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Abstract. The process of obtaining useful message passing applications
tracefiles for performance analysis in supercomputers is a large and te-
dious task. When using hundreds or thousands of processors, the tracefile
size can grow up to 10 or 20 GB. It is clear that analyzing or even stor-
ing these large traces is a problem. The methodology we have developed
and implemented performs an automatic analysis that can be applied to
huge tracefiles, which obtains its internal structure and selects meaning-
ful parts of the tracefile. The paper presents the methodology and results
we have obtained from real applications.

1 Motivation and Goal

In the recent years, parallel platforms have amazingly increased in performance
and in number of nodes and processors. Thus, the study of the execution of
applications in these platforms has become a hard and tedious work. A complete
timestamped sequence of events of an application, that is, a tracefile of the whole
application, results in a huge file (10-20 GB). It is impossible to handle this
amount of data with tools like Paraver [1]. Also, often, some parts of the trace
are perturbed, and the analysis of these parts can be misleading. A third problem
is the identification of the most representative regions of the tracefile.

To reduce tracefiles sizes, the process of application tracing must be carefully
controlled, enabling the tracing in the interesting parts of the application and
disabling otherwise. The number of events of the tracefile (hardware counters,
instrumented routines, etc...) must be limited. This process is tedious and large
and requires knowledge on the source code of the application.

For these reasons, several authors [8,9] believe that the development and
utilization of trace based techniques is not useful. However, techniques based on
tracefiles allow a very detailed study of the variations on space (set of processes)
and time that could affect notably the performance of the application. Therefore,
there is a need for developing techniques that allow to handle large event traces.

The goal of our approach is to start from very large tracefiles of the whole
application, allowing simple tracing methodologies, and then analyzing them
automatically. The underlying philosophy is to use resources that are generally
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available (Disk, CPU, ...) in order to avoid spending an expensive resource: ana-
lyst time. The tool we have implemented will, first, warn the analyst about those
parts of the trace perturbed by an external factor not related to the application
or to the machine itself. Second, the tool will give a description of the internal
structure of the application and will identify and extract the most relevant parts
of the trace.

There are other approaches to either avoid or handle large event traces.
KOJAK [2] is a tool for automatic detection of performance bottlenecks and in-
efficient behavior. Our methodology could be applied before KOJAK to reduce
the size of the tracefile. VAMPIR Next Generation tool (VNG) [3,4] consists
of two major components: A parallel analysis server and a visualization client,
each of them executed on a different platform. An important VNG feature is the
utilization of the data structure Complete Call Graph (CCG). It holds the full
event stream including time information in a tree. It is also possible to compress
the CCG into a compressed Call Graph (cCCG) in order to achieve a compressed
representation of trace data. Compression errors can be maintained in a given
range. Finally, the main goal of VNG is to make huge event traces accessible
for interactive program analysis. Therefore, the VNG approach is different from
ours since it does not perform an automatic analysis of the internal structure
of the event traces. Related to VNG, there is another tool called DeWiz [5]. It
is based, as VNG, on the event graph model. Two important characteristic of
DeWiz are modularity, which enables it to be executed in distributed computing
infrastructures, and automatic analysis, which enables it to detect significative
information on the event graph. However, DeWiz is unable to find event based
structure since it works using graph based methods. In that context, our work
satisfies the need for an automatic performance analysis based on structural
properties of the application. Furthermore, these structural properties of the ap-
plication are event based and, for that reason, they have clear physical meaning.
Other previous work in [6] presents a proposal for dynamic periodicity detection
of iterations in parallel applications.

The paper is organized as follows: First, an explanation of the methodology
we have developed and implemented is presented in Section 2. Next, a presen-
tation of the results we have obtained using this methodology is described in
section 3. Finally, conclusions and future work are shown in Section 4.

2 Methodology

The starting point is a Paraver tracefile generated with OMPItrace package
[11]. This tracefile consists of a complete timestamped sequence of events of the
whole execution of an application. The first problem we consider is the detection
of perturbed regions of the tracefile. The second phase consists in a search for
the internal structure of the trace, based on periodicities. In those two phases,
we will use signals to characterize properties of the tracefile. Both phases will
be handled using techniques of signal processing. Mainly, we will use non-linear
filtering in both phases and spectral analysis in the second one.



