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Abstract. In this article, we introduce a way to distribute an index
database of XML documents on an unstructured peer-to-peer network
with a flat topology (i.e. with no super-peer). We then show how to
perform content path query routing in such networks. Nodes in the
network maintain a set of Multi Level Bloom Filters that summarises
structural properties of XML documents. They propagate part of
this information to their neighbor nodes, allowing efficient path query
routing in the peer-to-peer network, as shown by the evaluation tests
presented.

1 Introduction

There is a growing need for large databases of semi-structured documents and
this raises management and querying problems that are specific to this kind of
data. XML [1] is a standard for semi-structured document encoding. Building
an index database allows to speed up the querying process [2] and in general
this database is larger than the database itself. Distributing the index database
allows to store and manage a larger amount of information.

Peer-to-peer (P2P) systems can be used to manage XML data [3]. They can
have different architectures. Napster [4] for instance is a centralized P2P network
that was very popular in the early 00’. The use of a central repository to answer
queries makes this system poorly scalable and vulnerable to failure. Others P2P
systems don’t rely on a central server : they are decentralized, thus they are very
scalable, and fault tolerant. They are divided in two categories.

First, structured P2P networks link network topology and location of data.
Most of them implement a Distributed Hashtable (DHT) [5–9] and provide one
basic operation : given a key, they map the key to a node. This is performed by
using a distributed hash function. They use content routing to forward the key
to the corresponding node. They are very well suited to retrieve rare information
(i.e. with a low number of replicas). Their main limitation is that it is very costly
to perform range and approximative queries, because hashing destroys the order
on keys. Data clustering on those systems is mostly delicate, as data placement
is given by the hash value of keys.



Second, unstructured P2P networks have no constraint between location of
data and network topology. Gnutella [10] is an example of such working system.
Query forwarding can be achieved either by flooding [11] - consuming a lot of
bandwidth - or by random walk : a path is selected randomly according to a
uniform distribution. They are suited to retrieve highly replicated data, but
have limitations for rare information retrieval. Data clustering on such systems
can be achieved because there is no constraint on data placement. Nowadays,
most of the P2P systems used have a decentralized unstructured topology.

Our current work focuses on indexing XML data and distributing the index
database. As we need to be able to perform approximative path queries, we
choose an unstructured P2P architecture. The primary purpose of the nodes on
the network is not to manage this index database. They all may have to set
aside the management of the database if a user would need the resources on this
node for his own purpose. For this reason our P2P network don’t have super
peers. The use of an unstructured P2P architecture allows us to have a network
topology as close as possible to the physical topology and can lead to use less
network resources. As we need to be able to perform path queries from all nodes
of the network, we need a mecanism to route path queries. In this article, we
describe a scheme based on the use of exponentially decaying multi level Bloom
filters to address this problem.

Section 2 recalls previous work, section 3 presents our system, section 4 shows
our experiments and section 5 talks about possible future work.

2 Related Work

2.1 Unstructured P2P routing mechanisms

Many studies have already dealt with this problem. For instance, the problem
of routing path queries in unstructured peer to peer network has been tackled
by [12–14]. However they all consider hierarchical topologies with super-peers,
which we want to avoid for the reasons stated previously.

A hybrid search mechanism has been proposed [15] to achieve routing for both
common and rare items. This system uses flooding to locate highly replicated
information and a DHT to locate rare information.

Random walk efficiency can be improved while launching k similar queries.
k-random walk has been proposed by [11] that improves query response rate
with little network trafic.

Distributed-index mechanisms can improve the efficiency of content routing.
Different Routing Indices (RI) have been proposed by [16] : compound, hop-
count and exponential. Various kinds of Bloom filters [17] have been used to
encode these distributed indexes.

Attenuated Bloom filters have been proposed by [18]. Exponentialy Decaying
Bloom Filter (EDBF) has been proposed by [19] and Multi-level Bloom Filter
(MLBF) has been introduced by [12]. Both are presented later in this article.



2.2 Bloom filters

A Bloom filter [17] is a data structure that answers approximatively to set mem-
bership queries. It is made of an array of m bits and k hash functions h1, ..., hk,
as shown in figure 1.

