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Abstract. With the increasing popularity of large-scale distributed
computing networks, a new aspect has to be considered for schedul-
ing problems: machines may not be available permanently, but may be
withdrawn and reappear later. We give several results for completion
time based objectives: 1. we show that scheduling independent jobs on
identical machines with online failures to minimize the sum of comple-
tion times is (8/7 − ε)-inapproximable, 2. we give a nontrivial sufficient
condition on machine failure under which the SRPT (shortest remain-
ing processing time) heuristic yields optimal results for this setting, and
3. we present meta-algorithms that convert approximation algorithms
for offline scheduling problems with completion time based objective on
identical machines to approximation algorithms for the corresponding
preemptive online problem on identical machines with discrete or con-
tinuous time. Interestingly, the expected approximation rate becomes
worse by a factor that only depends on the probability of unavailability.

1 Introduction

Since the advent of massive parallel scheduling, machine unavailability has be-
come a major issue. Machines can be damaged and thus are not operational until
some maintainance is undertaken, or idle time is donated by machines. In either
case, it is a realistic assumption that the time of availability of the individual
machines can neither be controlled nor foreseen by the scheduler.

Related problems and previous results. In classical scheduling, dynamic machine
unavailability has at best played a minor role; however, unreliable machines have
been considered as far back as 1975 [1] in the offline setting. Semi-online adver-
sarial variants of the makespan problem were studied by Sanlaville [2] and Albers
& Schmidt [3]. In the semi-online setting, the next point in time when machine
� Research supported in part by a grant “DAAD Doktorandenstipendium” of the

German Academic Exchange Service; part of this work was done while visiting the
LIG, Grenoble.

�� Research supported by EU research project AEOLUS, Algorithmic Principles for
Building Efficient Overlay Computers, EU contract number 015964.



availability may change is known. The discrete time step setting considered here
is a special case (i.e. we assume that at time t + 1, availability changes) that is
closely linked to the unit execution time model. Sanlaville & Liu [4] have shown
that longest remaining processing time (LRPT) is an optimal strategy for min-
imizing the makespan even if there are certain forms of precedence constraints
on the jobs.

Albers & Schmidt [3] also give results on the true online setting which are
obtained by imposing a “guessed” discretization of time.

The general notion of solving an online problem by re-using offline solutions
was used by Hall et al. [5] and earlier by Shmoys et al. [6], where

∑
wjCj and

min max Cj objectives, respectively, with online job arrivals were approximated
using corresponding or related offline algorithms.

Applications. We focus mainly on a setting where there is a large number of
individual machines which are mainly used for other computational purposes
and donate their idle periods to perform fractions of large computational tasks.
The owner of these tasks have no control of the specific times of availability;
there even might be no guarantee of availability at all. Our model provides a
formal framework to deal with various objective functions in such a situation.

New results. We first study a setting of discrete time steps where the jobs are
known in advance and availability is revealed on-line and give three main re-
sults: we prove (8/7 − ε)-inapproximability for any online algorithm that tries
to minimize the average completion time; we show that the shortest remaining
processing time first heuristic SRPT solves this problem optimally if the avail-
ability pattern is increasing zig-zag; and finally, we present a meta-algorithm for a
stochastic failure model that uses offline approximations and incurs an additional
approximation factor that depends in an intuitive way on the failure probability.
Our approach holds for any offline preemptive algorithm that approximates the
makespan or the (possibly weighted) sum of completion times, even in the pres-
ence of release dates and in-forest precedence constraints, and slightly weaker
results are obtained for general precedence constraints. We also show how our
results can be adapted to a semi-online model of time, i.e. breakdowns and pre-
emptions can occur at any time, but the time of the next breakdown is known
in advance.

In our probabilistic model of machine unavailability, for every time step t
each machine is unavailable with probability f ∈ [0, 1); this can also be seen as
a failure probability of f where there is a probability of 1 − f that the machine
will be available again at the next time. Notice that in the setting studied in [7],
no such probability assumptions are made; here machines just are statically
available or unavailable.

2 Definitions

We will consider the problem of scheduling n jobs J1, . . . , Jn, where a job Ji has
processing time pi which is known a priori. We denote the completion time of Ji



in schedule σ with Ci(σ) and drop the schedule where it is clear from context. We
denote the number of machines available for a given time t as m(t) and the total
number of machines m = maxt∈N m(t). The SRPT algorithm simply schedules
the jobs of shortest remaining processing time at any point, preempting running
jobs if necessary.

3 Lower bounds

In the following, we assume that at any time, at least one machine is available;
otherwise, no algorithm can have bounded competitive ratio unless it always
minimizes the makespan as well as the objective function.

Theorem 1. For Pm, fail |pmtn|∑Cj , no online algorithm has competitive ra-
tio α < 8/7.

