Automatic generation of dynamic tuning
techniques *

Paola Caymes-Scutari, Anna Morajko, Tomas Margalef, and Emilio Luque

Departament d’Arquitectura de Computadors i Sistemes Operatius, E.T.S.E,
Universitat Autonoma de Barcelona, 08193-Bellaterra (Barcelona) Spain

Abstract. The use of parallel/distributed programming increases as it
enables high performance computing. However, to cover the expectations
of high performance, a high degree of expertise is required. Fortunately,
in general, every parallel application follows a particular programming
scheme, such as Master/Worker, Pipeline, etc. By studying the bottle-
necks of these schemes, the performance problems they present can be
mathematically modelled. In this paper we present a performance prob-
lem specification language to automate the development of tuning tech-
niques, called “tunlets”. Tunlets can be incorporated into MATE (Mon-
itoring, Analysis and Tuning Environment) which dynamically adapts
the applications to the current conditions of the execution environment.
In summary, each tunlet provides an automatic way to monitor, analyze
and tune the application according to its mathematical model.

1 Introduction

Nowadays, parallel/distributed applications are used in many science and engi-
neering fields. They may be data intensive and may perform complex algorithms.
Their main goal is to solve problems as fast as possible. Performance is a crucial
issue on parallel/distributed programming. When a programmer develops an ap-
plication, he/she expects to reach certain performance indexes. Therefore, it is
necessary to carry out a performance analysis and tuning phase to fulfill the ex-
pectations. However, there are many applications that depend on the input data
set or even can vary their behaviour during one particular execution according
to the data evolution. In such cases, it is not worthy to carry out a postmortem
analysis and tuning, since the conclusions based on one execution could be wrong
for a new one. It is necessary to carry out a dynamic and automatic tuning of the
application during its execution without stopping, recompiling nor rerunning it.
In this context, the MATE environment was developed.

MATE (Monitoring, Analysis and Tuning Environment) [1,2] provides dy-
namic automatic tuning of parallel/distributed applications. The process fol-
lowed by MATE to steer applications is showed in figure 1. During runtime,
MATE automatically instruments a running application to gather information

* This work has been supported by the MCyT under contract TIN2004-03388

about its behaviour. The analysis phase receives events, which hold the col-
lected information. Then, the performance functions are evaluated using that
information, in order to detect bottlenecks in the execution. According to the
result of the evaluation, a solution is determined to improve the behaviour of
the application. Finally, the application is dynamically tuned by applying the
given solution. To modify the application execution on the fly, MATE uses the
technique called dynamic instrumentation [3].

Application Development

Execution

Performance . <~ Dynlinst
information] - Instrumentation

Monitoring Tuning
100\ Events ----

Performance

Analysis " Problem/Solution

Fig. 1. Operation of MATE

All the information on how to solve a specific performance problem, is en-
capsulated as a piece of software called “tunlet”. When MATE is executed, it
loads a collection of tunlets in order to incorporate the knowledge to adapt the
applications. Each tunlet implements a performance model and is used through
the execution of the application to conduct the monitoring, analysis and tun-
ing processes. Each tunlet condenses the description of a particular performance
problem. The knowledge is represented by using the following terms: measure
points, i.e. the locations in a process where the instrumentation must be inserted,
such as a variable value or a function call; performance functions, i.e. activating
conditions and/or formulas that model the application; tuning points/actions,
i.e. the application components that must be changed to improve the perfor-
mance.

In MATE, each performance problem should be separately tackled in a par-
ticular tunlet. This has as a consequence the need of implementing a tuning
component for each performance problem. Until now, if users want to add a new
tunlet to solve a problem not included previously, they should study the code
of MATE to correctly implement their tunlet. Each tunlet is a C/C++ shared
library that must be implemented using the Dynamic Tuning API provided by
MATE (DTAPI). This added more complexity and effort to the programming
and tuning tasks.

The goal of this work, is to develop a tool to automatically generate tunlets
from specifications. The measure points, performance functions, tuning actions,
and information about the application declared in the specification, will be used

by the generator to automatically create the structures to allow the straightfor-
ward insertion of the new tunlet into the tuning environment.

So, in this paper we present a mechanism to automatically generate dynamic
tuning techniques. In Section 2, we describe the performance problem specifica-
tion language proposed to automatically create tunlets. In Section 3, we present
a use case of the language: we provide an overview of the performance model
to tune the number of workers in a Master/Worker application, and show the
deduced specification needed to generate the tunlet. Section 4 shows some exper-
imental results obtained by applying the automatically generated tunlet. Finally,
Section 5 summarizes the conclusions of this work.

