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Abstract. The heterogeneity of natural geological formations has a ma-
jor impact in the contamination of groundwater by migration of pollu-
tants. In order to get an asymptotic behavior of the solute dispersion,
numerical simultations require large scale computations. We have devel-
oped a fully parallel software, where the transport model is an original
parallel particke tracker. Our performance results on a distributed mem-
ory parallel architecture show the efficiency of our algorithm, for the
whole range of geological parameters studied.
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1 Introduction

Numerical modeling is an important key for the management and remediation of
groundwater resources. Several field experiments have showed that the natural
geological formations are highly heterogeneous, leading to preferential flow paths
and stagnant regions. The contaminant migration is strongly influenced by these
irregular velocity distributions.

In order to account for the limited knowledge of the geological characteristics
and for the natural heterogeneity, stochastic approaches have been developed [1].
Here we study the case of a lognormal permeability field with an exponential
correlation function. The objective is to compute the dispersion coefficients as
functions of time and to find out the asymptotic values of the dispersion coef-
ficients [2]. We use numerical models to compute the velocity field over large
spatial domains and to simulate solute transport over large temporal scales [1].
This approach must overcome two main difficulties, memory size and runtime,
in order to solve very large linear systems and to simulate over a large number
of timesteps. High performance computing is thus necessary to carry out these
large scale simulations [1].



We have developed a fully parallel software, which is object-oriented, with
a modular approach and well-defined interfaces [3]. The permeability field is
generated by means of parallel Fast Fourier Transforms and the velocity field
is computed by solving a large sparse linear system, using a parallel multigrid
solver of the numerical library Hypre [4]. In this paper, we describe a paral-
lel algorithm for advection-diffusion modeling and its performances on clusters
of processors. Transport is simulated by a particle tracker algorithm [5], well
suited for pure advection and advection-dominated transport processes, because
it does not introduce spurious numerical diffusions. Our parallel algorithm takes
advantage of a subdomain decomposition and of the non interaction between the
particles. This hybrid parallel strategy is quite original, since most of previous
work uses either one or the other [6],[7],[8]. We perform many numerical exper-
iments, in order to study the effects on parallel performances of the hydraulic
parameters, mainly the size of the computational domain, the heterogeneity of
the permeability field and the ratio of advection to diffusion. We also analyze
scalability issues by varying the number of processors used. Our results show
that our parallel particle tracker is quite robust and efficient in the whole range
of interesting values. Using a cluster with 32 processors, we could run simula-
tions with spatial and temporal scales never achieved so far. This allowed us to
determine with no ambiguity the asymptotic dispersion coefficients [9].

2 Numerical model for advection-diffusion

2.1 Physical model

In this paper, we consider a 2D problem where the porous medium defined by
a rectangle with dimensions L, and L,. As the mean flow direction is the x
axis, L, and L, are respectively longitudinal and transversal to the mean flow
direction. The porous medium, assumed isotropic, is characterized by a random
hydraulic conductivity field K, which follows a stationary log-normal probability
distribution Y = In(K), defined by a mean m and a covariance function C' given
by
_ 2 |7
C(r) = o*exp(~ 1),

where 02 is the variance of the log hydraulic conductivity, |r| represents the
separation distance between two points and A denotes the correlation length
scale. The length A is typically in the range [0.1m, 100m] and the variance o2 is
in the interval [0, 7]. These two ranges encompass most of the generally studied
values.

Classical laws governing the steady flow in a porous medium are mass con-
servation and Darcy law

eV =—KVh, V.V =0

where € is the porosity, V is the Darcy velocity and h is the hydraulic head.
Boundary conditions are homogeneous Neumann on upper and lower sides and



Dirichlet h = 0 on left side, Dirichlet h = 1 on right side. The system should
not be too much elongated in order to avoid border effects. We denote by U the
mean velocity norm.

An inert solute is injected in the porous medium and transported by advec-
tion and dispersion. This type of solute migration is described by the advection
- dispersion equation

d(ec)

7 + V.(€CV) - V.(EDVC) =0

where c is the solute concentration and D is the dynamic dispersion tensor. Here,
we assume a constant porosity € = 1 and we consider only molecular diffusion,
assumed homogeneous and isotropic, with a tensor

D = D,,I

where D,, is the molecular diffusion coefficient and I denotes the unity tensor.

