

Fig. 5. Response time vs. 

k 

Fig. 6. Response time over 

uniform & Gaussian data 

sets 
 



       

support for exact-match queries and enables efficient execution of our top-k query 
processing algorithm. Then, we proposed a family of algorithms which deal with 
efficient processing of top-k queries in DHTs. We evaluated the performance of our 
algorithms through implementation over a 64-node cluster and simulation using 
SimJava. The results showed the effectiveness of our solution for processing top-k 
queries in DHTs. 
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