Fig. 1. Insertion of an element x in a Bloom filter of length m=16 and k=4 hash
functions.

When no element has been inserted into the filter, all bits are set to 0. When
an element x is inserted into the filter, all bits given by the k hash functions
hi(x) are set to 1 with a classical bitwise-or operation. A test membership of an
element to a set is answered by checking that all the bits given by the k hash
functions are set to 1.

False positives are possible but false negatives are not. The probability of
having a positive answer for an element not belonging to the filter, with n being
the number of elements inserted in the filter, is (1 − (1 − 1

m )nk)k.
More elaborated Bloom filters have been proposed [18, 20–22]. For instance

Counting Bloom Filter (CBF) [23] allows the removing of elements from the
filter. In those filters, the array of bits is replaced by an array of integer, each
of them acting as a counter. Inserting an element is performed by increasing
integers given by the k hash functions. Removing an element is performed by
decreasing those integers. A set membership query is answered by checking that
all integers are strictly positives.

Exponentialy Decaying Bloom Filter (EDBF). This filter has been pro-
posed by [19]. Introducing an element is performed as in a classical Bloom filter.
However, querying for an element x gives the number θ(x) of bits equal to 1.
Thoses filters are then used to encode probabilistic routing tables, in which θ(x)

k
is the probability to find element x among a given link in the network (Each
node maintains a filter for each neighbor he has). This probability decays ex-
ponentially with the number of hops (or node transitions) from the node where
the element x is stored.

Nodes update their filters periodically. The filter for one neighbor is updated
with the information attenuated from all other neighbors and the information
without attenuation from the local EDBF of the node. The attenuation is per-
formed by resetting each bit to 0 with a probability 1/d, where d is the decay of
the filter. The aggregation of information corresponds to a bitwise-or operation.



Multi Level Bloom Filters (MLBF). It has been introduced by [12]. The
main idea they propose is to use a set of Bloom filters to describe structural
properties of set of XML documents. There are 2 sets of Bloom filters : Breadth
Bloom Filters (BBF) and Depth Bloom Filters (DBF), as shown in figure 2.
A BBF is composed of i Bloom filters {BBF1, ..., BBFi}. Inserting an XML
document is performed by inserting all nodes of level l in BBFl. A DBF is
composed of j Bloom filters {DBF1, ..., DBFj}. Inserting an XML document
is performed by inserting all subpath of length l in DBFl. According to the
authors, BBF works better than DBF in general case, but the last can drive
path queries with ancestor-descendant relationships.

(a) DBF (b) BBF

Fig. 2. Multi level Bloom filter with a BBF and DBF of size 3. Each subfilter has a
length m=16 and k=4 hash functions. This figure illustrates the insertion of the path
”article/body/chapter” in both filters.

To perform routing, nodes are then clustered in a hierarchical organization.
A set of nodes are designated as root nodes, according to their storage and
processing capabilities, and are connected to a main channel that allows them
to communicate between themselves. Each root node has a merged filter that
contains all the elements in its children peers and a local filter that contains
elements hosted on this node. When a root node receives a query, it first checks
its local filter. It then propagates the query to its children if there is a hit in its
merged filter.

A hierarchical organization is adapted to a network of nodes with different
processing and storage capabilities. However, our system is designed to work on
a network in which nodes will have varying processing and storage capabilities.
For this reason, we can’t have a hierarchical topology and need a mechanism to
drive path queries in a random graph like topology. EDBF have proved to be
efficient in such topologies but can’t drive path queries. Next section presents
our system that perform path query routing in a random graph like network
topology using an exponentially decaying version of MLBF.



3 System design

3.1 Path indexing scheme

Each node of the network performs the indexing of a part of the set of XML
documents. For each XML document, paths leading to content are indexed in a
hashtable, using the QDBM library [24].