Boundary conditions and an initial condition complete the transport equa-
tion. The initial condition at ¢ = 0 is the injection of the solute. In order to
overcome the border effects, the inert solute is injected at a given distance of the
left side. The ratio of diffusion to advection is measured by the Peclet number
defined by
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with a typical range of [100, co], where oo means pure advection. This range cov-
ers advection-dominated transport models, whereas diffusion-dominated models
require smaller values.

2.2 Numerical flow

The flow equations are discretized on a regular grid using a classical Finite Vol-
ume scheme. Let A, and A, the mesh sizes in each direction. The number of
cells in each direction is given by n, = L,/A; and ny = L,/A,, with a total
number N = nyn,. The linear system Az = b, obtained from the discretization
of flow equations, is characterized by a sparse symmetric positive definite matrix
A of order N, with a pentadiagonal structure. The solution x is the discrete hy-
draulic head and the right-hand side b represents Dirichlet boundary conditions.
We solve this sparse linear system by an algebraic multigrid method, with the
procedure Boomer-AMG of the Hypre library [4] and we get very good parallel
performances.

2.3 Numerical transport: particle tracker

The inert solute transport is simulated by a particle tracker algorithm whose
key advantages for this study are the absence of numerical diffusion and the



good performances. In this Lagrangian framework, the solution of transport
equation consists in evaluating the trajectory of particles [10],[2]. These paths
are represented by the Stochastic Differential Equation

dX =Vdt + /2D, dW

where X is the position of the particle and dW is a Brownian motion process.

Using a first-order explicit scheme for the discretization of transport equation,
between a time ¢ and a time ¢ + At, a particle moves at each timestep according
to the equation

X(t+ At) = X(t) + VAt + /2D, ZwV At

where Z is a random number drawn from a Gaussian distribution of mean 0 and
variance 1 and w is a unitary vector with uniformly distributed orientation. The
timestep At evolves along the particle path according to the velocity magnitude
of the crossed cells. More precisely, the timestep is either proportional to the
diffusion time necessary to cross the cell or to the local advection time, which
is equal to the cell size divided by the minimum of the velocities computed on
the cell borders in both directions. Within each cell, particle velocities V are
obtained by a bilinear interpolation of the boundary velocities, because it is the
sole interpolation method that respects mass conservation. No-flux boundaries
are maintained by bouncing particles off of the boundary. At the free outflow
boundary (the right side), particles are allowed to naturally flow out of the
domain. The algorithm finishes when all the particles have quit.

2.4 Macro-dispersion analysis

The main objective of our study is to evaluate the temporal macro-dispersions
D, (t) and D, (t) in both directions and their asymptotic value when ¢ becomes
infinite [1]. Let (2, (t), ym(t)) the coordinates of the computed trajectory of a
particle and let N, the number of particles. As long as the particles are in the
domain, the total mass is constant. The center of mass of the solute distribution
in the longitudinal direction is approximated by the first moment

Np

7(t) = Ni S ()

m=1

and the spread of mass around T is approximated by the second moment

NP
S, (t) = NL,, > wm(t)’ - T(t)%.

Then the temporal longitudinal macro-dispersion is defined by

Da(t) = dz” (®),




with time derivatives approximated by a first-order Taylor expansion. The trans-
versal macro-dipsersion is defined in a similar way.

Asymptotic behavior can be obtained only at very large times. In order to
keep all the particles in the domain during long simulated times, the dimensions
L, and L, must be very large. Therefore, high performance computing is re-
quired to deal with these computationally intensive simulations. Also, memory
requirements are very high and data must be spread from the beginning in a
distributed memory architecture.