2.1 Clean-up

In this phase, our tool performs an analysis oriented to the identification of the
perturbed regions of the tracefile. By perturbed regions we mean those regions
with distorted relative timing behavior of the application being analyzed. In [7]
is shown a detailed discussion about these distortions. Furthermore, all these
perturbations have a common characteristic: They are neither caused by the
application nor the architecture. They are caused by external factors such as
tracing packages, unknown system activity, etc. Different phenomena or metrics
can be identified as being the cause of a significant perturbation of the program
behavior. An example of those phenomena is flushing, which is caused by the
fact that tracing packages keep individual records in a buffer in memory during
the tracing process. The problem is that when the buffer is full, these records will
have to be flushed to disk. This flushing will take a significative time, will affect
the execution and the statistics derived from the tracefile. Also, the flushing
does not appear simultaneously in all the processes although it is typical that
the flush of the different processes occur in bursts.

Identifying perturbed regions The flushing phenomenon will be character-
ized by a signal indicating for each instant of time the number of processors
flushing to disk. We derive that signal from a Paraver tracefile that contains
flushing events, indicating when each process starts and finish the flushing to
disk. Figure 1 shows an example of a flushing signal. In this kind of signals
we frequently observe interleaved small bursts with flushing peaks and periods
without flushing. The tracefile is perturbed not only during flushing but also in
instants right after flushing peaks. Therefore, we want to consider the bursts of
flushing as a single perturbed region.

With this objective, we will use a set of morphological filters, defined in the
context of Mathematical Morphology. These filters are non-linear and are based
on the minimum and maximum operations, aiming at the study of structural
properties of the signal. The two basic morphological filters are Erosion and
Dilation. The first has the property of eroding those regions of the signal with
values different to zero. The second filter has the property of dilating the regions
of the signal different to zero. Both operators have associated a width that has
to be specified before the filter is applied. If we combine the two operators
doing a Dilation followed by an Erosion we obtain an interesting result: First,
the Dilation will merge the small regions with their larger or nearby neighbors.
After that, the Erosion will allow us to return towards the initial signal, except
in the cases that two different regions have been merged by the Dilation. With
this combination, we obtain a new morphological operator called Closing. figure
2 shows the result of performing a Closing to the signal represented in figure 1.
Note that the small regions that appear in figure 1 have been merged into larger
region. The fundamental concepts and the formal definitions of Mathematical
Morphology are described in [15].

In summary, following the methodology described in this section, we do three
steps: First, we generate from the initial tracefile a signal, for example the num-



ber of processes flushing to disk. Second, we apply a Closing in order to merge
the pulses of the signal that are too close in an unified burst. The width asso-
ciated to the Erosion and the Dilation are the same. Its choice is based on the
minimum span of time we consider useful for the analysis. The pulses of the
resulting signal indicate which are the perturbed (thus, useless) regions of the
tracefile and the areas of the signal that equals zero indicate which are the non-
perturbed regions. Finally, the process of identification of structure explained in
the next section is applied to the non-perturbed regions of the trace.
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Fig. 1. Signal before closing Fig. 2. Signal after closing

2.2 Structure

There are two main characteristics about the structure that we will look for in a
trace. First, the periodic structure is based on the identification of several differ-
ent trace regions that are very similar. Furthermore, we will say that two trace
regions are very similar if the signal that represents a metric is very similar in
the two regions. Another approach based in this type of structure is presented in
[17]. The second main characteristic we look for is the hierarchy of the periodic-
ities. The periodic structure will be expressed in different levels: The first level
is the structure within the original trace, the second level of periodicities is the
structure within one period of the first level, and so on. In order to obtain that
hierarchical structure, our algorithm will be recursive, i. e., when the internal
structure of one level is detected, we will apply again the algorithm within one
period of that level.

The information derived from this hierarchical structure based on periodici-
ties is useful in, at least, two aspects. First, our tool will show the structure to
the analyst as a first approach to the execution of the application under analysis.
Second, the tool will provide the user with chunks of traces which are cut from
the original trace. These small traces are representative parts of the original
trace at different levels of the structure.

These chops of the original tracefile will allow an accurate analysis, but the
tool is also reporting several metrics (percentage of time in MPI [10], ...) for
each of the regions to give a first approach to the performance obtained by the
application.



Metrics There are many metrics that can be used to identify periodicities.
Indeed, any user function correctly defined can be considered to generate a signal
that describes several aspects of the execution. The limitation is that there are
metrics that need some information not always included in the tracefile. The
instantaneous MFLOPs ratio might be representative of the program structure,
but needs hardware counters. If these counters are not included in the original
tracefile, it will be impossible to generate the signal. Several examples of metrics
that can be used without hardware counters and that can capture the global
structure of the application are the following:

Number of MPI Point to Point Calls. This metric is represented by a signal
which indicates how many MPI Point to Point Calls are being executed in
a given moment.

Number of MPI Collective Calls. Very similar to the above metric, but
considering MPI Collective Calls.