Each node carries a BBF of size l and a Reverse Breadth Bloom Filter
(RBBF) composed also of l Bloom filters {RBBF1, ..., RBBFl} of size l. For
each path P of length k, P = /e1/.../ek/ and ∀i ∈ [1, . . . , k] we insert ei in
BBFi and RBBFk−i. For each node, BBF and RBBF are made of CBF, so that
elements can easily be removed.

We don’t use DBF for two reasons. First, according to [12], they are less
efficient than BBF. Second, they cannot be used efficiently to drive path queries
containing unknown elements. For instance, let us consider a query such as
/A/?/C/. This query can be driven using information in the first and third
level of the BBF, whereas only information in the first level of the DBF (paths
of length 1) can be used.

Fig. 3. Example of filter settings on a node with 2 neighbors. BBF and RBBF have a
size of 3

We encode probabilistic routing table using an exponentially decaying version
of BBF and RBBF. Thus, each node has two filters for each neighbor, as shown
in figure 3. Updating the filters is performed as described in [19].

3.2 Querying mechanism

The query language we consider is a subset of the XML Path Language (XPath)
[25]. Let E be the set of all XML element names. Let ”?” be a don’t care
element and E? = E ∪ {”?”}. Let S be the set of relationship symbols, S =
{”/”, ”//”}. ”/” describes a parent-child relationship, and ”//” describes an
ancestor-descendant relationship. ”/” is a particular case of ”//”. A path query
P of length k is defined as a word on E? ∪ S, with P = s0 e1 s1 ... ek sk, where
ei ∈ E? and si ∈ S. /e1 stands for the root element. We assume each local node
has a mechanism to answer queries exactly. Either the begining or the end of
the searched paths must be known, thus s0 and sk cannot be at the same time
both ”//”.



Let P be a path query containing no ”//” relationship, P = /e1/.../ek/. Let
Q(F, x) be the query response of the presence of the element x in the filter F .
Querying MLBF is performed as follows :

Q(BBF,P ) = Q(BBF1, e1).Q(BBF2, e2) . . .Q(BBFk, ek) (1)
Q(RBBF,P ) = Q(RBBF1, ek).Q(RBBF2, ek−1) . . . Q(BBFk, e1) (2)

Querying counting filters return true or false (exact query), and the ”.” in
equations 1 and 2 stands for the logical AND. Querying exponentially decaying
filters return a result in [0, 1] (approximative query), and the ”.” in equations 1
and 2 stands for the product.

MLBF querying is performed by querying BBF and RBBF. If the path query
contains ”//”, the subpath before the first ”//” is answered by BBF and the
subpath after the last ”//” is answered by RBBF. If the path query contains
only parent-child relationships, the whole query is answered by both filters. The
global result is then given by the product (exponentially decaying filters) or the
logical AND (counting filters) of the results given by BBF and RBBF.

3.3 Clustering

Clustering similar data increases routing efficiency for two reasons. First, it al-
lows to speed up approximative and range queries. As similar information is
located on neighbor nodes, it reduces communication and minimizes resources
requirement. Second, it decreases the number of bits set to 1 in Bloom filters.
This leads to a better discrimination between filters and increases gradient rout-
ing performance.

There are two ways to perform clustering : node and data clustering. The
former aggregates nodes with similar content, while the latter aggregates data
that are closed on the same node. As we would like to have as few constraints
as possible on nodes, and especially on the network topology, we perform data
clustering. Our algorithm clusters similar XML documents on the same nodes
or on neighbor nodes.

Let P = /e1/.../ek/ a path of length k. We define for the node N :

ψ(N,P ) = |{i ∈ [1, . . . , k]/BBFi(ei) = true}|
+ |{i ∈ [1, . . . , k]/RBBFk−i(ei) = true}|

ω(N,P ) = ψ(N,P ) +
∑

x∈neighborhood N

ψ(x, P )

S(N) : a linear function of the space available on node N
DN : the set of XML paths stored in N

Our clustering algorithm works as follows : each nodeN launches periodically
an agent. This agent contains a copy of an XML path P taken at random from
DN and the indexing information related to this path, a Time To Live (TTL),
a reference to the node N , and the score of the node N for this path P . This
score is given by the product ω(N,P ).S(N).