3 Parallel particle tracker

We have designed a parallel algorithm for parallel distributed memory architec-
tures. We use a SPMD model of programmation, where all processors execute
the same program (with conditional statements using the processor number).
Communications are based on the message-passing interface provided by the
MPI library. In the particle tracker currently used, the particles do not interact
so each trajectory can be implemented in a parallel independent process. This
is a classical efficient approach, see for example [6]. However, our objective is to
run simulations on very large computational domains so we need to distribute
data in order to use all memory resources. Therefore, we choose to use a domain
decomposition approach, where the velocity field is distributed among proces-
sors. Actually, we use the domain decomposition and data distribution arising
from permeability generation and flow computation [3]. This methodology is
also classical, see for example [7]. Each subdomain is assigned to one processor,
which computes the trajectory of the particles inside the subdomain owned by
it. Communications with processors owning neighboring subdomains must oc-
cur when particles exit or enter the subdomain. This is achieved by means of
SEND and RECYV operations. We choose non blocking SEND operations so that
each processor can first proceed with sending then with receiving. The algorithm
must ensure a correct ending, when all particles have left the computational do-
main [8]. It must also guarantee that the sending buffers are empty when new
SEND operations are executed. For these reasons, we choose to add a global
synchronisation point after the exchanges of particles. This point allows defining
a global state where each processor knows the total number of particles still in
the domain. By the way, it guarantees that all RECV operations have been suc-
cessful and that the algorithm may execute new SEND operations. Thus neither
deadlock nor starvation may occur and the algorithm terminates safely.

A difficulty is to balance the computational load between the processors. A
specificity of our application is the initial localization of the particles. Indeed, at
their initial stage, all particles are on the left part of the domain. If the master
processors owning the subdomains with the initial particles launched all parti-
cles, then all other processors would be idle, waiting for particles entering their
domain. For example, if we divide the domain into slices, most of the proces-
sors have two neighbors, on the left and on the right. If the master processor



launched all particles together, parallelism would not be efficient at all since only
one processor would be active while others would be idle.

Therefore, we have designed a parallel algorithm well-suited for our partic-
ular case. We take advantage of the independence of the particles and launch
them by bunches. The idea is to initiate a pipeline of particles from the left to
the right. At each global synchronisation point, the master processors inject a
new bunch of particles, until all particles have been injected into the domain.
All processors track the particles in their subdomain, then exchange particles
on their boundaries, finally synchronize globally to define the total number of
particles in activity. Let us consider as an example the case of a constant velocity
field and a transport by pure advection, with a slice decomposition. Then after
initiating the pipeline, each processor owns a bunch of particles between two
synchronisation points, until draining the pipeline. Thus computations are well-
balanced. In the general case, it is not so easy to predict the computational load.
Two main factors will impact the parallel algorithm: the heterogeneity and the
diffusion. Heterogeneity is measured by the variance of the permeability field,
whereas diffusion is measured by the Peclet number.

4 Numerical Results

4.1 Numerical experiments

We have developed a fully parallel object-oriented software which provides a
generic platform to run Monte-Carlo numerical simulations of flow and trans-
port in highly heterogeneous porous media. The software is divided into three
main modules, respectively dedicated to the generation of the permeability field,
the computation of flow and velocity, the computation of transport and disper-
sion coefficents. This modularity allows a great flexibility and portability. The
software is written in C++ and can be implemented on machines with Unix,
Linux or Windows systems. Graphical functions are written with OpenGL and
parallel programming relies on the MPI library. The software integrates open-
source components such as sparse linear solvers for flow computation.

In this paper, we show the results of various experiments with the parallel
particle tracker. All tests are performed on a SUN cluster composed of two nodes
of 32 computers each. Each computer is a 2.2 Ghz AMD Opteron bi-processor
with 2 Go of RAM. Inside each node, computers are interconnected by a Gigabit
Ethernet Network Interface, and the two nodes are interconnected by a Gigabit
Ethernet switch (CISCO 3750). This cluster is a component of the Grid’5000
computing resource installed at INRIA in Rennes. Experiments are done with a
variable number of processors P.

The different parameters and their values are summarized below:

Az = Ay =1, ) = 10, N, = 1000,
L, = L, € {512,1024, 4096, 8192},
o€{05,1,2,2.5,3},

Pe € {10,100, 1000, o0},

P e {1,2,4,8,16,32,64}.
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Fig. 1. Convergence analysis: longitudinal and transversal dispersions for varying num-
ber of particles N,. Pure advection Pe = oo (left) and advection-diffusion Pe = 100
(right); heterogeneous case o = 2.5. Large domain size L, = L, = 8192.

We have done other experiments with different values of A and the choice A\ =
10 is a good tradeoff between the accuracy of the numerical model and the
computational cost. We analyse and comment below with more details the choice
of the number of particles N,. The values o0 = 3 and Pe = 10 are out of scope
in geological surveys but we include them in order to check the behavior of
our algorithms with extreme values of the parameters. All other values have a
strong interest for geological study. The dimension L, = 8192 of the domain is
the target value, in order to get with no ambiguity the asymptotic values of the
longitudinal and transversal dispersion coefficients. Other dimensions are useful
to analyze the complexity and the scalability of our parallel particle tracker.