2 Automatic generation of tunlets

In this section we describe the whole tool which was designed to automatically
generate tunlets. Notice that this is a general tool and can be used for any par-
allel application, whenever the user has enough knowledge about it to define
the parts of the specification. Thus, the user has to define a set of abstractions
in function of the application and the performance model to specify the tunlet.
Such abstractions makes the user think in the tunlet as MATE does. In con-
sequence, this tool makes easier and more transparent the usage of MATE. In
the following, we firstly present the specification language, and secondly, the
automatic generation process is described.

2.1 Tunlet Specification Language

When a language is defined, it is needed to analyze and consider what must be
included, i.e. the elements, the relationships among them, its syntax and seman-
tics [4, 5]. In the particular case of specifying tunlets, it is needed to examine and
consider the elements of the performance model and of the application, having
in mind how the Analyzer represents and uses the knowledge, and the DTAPI
that tunlets should use to correctly work in MATE.

From the performance model point of view, it is needed to consider the
measure points, the performance functions, and the tuning actions and points,
owing to they provide the metrics and the means to evaluate and adapt the
behaviour of the application. In addition, it is necessary to determine the vari-
ables, functions, etc. in the specific application needed to interpret the model,
i.e. to stablish a correlation between performance model parameters and entities
in the application, to be able to collect the necessary information. Thus, from
the point of view of the application we need to be aware of the programming
model it follows, i.e. how the different kinds of processes or actors are involved in
the scheme; the wvariables or values we can manipulate, both to get their value
or to change them, and the functions whose execution we need to collect the
information and send it as events.

Therefore, the specification of a tunlet is divided into three different sections,
which we describe in the following paragraphs. The grammar of the tunlet spe-

cification language has been defined, but it is not included in this paper due to
legibility and space reasons.

With regard to measure points, it constitutes the larger part of the speci-
fication. The user must define:

— The actors of the programming model: the types of processes co-existing in
parallel, such as master and worker in the Master/Worker model, or each
one of the phases in the Pipeline model. It is needed to declare the name
of the actor and the class in which is included or defined, and the name
of the executable file. These three elements are needed to obey the DTAPI

requirements. Some additional information is required:
e the minimal and maximal quantity of this type of actor could co-execute

is needed to generate the structures to manage the behaviour information
of each process along the succesives iterations.

e a completion condition to detect when the actor reached the end of its
tasks along an iteration.

e the actor’s attributes, i.e. the properties that should be registered in each
iteration; for example for a worker, to catch the computation time along
the iteration could be interesting.

— The events to capture, such as entries or exits of functions. Each event is
defined by its name, the actor it is asociated with, the place in the source
code and a certain key number to indicate if the event controls the begin-
ning or the end of the iteration. Some attributes -that is some information
measured when an event occurs- can be associated to a particular event. The
quantity of bytes sent, can be an interesting metric caught when an event
that indicates the exit of the sending function occurs. Each event has two
default attributes: tid and timestamp, to indicate the task it was caught in
and the specific instant in which it happened.

— The variables, i.e. the entities in the program whose value can vary. They
can be instrumented or tuned in the application. For each one must be
declared: name, data type, if in the program it is a variable, a parameter or
a function output, and the actor who has visibility of it. In general, these
entities are used in determining the value of the attributes of the remaining
specification elements.

— The iteration information, includes an attribute to indicate the current
iteration, and, according to the performance model, all the additional infor-
mation necessary to describe the behaviour of each iteration, such as total
communication or processing time in the iteration.

— The model parameters are the attributes of the performance model, whose
value generally is calculated as a function of the attributes of actors or events.

— In general, all the elements in the specification with a set of attributes, must
declare for each attribute its name, the data type, the initialization value and
the way to update its value (see below). Finally, if the attribute depends on
another attribute or event, the name of such entity should be expressed.

Regarding to the performance functions, they are the implementation in
C/C++ language of the performance expressions of the model. As in every el-
ement through the specification, the functions will depend on entities included

in the specification. The necessary mathematical libraries have to be declared in
the beginning of the specification.

Finally, for each tuning point it must be declared the name, the way in
which its value must be calculated, a condition to apply the tuning, and some
information about synchronization: the appropriate place and instant to change
the value of the point.