The agent moves to a random neighbor until his TTL reaches 0 or until it
finds a node with a better score for the path P . He keeps track of the sequence
of visited nodes. If a better node is found, the path P and related indexing
information is moved from the agent to that node, and then a deletion message
for this path and the associated information is sent to the original node N using
routing information stored by the agent. If the node already stores the path P ,
indexing information is merged. If the TTL reaches 0 the agent is discarded, and
the path P remains on the node N .

3.4 Query forwarding

Query forwarding is performed using the Scalable Query Routing algorithm
(SQR) proposed by [19]. If the query is forwarded for the first time from a
node, it is sent to the neighbor with the highest score when querying the expo-
nentially decaying MLBF of the link to this neighbor. If the query has already
been seen, it is forwarded to a random neighbor.

As we only use Breadth Bloom Filters, there is no relation between the el-
ements that compose a path. For instance, if the paths /book/chapter/ and
/article/abstract/ are inserted into the MLBF, it will answer true for the paths
/book/abstract/ and /article/chapter/, even if they are not in the filter. How-
ever, because of our clustering algorithm, if such paths exist, they will likely be
in the same node, or in the neighborhood of the node.

4 Experiments

Experiments have been made with a simulation written in java. The settings of
these experiments can be found in table 4. In those experiments, information
was not replicated. A subset of the wikipedia collection from INEX 2006 [26, 27]
containing 260000 XML documents has been used. We used a stoplist containing
commons elements, such as ¡article¿, and small length elements, like ¡b¿ used
for bold text. We removed all those elements in the paths we indexed. For these
experiments, we made comparisons with random walk rather than with flooding,
because it would be too costly to retrieve information located far away from the
query source.

Figure 5 show the evolution of the number of paths moved, the number of
indexed paths and the filters occupation. Merging similar paths on the same
nodes allows to lower the number of bits set to 1 in filters by a factor of 3.
Our algorithm converge to a minimum, as the number of paths moved gradually
get closer to 0. The comparison of routing efficiency for path queries between
SQR and random walk has been performed by averaging 1000 different queries
launched 20 time each. We used an hop count measure instead of a TTL one
because the computer used could have varying CPU or memory resources (for
these experiments).



Parameter Value

Number of nodes 200
Node degree 3 - 8
XML documents per node 1300
Length of filters 213

Size of BBF and RBBF 3
Number of hash functions 32
Decay 8

Fig. 4. Experiment settings
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Fig. 5. Impact of clustering.
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(a) Path queries with 2 elements.
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(b) Path queries with 3 elements.
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(c) Path queries with an ancestor-descendant relationship be-
tween 2 elements.

Fig. 6. Comparison of routing efficiency between SQR and random walk.



Figure 6(a) shows the comparison of routing efficiency for 2 elements path
queries and figure 6(b) for 3 elements path queries. There is a difference between
the 2 random walk measures because path queries with 1 unknown element (for
instance /document/?/) cover more paths than path queries with no unknown
element (for instance /document/book/). However, as the hop count limit in-
crease, the 2 SQR measure get closer, as having no unknown element provide
more information for routing.

Figure 6(c) shows results with 2 elements path queries, linked by an ancestor-
descendant relationship (for instance /document//paragraph/). Although per-
formances are a bit lower than those with 2 elements path queries containing
only parent-child relationships, there still a good increase of routing efficiency.
For instance, 70% of queries can be answered with a hop count limit two times
lower than with random walk.

5 Conclusion and future work

We have introduced a way to perform stochastic approximative path query rout-
ing in an unstructured P2P network. We have shown that with our clustering
algorithm, SQR outperforms random walk to forward simple approximative path
queries. Filters used for routing can be maintained at low cost, as we can control
the frequency of the updates, and because Bloom filters use few memory.

Further research efforts are required to be able to drive more elaborated path
queries. Furthermore in our experiments information was not replicated. We will
study the impact of information replication to see how SQR performs with path
query through multiple data replica. For the time being, our simulator works on
a single computer. We plan to distribute our application on a cluster to be able
to perform testing on much larger XML databases.
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