4.2 Convergence analysis

Clearly, the CPU time of transport computations is proportional to the number
of particles N, so that this number must be kept low, still ensuring a good
convergence of the dispersion coefficients. Therefore, we study the convergence
of the dispersion coefficients with the number of particles, in order to choose an
optimal number. In Figure 1, we plot the temporal dispersions D (t) and D,(¢)
for various values of N,. We find out that the value N, = 1000 is a good tradeoft
between convergence and performance. We show only the cases Pe = oo and
Pe =100 with o = 2.5 and with L, = L, = 8192, but other results are similar.

4.3 Performance analysis

In Figure 2, we plot the CPU time versus the number of processors for two Peclet
numbers Pe = 0o, Pe = 100 and for two domain sizes L, = 1024, L, = 4096.
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Fig. 2. Performance analysis: CPU time versus the number of processors P. Pure
advection Pe = oo (left) and advection-diffusion Pe = 100 (right); small size L, =
L, = 1024 (top) and large size L, = L, = 4096 (bottom).

In the pure advection case, we can observe good performances for any value
of the heterogeneity parameter 0. The CPU time increases slightly with ¢ and
performances slightly deteriorate for large . From the small to large domain
size, the performances improve clearly. The CPU time is significantly reduced
from 8 to 16 processors with the large size L, = 4096. In the advection-diffusion
case with Pe = 100, the trends are similar. However, CPU times are much
higher, because the particle tracker includes a random diffusion motion, with
generation of random numbers at each timestep. Moreover, the simulated time
is larger because the particles stay longer in the domain before reaching the
exit at the right side. Performances are not so good with large values of the
heterogeneity and the small domain size. A possible reason is some imbalance
of work in the parallel algorithm, inducing idle time for some processors. This
effect almost disappears for the large domain size and the CPU time decreases
from 16 to 32 processors for any kind of heterogeneity.

In order to study scalability issues, in Figure 3, we plot the speed-up versus
the number of processors. Because large domain sizes cannot fit in the memory of
2 processors, we compute the speed-up from P = 4 with a speed-up arbitrarily
equal to 4 for P = 4. We conclude that our parallel particle tracker is quite
efficient and is reasonably scalable.
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Fig. 3. Scalability analysis: speed-up versus the number of processors P. Pure advection
Pe = oo (left) and advection-diffusion Pe = 100 (right); heterogeneous case o = 2.
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Fig. 4. Impact of diffusion (left) and of heterogeneity (right). Dimension L, = L, =
8192. Number of processors P = 32.

4.4 Results for large-scale simulations

The dispersion coefficients and their asymptotic values are computed on a large
domain size, in order to avoid border effects and to get large simulated times.
All the simulations are now done with this large size L, = L, = 8192 and with
P = 32 processors. Figure 4, left, plots the CPU time versus the Peclet number
for the different kinds of the heterogeneity. Down to Pe = 100, CPU times are
not too high. Clearly, the CPU time blows up for the small value Pe = 10,
indicating an exponential-like behavior. Thus, another numerical model should
probably be used for diffusion-dominated transport equations. Indeed, a method
such as a Finite Volume method could be relevant since numerical diffusion would
not be such an issue. In the range of interest of advection-dominated equations,
the particle tracker remains a good choice, efficient for both cost and accuracy.
Figure 4, right, plots the CPU time versus the heterogeneity coefficient o for
the different Peclet numbers. The CPU time increases slightly but the largest
time is less than twice the smallest time. Therefore, our particle tracker is very
well-suited and efficient for all values of interest for the heterogeneity.

5 Conclusion

We have developed a fully parallel software for simulating flow and solute trans-
port in highly heterogeneous porous media. In this paper, we describe an original



parallel particle tracker, which relies on both the independence of particles and
a subdomain decomposition. The performances for a whole range of parameters
show that our algorithm is efficient and robust. We could run simulations at
very large spatial and temporal scales and get with no ambiguity the asymptotic
dispersion coefficients. We plan to extend this work to 3D simulations.
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