To simplify the task of the users and reduce their involvement in imple-
mentation aspects, the expressions used to define the initialization (init) and
value (value) attributes (for attributes, iteration information and performance
model parameters sections)must be defined by using the user entities (variables,
events, actors, etc.) included along the specification. Thus, to access each actor’s
data, we use a positional access, and selecting the right attribute such as in any
data structure by using the dot (actorfi/.attribute). Information asociated with
events and iteration information are accessed in a similar way (event.attribute,
iter.attribute).

2.2 Tunlets Generation

Once the user defined the specification, the translation process to obtain the
source code of the tunlet follows several steps, shown in Figure 2:

1. Lexical Analysis: The input of the analyzer is the specification of the tunlet,
written in a text file. The output is an equivalent specification but following
the XML syntax [6]. This step exists for user-friendliness reassons, and con-
sists in translating the specification into its equivalent XML specification.
The lexical analyzer was implemented in Flex [7].

2. Preprocess: the input is the XML specification of the tunlet (obtained in the
previous lexical analysis phase). In this phase, existing dependences among
attributes and events through the specification are solved (i.e. ordered to
avoid inconsistencies in the behaviour of the tunlet); in addition, the expres-
sions to calculate the initialization and value of each entity are translated
into internal structures of MATE. The output is the same XML specifica-
tion but with the expressions translated and the dependences solved. The
preprocessor is an XMLDom program |[8]

3. Source Code Generation: the input is the XML specification obtained in
preprocess phase. The output are a set of C/C++ files, with the source code
of the tunlet. This last step in generating a tunlet, consists in extracting
information from the different sections of the specification to conform the
source code of the tunlet. The generator was implemented as several XSLT
stylesheets [9, 10].

3 Use Case

In this section we include an example on how to specify a tunlet from a given
performance model. The model we present is the optimal number of workers for

XML XML N Cod,
Ml Tunlet sl o?t‘izeTuftl;
“ificati Specification
S2eciiaiin Specification 4 fw,m
translated expressions
solved dependences
Lexical Analyzer Preprocessor Source Code
~ Generator
1 Flex processor 1 (1) 3 XMLDom program § (2) 1 XSLT stylesheets i (3)
User Automatic Tool

Fig. 2. Generation of a tunlet from a specification

a Master/Worker programming scheme [11]. Taking into account this model, we
will specify the tunlet to tune a Master/Worker application to solve the NBody
problem.

3.1 Optimal Number of Workers Model

One of the major performance problems in Master/Worker applications is related
to the quantity of workers used to process the tasks. The performance model we
are using deals with homogeneous applications, and it is assumed there are only
one process for each processor.

The following expression indicates how to calculate the number of workers
suitable to improve the application performance:

AV +Tec

Nopt —
op 1

where Nopt represents the number of workers needed to minimize the exe-
cution time. This expression depends on the following parameters, which should
be captured as indicated:

— tl (network latency, in milliseconds) and A (sending a byte cost -bandwidth
inverse relation- in bzltse). They must be calculated at the beginning of the
execution and should be periodically updated to allow the adaptation of the
system to the network load conditions.

— V is the total data volume(> (v; + v,,)) expressed in bytes, where:

e v; (size of tasks sent to each worker;, in bytes) must be captured when
master sends tasks to the workers.

e v, (size of the answer send back to the master for each worker, in bytes)
must be captured when master receives answers from the workers.

— Tecis the total computing time (> (t¢;)), in ms, where:

e tc;(computing time of the worker 4, in ms). Each worker computing
time is needed to calculate the total computing time (7'c).

This expression is obtained by deriving the expression that models the execution
time of an iteration, in order to minimize it. Such expression is defined in function
of computing time and communication time, which is influenced by the latency
and bandwidth (more details can be obtained from [11]).

