
A Joint Data and Computation Scheduling
Algorithm for the Grid

Fangpeng Dong1 and Selim G. Akl1

1School of Computing, Queen's University
Kingston, ON, Canada K7L 3N6

{dong, akl}@cs.queensu.ca

Abstract: In this paper a new scheduling algorithm for the Grid is introduced.
The new algorithm (JDCS) combines data transfer and computation scheduling
by a back-trace technique to reduce remote data preloading delay, and is aware
of resource performance fluctuation in the Grid. Experiments show the
effectiveness and adaptability of this new approach in the Grid environment.

Keywords: Workflow, Scheduling, Algorithm, Grid Computing, Data

1 Introduction

The development of Grid infrastructures now allows workflow to be submitted and
run on remote Grid resources. At the same time, fledging data Grid projects enable
remote data access, replication, and transfer. These advances make it possible to run
data-intensive workflows in the Grid. In this paper, we consider the problem of
assigning metatasks in a workflow, which is assumed to be represented by an acyclic
directed graph (DAG), to Grid resources. The objective is to minimize the total
schedule length of the whole workflow (also known as the makespan). As the general
form of this optimization problem is NP-Complete [6], heuristic approaches are
usually adopted. In the Grid environment, the problem becomes even more
challenging: first, the performance of a Grid resource is usually dynamically changing,
which makes it harder to get an accurate estimate in advance of a task’s execution
time; second, input data of a task may cross a long distance from a data storage site to
the computational resource. If computational resources and data storage sites are
dynamically selected by a Grid scheduler, communication cost for input data transfer
may vary according to different data storage and computational resource
combinations. This situation is different from the traditional cases where data and
computation are located on the same site, or data sites and computational sites are
fixed prior to scheduling so that communication cost is a known constant.

Based on the above observations, we propose a workflow scheduling algorithm
called JDCS (Joint Data and Computation Scheduling). It considers the possibility of
overlapping the time of input data preloading and that of computation, thus reducing
the waiting time of a task to be scheduled. This is achieved by using a back-trace
technique. To overcome the difficulties brought about by performance fluctuation,
JDCS takes advantage of mechanisms such as Grid performance prediction and

resource reservation [1], which can capture the resource performance information and
provide some kind of guaranteed performance to users. These approaches make it
possible for Grid schedulers to get relatively accurate resource information prior to
making a schedule, and according to the obtained information, JDCS updates
metatask priorities dynamically when it makes a schedule.

The remainder of this paper is organized as what follows. Section 2 introduces
models used by JDCS. Section 3 describes JDCS in detail, while Section 4 presents
experimental results and a performance analysis. In Section 5, related research is
reviewed. Conclusions and suggestions for future work are provided in Section 6.

2 Definitions and Models

A Grid scheduler running JDCS receives submitted workflows from Grid users,
retrieves resource information from Grid Information Services, creates schedules and
commits scheduled metatasks to Grid resources. The Grid has a set of computational
resources {p1,…, pn} and a set of data storage sites {d1,…, dm}. The performance of a
computational resource is not only heterogeneous, but also dynamically fluctuating. In
a resource management system supporting advance reservation, available resource
performance at a specific time can be known by calculating the workload generated
by jobs that have reserved resources at that time, as Fig. 1 (a) indicates. Thus, by
referring resource predictors or resource management components supporting
reservation, the performance fluctuation can be caught. Theoretically, if the time axis
can be divided into fine granular periods, the performance within a period can be
approximated as a constant. So, to describe the fluctuation, a sequence of time slots
s1,…, sk is introduced. The computational power of pi in sj is denoted as a constant ci,j,
which can be known from Grid Information Services. To decide the number of time
slots which will be used to complete the workflow, an optimistic estimation strategy is
used: The scheduler estimates the serial executing time of the entire workflow on each
resource, and chooses the smallest one. This strategy is based on the expectation that a
parallel processing, even in the worst case, is not worse than the best sequential one.