Proof. Consider instance I with m = 3 and 3 jobs, where p1 = 1 and p2 = p3 = 2.
Let ALG be any online algorithm for our problem. The time horizon given online
will start with m(1) = 1. We distinguish two cases depending on the behaviour
of the algorithm. In Case 1, ALG starts J1 at time 1, resulting in C1(σ1) = 1.
Then the time horizon is continued by m(2) = 3 and finally m(3) = m(4) = 1.
It is easy to see that the best sum of completion times the algorithm can attain
is 8. However, starting J2 at time 1 yields a schedule with a value of 7.

In Case 2, ALG schedules J2 at time 1; the same argument works if J3 is
scheduled here. The time horizon is continued by m(2) = m(3) = 2. Enumerating
the cases shows that the algorithm can only get

∑
Cj ≥ 8, however, by starting

J1 at time 1, an optimal schedule gets
∑

Cj = 7. ��
Theorem 2. For Pm, fail |pmtn |∑Cj, the competitive ratio of SRPT is Ω(m).

Proof. For m ∈ N, m even, consider m machines and m small jobs with p1 =
· · · = pm = 1 and m/2 large jobs with pm+1 = · · · = pm+m/2 = 2. We set
m(1) = m(2) = m and m(t) = 1 for every t > 2.

SRPT generates a schedule σ2 by starting the m small jobs at time 1 resulting
in Cj(σ2) = 1 for each j ∈ {1, . . . , m}. At time 2 all of the m/2 large jobs are
started; however, they cannot be finished at time 2 but as time proceeds, each of
them gets executed in a successive time step. This means that Cm+j(σ2) = 2+ j

holds for each j ∈ {1, . . . , m/2}. In total, we obtain
∑

Cj = m+
∑m/2

j=1 (2+ j) =
Ω(m2).

A better schedule will start all long jobs at time 1 and finishes all jobs by
time 2, for

∑
Cj ≤ 3m. ��

4 SRPT for special availability patterns

Throughout this section, we assume the following availability pattern which has
been previously studied for min-max objectives [7]:



Definition 1. Let m : N → N the machine availability function; m forms an
increasing zig-zag pattern iff the following condition holds:

∀t ∈ N : m(t) ≥ max
t′≤t

m(t′) − 1 .

Intuitively, we may imagine that machines may join at any time and that only
one of the machines is unreliable.

Lemma 1. pi < pj implies Ci ≤ Cj for each i, j ∈ {1, . . . , n} in some suitable
schedule σ that minimizes

∑
Cj.

Proof. Fix a schedule σ that minimizes
∑

Cj . Let i, j ∈ {1, . . . , n} with pi < pj

but Ci > Cj . Let Ii, Ij be the sets of times in which Ji, Jj are executed in
σ, respectively. We have 0 < |Ii \ Ij | < |Ij \ Ii| since pi < pj , Ci > Cj . Let
g : Ii \Ij → Ij \Ii be an injective mapping; construct a schedule σ′ from σ in the
following way: for all t ∈ Ii \ Ij exchange the execution of Ji at time t with the
execution of Jj at time g(t). Then we have Ck(σ) = Ck(σ′) for every k 	= i, j,
furthermore Ci(σ) = Cj(σ′) and Cj(σ) ≥ Ci(σ′). Iterating the construction
yields the claim. ��
Theorem 3. SRPT is an optimal algorithm if machine availabilities form an
increasing zig-zag pattern.

Proof. Assume a counterexample J1, . . . , Jn, m such that
∑n

j=1 pj is minimal.
Fix an optimal schedule σOPT and an SRPT schedule σALG such that the set D
of jobs that run at time 1 in only one of σOPT, σALG is of minimal size.

If |D| = 0, then σOPT and σALG coincide at time 1 up to permutation of
machines. Denote with I the set of jobs running at time 1. By definition of
SRPT, I 	= ∅. We define a new instance by setting

∀j = 1, . . . , n : p′j :=

{
pj − 1, Jj ∈ I,

pj , Jj 	∈ I

∀t ∈ N : m′(t) := m(t + 1) .

It is obvious that
∑

p′j <
∑

pj , and so it would be a smaller counterexample.
Hence, D 	= ∅.

We will now argue that there must be some job run by σOPT that is not
run by σALG at time 1 and then show that we can exchange these jobs in σOPT

without increasing the objective function value, leading to a counterexample of
smaller |D|.

Assume that all jobs run by σOPT also run in σALG. Since |D| > 0, there is
some job in σALG that is not in σOPT, hence σOPT contains an idle machine.
Hence, all n available jobs must run in σOPT at time 1 by optimality, a contra-
diction to |D| > 0.

Thus there is a job Jj run by σOPT which is not run by σALG. Since not all
n jobs can run in σALG at time 1 and SRPT is greedy, there must be a different



job Ji which is run in σALG, but not in σOPT. By definition of SRPT, we know
pi < pj , and Ci(σOPT) ≤ Cj(σOPT) by Lemma 1.