Specific MPI Call. This metric is represented by a signal which says how
many calls to a specific MPI function are being executed in a given moment.

Autocorrelation To find the internal structure of the application we apply the
Autocorrelation function [14], to the signal generated from the tracefile:

N —

AR) = 3 (@ — ) (@i — 1) 1)

=0

Ju

where p is the arithmetic mean of the set {x;}. This set is generated sampling
the signal obtained from the tracefile. The higher values of the function A(k)
will be reached when k is equal to one of the main periods of {z;}. However, for
accuracy reasons [14], the numerical values of A(k) are not obtained following
(1). It is possible to obtain the value of A(k) function performing, first, a Discrete
Fourier Transform (DFT) and, after that, an Inverse Discrete Fourier Transform
(IDFT) taking the square of the modulus of each spectral coefficient obtained
with the DFT [14]. This method can we implemented using a FFT library. An
important feature of FFT is its computational complexity, O(n log(n)), which
allows us to calculate the values of A(k) in reasonable time.

Periodicities Once we have the values of the Autocorrelation function, the prin-
cipal periodicities are selected [18]. We will select the maximum of the relatives
maximums. In other words, the period we select, T', will satisfy the following:

A(T) = Max{A(k)|A(k — 1) < A(k) > A(k+ 1),k > 0} (2)

A remarkable point here is that it is possible that the signal does not have
meaningful periods or that has 2 or 3 significant periods. Therefore, there is
a need for a method to estimate the correctness of the period obtained. The



approach taken is the following: assuming that T is the period identified and
that M is the set of those k where A(k) has a relative maximum.

Vk,(kGM/\k#T)éO.9>% (3)
If the above formula holds, the 90 % of the value of A(T) is higher than all the
values in the rest of the maximum values. In that case, we will assume that T is
a good approximation to the main period. We will check the logical formula (3)
every time we perform an autocorrelation. If the formula is true, we will assume
the correctness of the results. If not, we will perform a closing to the original
signal in order to filter the small oscillations that can perturb the results and
repeat the process. We use the closing filter in order to obtain a coarse-grained
description of the signal. This replacement of a fine-grained description with a
lower-resolution coarse-grained model will outline the global signal behavior.

Once a “good” period is identified, we select a region of the signal containing
an iteration of this period and apply the methodology again to look for inner
structure. At the same time, we cut the original tracefile in order to provide to
the analyst one period on every periodic zone we found.

Finally, this methodology needs the execution of intense processes. In order
to perform these executions and take advantage of several concurrent processes,
we have implemented the methodology with GRID Superscalar [12], a grid pro-
gramming environment developed at BSC.

3 Results

We have applied the methodology explained above to four real applications:
Liso [19] with 74 processors, Idris [20] with 200 processors, Gadget [21] with 256
processors and Linpack[22] with 2048 processors. These have been executed and
traced in MareNostrum. The structure found in these applications is based on
the first of the metrics explained in section 2.2, the MPI Point to Point calls.

In figure 3 we show graphically a part of the structure of the Liso tracefile.
This structure is shown with a Paraver visualization. In that visualization, the
horizontal axis represents the time and the vertical axis the different processes.
Black color means that a given process in a given instant of time is not executing
any MPI Call. On the other hand, a light colored point (green when printing or
visualizing in color) represents that an MPI call is being executed by the process.
The picture first shows a visualization of the whole tracefile. The flushing regions
are also outlined. In the second part of figure 3 we show the structure of the first
region without flushing. In that case, we show, first, a region with a non-periodic
structure that corresponds with the initialization phase of the application. The
span of the initialization phase is 18029 ms. After that, there is periodic region
with 5 iterations. The span is 47306 ms and the period shown is 9010 ms. Finally,
in figure 3 we show one of the iterations of the periodic zone.

Table 5 shows that the automatic system has been able to detect the structure
shown in figure 3. Furthermore, we can see the results of the automatic analysis



for the whole Liso application. The first five rows correspond to the structure
represented in figure 3.

Mainly, in table 5 we show two characteristics of the execution: First, from
left to right we show the hierarchy. Second, from top to bottom we show the
temporal sequence.

In the first column, we show the duration of the whole execution in millisec-
onds. Next, in the second column of table 5 there is a decomposition of the total
elapsed time of execution. In this second column, we show a set of numbers in
each cell. The first number is the total time span of the region, the second is the
number of periods found in that region and, finally, the third is the duration of
each period. In the regions where no periodicity has been found a dash line is
written. This second column refers to the first level of hierarchical structure, i.
e., is the structure over the original trace. For example, the MPI Point to Point
calls distribution of the first (18020 ms) and second (47306 ms) regions of the
tracefile shown in figure 3 are represented in the first and second cells of the
second column.