3.2 Number of Workers Tunlet Specification

In this section we define the specification of a tunlet to tune the number of work-
ers by considering the above-mentioned performance model. In the following, we
analyze how to specify each one of the involved entities. Notice that given the
length of the entire specification, in each subsection we only show one element
in details (written in Bold and Italic fonts), even the rest of the elements are
mentioned too. To start with the measure points section, we declare two kinds

actors
master events
min: 1 IterationStarts
max: 1 actor:master
completion:/#true#/ controliter:3
class:_CMaster method: _M_Sendilteration
exe: 3/bin/LINU; class:_CMaster
attributes place: ipFuncEntry
firstSend attributes
comment:/*first send of the master*/ iteration
type: double NumTuples
inic:/#firstSend=0.0;#/ WorkUnit
value: /# if (TaskW.ti J [0].fil d IterationFinishes
|| master[0].firstSend==0.0) MSendTaskW
{ master[0].fis TaskW.ti) }#/| WRepliesM
dependency: MSendsTaskW WStartsT
lastRecv WFinishesT
lastWorker
worker

(a) (b)

Fig. 3. (a)Actors in the application. (b)Events to catch during the execution

of actors: master and worker. As shows the figure 3(a), the Master process is
defined in the _CMaster and _MyMaster classes, and its executable is called
“master”. The min and maz properties indicate that only one instance of the
master can exist along the execution. The interesting attributes for the master
are the time in which the first task in the iteration is sent (firstSend), the time
in which the last answer is received (lastRecv) and the identifier of the worker
that finished the processing at last (last Worker). These three attributes are nec-
essary to calculate communication time, needed in the expression used to obtain
A. In the case of the firstSend attribute, it is a double variable, whose initial
value is 0.0. This value changes when an incoming MSendsTaskW event has a
timestamp earlier than it, or that is the first MSendsTaskW event received. This
fact clearly indicates that the value of firstSend depends on the reception of the
MSendsTaskW events.

In the events section there are the events to determine the beginning and
ending of an iteration (IterationStarts and IterationFinishes), the communica-

tion time (MSendTaskWand WRepliesM), and the computing time (WStartsT
and WFinishesT). All of them are shown in the figure 3 (). In particular, we de-
scribe the IterationStarts specification. This event has to be caught when master
executes the _M_SendIteration method of _CMaster class, particularly at the en-
try of the method, which is indicated by the place property (ipFuncEntry). The
attributes that the event should record, are iteration, NumTuples and WorkUnit,
which are needed to register the current iteration, the data volume to being pro-
cessed along an iteration, and the size of each data unit. These three attributes
defined in the application, are specified in the variables section. The last two of
them are useful to calculate the value of v;.

The wariables which could be “manipulated” in the application in order to
dynamically obtain their value or change them, are Iteration (variable used to
store the current iteration), NumTuples (data volume to process), WorkUnit
(size of each data unit), ResSize (size of the reply a worker send to the master),
workerTID (identifier of the worker), nw (number of workers currently used)
and NoptWorkers (optimal number of worker to be used). See the figure 4 (a).
In particular, Iteration is an integer variable (asVarValue) which is in the scope
of the master.

variables
iteration iteration information
comment: /*current iteration of the Master process*/ Startedlteration
source: asVarValue /*last i i g i
type: int type: int
actor:master inic: /#Startedlteration=0;#/
NumTuples value: /#iter.Star i
WorkUnit dependency:IterationStarts
ResSize totalwork
workerTID tuplesize
nw iterCommTime
NoptWorkers availableMachines
(a) (b)

Fig. 4. (a)Susceptible of change or reading variables. (b)Iteration information

In the case of the iteration information section, it includes the default at-
tribute - Startedlteration- and some additional attributes needed to the particular
performance model: totalwork, tuplesize and iterCommTime. As shows the figure
4(b) StartedIteration has to be initialized in 0, and its value should be updated
to iteration each time an IterationStarts event happens.

This is all about the entities the users have to determine and define in order
to obtain the values of each parameter of the model necessary to evaluate the
performance functions. In figure 5(a) we enumerate the performance parameters
of the model. In particular, v; (or vi) is an integer whose value depends on Itera-
tionStart event, due to it carries the value of NumTuples and WorkUnit, needed
to calculate the size of tasks sent to each worker, as explained in section 3.1. As
can be seen in figure 5(b), the specification includes the performance function
to calculate the optimal number of workers (pf()), which is the implementation

performance model parameters
vi Performance Functions
/*data vol. to be pi d*/ def:/#int pf(){ int nro=0; nro=(int)sqrt((lambda * V + Tc)/tl);
type:int return nro;}#/
inic: /#vi=0;#/
value: /#vi=NumTuples*WorkUnit;#/
dependency: IterationStarts Tuning Points
vm NOptWorkers
\ value:/#pf()#/
Tc syncfunction:0
n syncplace:0
tl cond:/#NOptWorker i i #
lambda

(@) (b)

Fig.5. (a)Performance parameters (b)Performance function and Tuning points

of the expression presented in Section 3.1. When pf() is evaluated, the result
is assigned to the tuning point, Nopt Workers. Depending on the condition, in
this case if the currently available resources are enough, the tuning is effected
instantaneously, due to the syncfunction and syncplace do not present particular
requirements.