The network connection between pi and pj is denoted as clinki,j and one between pi
and dj is denoted as dlinki,j. The bandwidth of clinki,j or dlinki,j is denoted as cwi,j or
dwi,j, respectively. For cwi,j, if i = j, cwi,j = +∞, which implies the communication
delay within pi is 0. Fig. 1 (b) gives an example of the system model. The input data
for a metatask is located on a data storage dj. Computational resources themselves can
also provide limited storage capacity that allows input data to be precached prior to
the start of the computation. The capacity of the input data cache on pi is denoted as ci.
Once a metatask is assigned to a computational resource, its input data preloading can
start, and once a metatask starts, the input data will be deleted and occupied space will
be released. Due to the limitation of cache capacity, it may not be possible for all
metatasks to pre-upload their data at the same time to the computational site.
Available data cache space on computational resource pj, at time T is denoted as
ACS(pj, T), which initially equals ci. To avoid potential conflicts resulting from
simultaneous data preloading for different metatasks on the same resource, when a
data transfer starts, required space on the destination will be reserved.

Time

Workload from
Reservation

Available
Performance

s1 skPerformance

t1
5

t7
5

t8
5

t6
8

t5
10

t4
5

t3
10

t2
8

1

1 1

1

32

1
1

4 3
4

3

2

 (a) (b) (c)
Fig. 1. (a) Performance fluctuation resulted from advance reservation; (b) A Grid Model. (c) A
DAG depicting a metatask workflow with raw input data.

We assume that a workflow can be represented by a directed acyclic graph (DAG)
G (Fig. 1 (c)). A circular node ti in G represents a metatask, where 1≤i≤v, and v is
number of metatasks in the workflow. The computational power consumed to finish ti
is denoted as qi. An edge e(i, j) from ti to tj means that tj need an intermediate result
from ti, and tj∈succ(ti), where succ(ti) is the set of all immediate successors of ti.
Similarly, we have tj∈pred(ti), where pred(ti) is the set of immediate predecessors of ti.
The weight of e(i, j) gives the size of intermediate results transferred from ti to
metatask tj. A metatask may also take raw data as input, which originally resides on
data storage sites. The raw input data size of metatask ti is denoted as ri. We have Di, j
= 1, if the raw input data of metatask ti is on storage dj, and Di, j = 0, otherwise. In the
example, a square node with an arrow to a metatask node represents the raw data
input, and the number indicates its size.

3 JDCS Algorithm

To achieve a feasible schedule with a small makespan, the JDCS algorithm has the
following features: (1) It considers the possibility of raw input data preloading that
can be overlapping with computation to reduce the waiting time of a metatask. (2) It is
aware of data cache capacity and schedules data preloading accordingly in order to
avoid conflicts. (3) It updates the rank of a metatask in each scheduling step so that
critical metatasks will be recognized dynamically. (4) To avoid myopic decisions, it
looks ahead along the current longest unscheduled path to select a resource for the
current metatask. (5) In order to use idle time slots on a resource, it can insert an
unscheduled metatask before a scheduled metatask on that resource if the insertion
does not violate precedence orders and cache space limitation.

3. 1 Metatask Ranking

To schedule a workflow efficiently, it is important to identify the critical tasks in each
scheduling step. A delay of critical tasks may result in the extension of the schedule
length. Usually, the priority of a metatask node can be obtained by finding the
maximum “distance” from this node to the starting or exiting node. Here, distance

R eso u rce 1

R esou rce 2

D ata S to rg e
L o ca l D a ta

C ach e

L o ca l D a ta C ach e

L o ca l D a ta
C ach e

G IS

D ata R ep lica

R eso u rce 3

S ch ed u le r

means the sum of computational and communication costs along a certain path.
Unfortunately, due to the heterogeneity and fluctuation of resource performance, it is
difficult to find how urgent a metatask node is. To estimate the completion time of a
metatask in such a scenario, several performance measurements can be used, such as
the median or average value of resource performance. In the following discussion, we
use the average performance value to demonstrate our algorithm. To obtain the
average performance as accurately as possible, only the performance of feasible time
slots is used. The feasible time AVLT of pi in the mth scheduling step is defined as:

)},({min)(ijRQti ptESTmAVLT
j∈

= (1)