The third column contains the second level of the structure, i.e, the structure
that can be found in one of the periods of the first level. For example, the second,
third, fourth and fifth cells of the third column are the decomposition of one of
the periods of level 1. The MPI Point to Point distribution is shown on figure
3. Here it can be identified the second level of structure, with 6 periods (of 545
ms) of communication, a computation period (of 1005 ms), 3 periods more of
communication (each of 550 ms) and a final computation period (of 3180 ms).

Finally, the fourth column shows the existence of flushing events in a given
region of the tracefile.

The output of the tool is basically the information contained in this table
plus the names of the files where can be found the chops of the original tracefile.

In table 1 we show the structure detected in Idris application. In table 2 we
show another possible representation of the same information. Finally, in tables
3 and 4 the structure found in Gadget and Linpack applications is shown.

Table 6 shows the average size of the chops of the original trace. As we have
said in section 2.2, every time the system finds a periodic region it selects one
of the periods of that region and cuts the tracefile to provide the analyst with
representative chops of the original tracefile. The sizes shown in table 6 are, first,
the size of the total tracefile and, second, the average size of the periods of the
first level. For example, Liso tracefile has 6 periodic regions, one of these regions
in every non-flushing zones. If we take one period of every periodic region and
then we cut the tracefile, we will obtain 6 small tracefiles. The average of its
sizes is the value we show. Finally, the third column is the average size of the
second level periods. Note the large reduction in the amount of data to study.

Finally, in figure 4 we represent, first, the size of the whole trace. Next, we
show the total sum of the sizes of the first and second level chops. Obviously, if
there is only one periodic region, the value shown in figure 4 is the same as the
value represented in table 6. The first level of Idris application is an example. The
most important thing, however, is that the global behavior of the applications,



with the exception of the flushing and initialization regions, is contained in Level
1 tracefiles. We have reduced notably the amount of data to be analyzed in order
to study the performance of the applications.

Table 2. Idris. Tree Representation

Table 1. Idris. Table Representation ‘
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4 Conclusions and Future work

In this paper we have analyzed the possibility of automatically deriving the
internal structure of a tracefile. This structure has two main properties: First,
it is based on periodicities and, second, is hierarchical. We have shown that is
possible to, first, detect the perturbed regions of the tracefile and, second, derive
the internal structure of non-perturbed regions. It is useful in many aspects: It
makes easier the process of tracing the application, it avoids the spending of
time studying perturbed zones, it gives the internal structure of the tracefile
and, finally, gives the most representative regions of it. In conclusion, we have
reduced the problem of analyzing a huge tracefile (10 or 20 Gb) to the study of
several hundreds of Mb.

In the future, this tool will perform an analysis of other parallelization prob-
lems such as Load Imbalance, efficiency, overhead, etc... Our objective is to au-
tomatize all the process of analysis and visualization of Paraver tracefiles with
the intention to reduce the time required to analyze a tracefile. Finally, this
tool will incorporate an expert system. It will be able to detect new problems
and learn about it. What is more, the potential of tools such as Dimemas [13]
will be used with the objective of predicting and automatically detecting the
performance of message passing applications in hypothetic architectures.



Fig. 3. On top, visualization of the whole
Liso tracefile and the flushing zones . In
the middle, the first region without flush-
ing is shown. We highlight a region with-
out periodic structure and a region with 5
iterations. At the bottom, we show one of
these iterations.
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Fig. 4. Sum of the sizes of all the repre-
sentative traces of each level.

Size

7000

6500 1

6000

5500

5000
@ 4500
£ oo o
2 3500 I Gadget
g 3000 IC] Linpack
= 2500

2000

1500

1000

500

0 e =
Whole trace Level 1 Level 2

Table 5. Liso application structure de-
tected by our system. The time units are
milliseconds. The first three columns show
the hierarchical levels of periodicity. Level
0 column shows the total elapsed time,
Level 1 column shows the different phases
detected by the automatic system and
Level 2 shows the internal structure of one
of the periods of Level 1. In the first three
columns, each cell contains three numbers:
The total span of the region, the number
of the periods found in that region and the
duration of each period.
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Table 6. Sizes of all the representative
traces of each level.

|App1ication|Tota1 Trace Size|Leve1 1 Size‘Level2 Size‘

Liso 2.02 Gb 64 Mb 6 Mb
Idris 2.7Gb 250 Mb | 25 Mb
Gadget 2.7 Gb 53 Mb
Linpack 6.7 Gb 46 Mb
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