4 Experiments

In this section we want to validate the usefulness of the tunlet automatically
generated for the example presented in Section 3. We compare the execution
time of the application when executed under the automatically generated tunlet,
under the hand made tunlet and when executed by itself in different fixed number
of workers (1, 2, 4, 8, 16, 19). To conduct the experiments, we selected a 2D N-
Body created by using the Master/Worker framework [12]. Experiments were
conducted on a cluster of homogeneous Pentium 4, 1.8 Ghz, (SuSE Linux 8.0)
connected by 100Mb/sec network. We created certain load patterns, so that
we can introduce and modify certain external loads to simulate the systems
timesharing. Each experiment was performed many times and the average of the
execution time for the application was calculated and is shown in Table 1. In the

Fixed number of workers 1 | 2 | 4 ‘ 8 ‘ 16 ‘ 19
Execution Time 64,49]34,61]18,09[10,37[11,83] 15,49
NBody + handmade tunlet||Starting with 1 worker and then tuning
Execution Time 10,92
NBody + generated tunlet ||Starting with 1 worker and then tuning
Execution Time 10,89

Table 1. Execution time (in seconds) of NBody when executed in different scenarios.

last two scenarios, the application started with one worker and then, during the
execution, the number of workers has been dynamically changed according to
the model described in Section 3.1. As can be seen, the automatic development

of the tunlet from the specification by using our proposed tool, results in a tunlet
capable of tuning the application in a time comparable to the hand made tunlet.
This means that the performance of MATE is not degraded by the use of tunlets
automatically generated.

5 Conclusions

The increasing use of high performance computing and the necessity of improving
the use of the resources, reflects the need of tools to assist the user in tuning
his/her parallel applications. We presented a tunlet specification language. Each
tunlet is defined from the performance model of the problem under consideration
and information about the application and the parallel programming scheme
it follows. Specifications are automatically translated into source code to be
included in MATE. In this way, if a user knows a specific performance problem
in the application and knows the mathematical model to overcome the problem,
he or she can develop a specification of it which will automatically be translated
into a tunlet to use in MATE in order to tune the program during runtime.
This allows for extending MATE and facilitates its usage, due to the user does
not need to know any MATE implementation details. In consequence, we make
easier the use of dynamic and automatic tuning of parallel applications.

References

1. Morajko, A., Morajko, O., Jorba, J., Margalef, T., Luque, E., “Dynamic Per-
formance Tuning of Distributed Programming Libraries”, LNCS,2660,pp.191-200.
2003.

2. Morajko, A., Morajko, O., Margalef, T., Luque, E., “MATE: Dynamic Performance
Tuning Environment”, LNCS, 3149, pp. 98-107. 2004.

3. Buck, B., Hollingsworth, J.K., “An API for Runtime Code Patching”, University
of Maryland, Computer Science Department. Journal of High Performance Com-
puting Applications. 2000.

4. Aho, A., Ullman,J., “The Theory of Parsing, Translation, and Compiling - Volume
1: Parsing”, Prentice Hall, ISBN 0-13-914556-7, 1972.

5. Aho, A., Sethi, R., Ullman, J., “Compilers - Principles, Techniques, and Tools”,
Addison-Wesley Publishin Company, ISBN 0-201-10194-7, 1986.

6. “Extensible Markup Language (XML)”, http://http://www.w3.org/XML/

7. Paxon, V., “Flex, a fast scanner generator,
http://www.gnu.org/software/flex/manual/ - 1995.

8. “Document Object Model (DOM)”, http://www.w3.org/DOM/

9. “XSL Transformations (XSLT) - Version 1.0”, http://www.w3.org/TR/xslt

10. “XQuery 1.0, XPath 2.0, and XSLT 2.0 Functions and Operators”,
http://www.w3.org/2005/04 /xpath-functions

11. César, E., Mesa, J.G., Sorribes, J., Luque, E., “Modeling Master-Worker Applica-
tions in POETRIES”, IEEE 9th International Workshop HIPS 2004, IPDPS, pp.
22-30. April, 2004.

12. Mesa, J.G., “Framework Master/Worker”, Universitat Autonoma de Barcelona,
Departament d’Informatica. Master. 2004.