We will now show that it is always possible to modify σOPT to execute Ji at
time 1 instead of Jj . Preferring Ji will decrease its completion time by at least
1, so we need to show that the total sum of completion times of the other jobs
is increased by at most 1.

Case 1: if Jj does not run at time Ci in σOPT, we have Cj > Ci and we can
execute Ji at time 1 and Jj at time Ci. This does not increase the completion
time Cj , and any other job’s completion time remains unchanged.

Jj

Ji

Jj Jk

Fig. 1: Case 2 in the proof of Theorem 3

Case 2: The following construction is sketched in Fig. 1. Jj runs at time Ci.
We will execute Ji at time 1 and Jj at time Cj + 1 for a total change of

∑
Cj

of at most 0. This can trivially be done if there is an idle machine in σOPT at
time Cj + 1. Otherwise, there are m(Cj + 1) jobs running at that time. We still
have an idle machine at time Ci, freed up by moving Ji to time 1, and want to
displace one of the m(Cj + 1) jobs into this space. We note that we may not
choose jobs that are already running at time Ci. There are at most m(Ci) − 2
such jobs, since we know Ji and Jj are running at that time. By the increasing
zig-zag condition and Ci ≤ Cj < Cj + 1, we know that

m(Cj + 1) ≥ m(Ci) − 1 > m(Ci) − 2 ,

so at least one job, say Jk, is not excluded. Since no part of Jk is delayed, Ck

does not increase. ��

5 Algorithm MIMIC

The basic idea of algorithm MIMIC is to use an offline approximation for reliable
machines and re-use this given schedule as far as possible. More precisely, let us
assume that we already have an α-approximate schedule σ for the offline case for
an objective in {∑wjCj ,

∑
Cj , Cmax}. We will first convert the schedule into a

queue Q in the following way; we note that this is for expository reasons and
not needed in the implementation.

For any time t and any machine i ∈ {1, . . . , m}, the job running at
time t on machine i in schedule σ is at position (t − 1)m + i in the
queue.

(1)



Note that this means “idle” positions may occur in the queue; this is not ex-
ploited. We can now use the queue in our online scheduling algorithm in Fig. 2.

Setup: calculate Q.
Online Execution: if at time t, m(t) machines are available, preempt all currently
running jobs, remove the first m(t) entries from Q and start the indicated jobs. Ter-
minate when Q becomes empty.

Fig. 2: Algorithm MIMIC for independent jobs

Remark 1. In the generated schedule, no job runs in parallel to itself.

Proof. We assume w.l.o.g. that there are no redundant preemptions in the offline
schedule σ, i.e. if a job j runs at time t as well as at time t+1, it remains on the
same machine. Hence, two entries in the queue corresponding to the same job
must be at least m positions apart. Since at no time in the online schedule, more
than m machines are available, no two entries of the same job can be eligible
simultaneously. ��

We now take a different view upon machine failure: instead of imagining failed
machines, we consider that “failure blocks” are inserted into the queue. Since
there is a one-to-one correspondence of machine/time positions and queue posi-
tions given by (1), this is equivalent to machine failures. We recall an elementary
probabilistic fact:

Remark 2 (Expected run length). In our setting (machines failing for a time step
independently with probability f), the expected number of failure blocks in front
of each non-failure block is f/(1 − f).

We can now bound how long the expected completion of a single job is delayed
in the online schedule σ′:

Lemma 2. For any job j, we have E[Cj(σ′)] ≤ 1
1−f Cj(σ) + 1.

Proof. We note that since there are always m machines in the offline setting,
there cannot be any blocks corresponding to j in the queue after position mCj(σ)
before failure blocks are inserted. This means that after random insertion of
the failure blocks, the expected position of the last block of job j is at most(
1 + f/(1 − f)

)
mCj(σ). In light of (1), this yields

E[Cj(σ′)] = � 1
m

(mCj(σ)
1

1 − f
)� ≤ 1

1 − f
Cj(σ) + 1 ,

which proves the claim. ��
Theorem 4. MIMIC has asymptotic approximation ratio 1/(1−f) for indepen-
dent unweighted jobs and (1 + ε)/(1 − f) for sum of weighted completion times
with release dates.



This is achieved by exploiting known offline results for different settings (cf.
Tab. 1). We should note in particular that since machine failure at most delays
a job, our model is applicable to settings with non-zero release dates. We list
the result of Kawaguchi & Kyan mainly because it is obtained by a very simple
largest ratio first heuristic, as opposed to the more sophisticated methods of
Afrati et al. [8], which gives it a very low computational complexity.

Table 1: Selection of known offline results that can be used by MIMIC.

Setting Source ax. ratio

P|pmtn |P
Cj McNaughton [9] 1

P||P
wjCj Kawaguchi and Kyan [10] (1 +

√
2)/2

P|rj , pmtn|P
wjCj Afrati et al. [8] PTAS

P|rj , prec, pmtn |P
wjCj Hall et al. [5] 3

5.1 Handling precedence constraints

We note that our results stated so far cannot be simply used if there are general
precedence constraints, as the following example shows:

Example 1. Consider four jobs J1, . . . , J4 of unit execution time such that
J1, J2 ≺ J3, J4. The queue J1J2J3J4 corresponds to an optimal offline sched-
ule. If a failure occurs during the first time step, we have C2 = 2 and MIMIC
schedules one of J3, J4 in parallel to J2.

The main problem is that jobs J2 and J3 have a distance of 1 < m = 2 in
the queue, so they may be scheduled for the same time step online even though
there is a precedence constraint on them. Conversely, if the distance is at least
m, they are never scheduled for the same time step.

Since our setting allows free migration of a job from one machine to another,
we can sometimes avoid this situation: if the precedence constraints form an in-
forest, i.e. every job has at most one direct successor, we can rearrange the jobs
in the following way: if at a time t, a job J0 is first started, and J1, . . . , Jk, k ≥ 1
are those of J0’s direct predecessors that run at time t− 1, w.l.o.g. on machines
1, . . . , k, we assign J0 to machine k. This ensures that the distance in the queue
from J0 to Jk and hence also to J1, . . . , Jk−1 is at least m.

If we have general precedence constraints, we cannot guarantee that all jobs
are sufficiently segregated from their predecessors, as seen above. We can, how-
ever, use a parameterized modification to extend results to the case of general
precedence constraints and only incur an additional factor of 1+ε: fix k ∈ N such
that k−1 ≤ ε. We will use time steps of granularity k−1 in the online schedule.

For the offline instance, we first scale up all execution times by k, essentially
shifting them to our new time units, and then increase all execution times by 1.



Setup: Calculate offline schedule σoffline; toffline := 0
Online Execution: if m(t) machines are available during the interval [t, t + δ):

– Set δoffline := min{m(t)δ/m, min{Cj(σoffline) − toffline|toffline ≤ Cj(σoffline)}}.
– Set δonline := mδoffline/m(t).
– Schedule all job fractions that run in the interval [toffline, toffline + δoffline) in σoffline

in the online interval [t, t + δonline) unsing McNaughton’s wrap-around rule.
– Set toffline := toffline + δoffline and proceed to time t + δonline.

Fig. 3: Algorithm MIMIC′

Since all scaled execution times were at least k to begin with, this gives at most
an additional factor of 1 + k−1 ≤ 1 + ε for the objective function value. In the
queue, we leave the additional time slot empty. This forces the queue distance
of jobs which are precedence-constrained to be at least m, hence, the generated
schedule is valid.

6 Continuous time and the semi-online model

In this section, we will adapt the idea of algorithm MIMIC—reusing an offline
approximation—to the more general semi-online setting by methods similar to
Prasanna & Musicus’ continuous analysis [11]. In the semi-online setting, changes
of machine availability and preemptions may occur at any time whatsoever,
however, we know in advance the next point in time when a change of machine
availability will take place. We can use this knowledge to better convert an offline
schedule into an online schedule, using the algorithm MIMIC′ in Fig. 3: during
each interval of constant machine availability, we calculate the area m(t)δ we
can schedule. This area will be used up in time m(t)δ/m in the offline schedule.
We take the job fractions as executed in the offline schedule and schedule them
online with McNaughton’s wrap-around rule [9]. Precedence constraints can be
handled by suitable insertion of artificial interruptions.

Since at time Cj(σoffline), a total area of mCj(σoffline) is completed, we have
the following bound on the online completion times Cj(σonline):

∫ Cj(σonline)

0

m(t)dt ≤ mCj(σoffline) . (2)

If we set ∀t : E[m(t)] = (1−f)m to approximate our independent failure setting
above, equation (2) simplifies to Cj(σ)(1 − f)m ≤ mCj(σoffline), which again
yields a 1/(1 − f)-approximation as in Lemma 2, thus we obtain the following
result.

Theorem 5. Algorithm MIMIC’ non-asymptotically matches the approximation
rates of MIMIC for the continuous semi-online model.



7 Conclusion

In this paper we have presented a simple yet general framework permitting the
transfer of results from offline scheduling settings to natural preemptive online
extensions. We have studied the min-sum objectives

∑
Cj and

∑
wjCj ; we have

also considered the behaviour of Cmax, which permits the transfer of bicriteria
results. We remark that algorithm MIMIC permits a fast and straightforward
implementation which indicates its value as a heuristic for practice where real-
time data processing is important; this holds in particular when the underlying
offline scheduler has low runtime complexity.
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