Here EST(tj, pi) is earliest start time of tj on pi (See (3)). So, AVLTi(m) is the earliest
time when a metatask in the ready queue (RQ) can start on pi at the mth scheduling
step. Time slots after this time will be considered feasible and the corresponding
performance within these slots will be used to update priorities of task nodes. For
simplicity, we remove m from all expressions, without losing generality. The average
performance of pi along time avg_ci and the average performance of all available
computational resources avg_c are given by the following two equations:

∑
≤≤−

=
kjAVLT

ji
i

i
i

c
AVLTk

cavg ,
1_ ∑

≤≤

=
ni

icavg
n

cavg
1

1

Similarly, the average unit communication cost between a computational resource pi
and others avg_cdi, the overall average unit communication cost between any two
resources avg_cd and the average unit communication cost between a data storage site
dj and any computational resources avg_ddj are given by the following equations:

∑
≤≤

=
nj

jii cw
n

cdavg
1

,/11_ ∑
≤≤

=
ni

icdavg
n

cdavg
1

1 ∑
≤≤

=
ni

jij dw
n

ddavg
1

,/11_

We assumed that the time required to complete a metatask on different resources is
uniformly related to the performance of resources. So, if the performance of a
processing node pj is a constant K, it will finish metatask ti within time qi/K. We have
the same assumption for the communication cost. These assumptions lead to
following equation which relates computational cost, resource performance and time
for the performance fluctuating scenario:

ucsscucssq cj
start
ccomplete

c

se
ejsjstart

end
si /)(/)(,

1

1
,, ×−++×−= ∑

−

+=

 (2)

where si
start and si

end are the start and end of a time slot, u is the length of a time slot,
sstart and scomplete are start time and completion time of ti, and s and c are indices of time
slots in which ti starts and completes respectively. Now we can express the priority of
a metatask ranku using a recursive definition:

))(),((max
_

)(
)(jutsucct

i
iu trankjiTransTime

cavg
qtrank

ij

++=
∈

)_),(),_(minmax(),(
11 ,

cdavgjieddavgrjiTransTime xDmxj
xj

××=
=∧≤≤

TransTime(i, j) gives the estimated time needed to transfer intermediate results or raw
input data to metatask tj, which is an immediate successor of ti. Since ti is not
scheduled yet, the time for intermediate results and that for raw input are both
estimated using average values. The meaning of ranku and TransTime implies that a
conservative policy is used in the ranking method. It assumes that raw input data
preloading of ti will not start from the data storage until ti’s predecessors finish. This

conservative policy may assign a higher rank to metatasks with large raw input data,
thus giving them higher priority and more chances to get cache space reservation.

As scheduling proceeds, available performance of computational resources will
change. Instead of using a static rank value computed at the beginning of the
scheduling, JDCS applies a dynamic iterate ranking strategy, that is, once a metatask
node is scheduled, the ranks for all of the metatask nodes yet to schedule will be
updated using the resource performance in new feasible time slots.

A metatask node cannot start until it receives all of the intermediate results and raw
input data. The value of EST(ti, pj) is related to two factors: the latest intermediate
result from ti’s predecessors, and the ready time of pre-loaded raw input data.
According to the restrictions, the raw input data pre-loading of metatask ti is not
relevant to the finish time of ti’s predecessors directly. Ideally, ti should start as soon
as possible when its last predecessor finishes. We denote the time when ti’s last
intermediate result can be ready on pj as LIRT(ti, pj), and we can obtain:

)/),()((max),(),()(jtPAxtpredtji x
ix

cwjxetCTptLIRT +=
∈

CT(tx) is the real complete time of tx. Raw input data preloading of ti should finish
before LIRT(ti, pj), otherwise, ti will suffer from additional delay. So, intuitively, raw
data preloading should start as early as possible. Unfortunately, due to the limited data
cache capacity, if raw input data of ti is preloaded too early, it may occupy space that
should be given to metatasks scheduled earlier than ti. To find out the proper time to
start preloading, JDCS uses a trace-back technique. Starting from time LIRT(ti, pj), it
traces back to check and reserve the earliest available cache space on pj for the input
data of ti. If there is no space available backward, it will change the search direction to
forward. Procedure Find_Preloading_ StartTime(ti, pj, time) in Fig. 2 describes how this
works. It returns the earliest preloading start time of ti on pj EPST(ti, pj). Thus, the
earliest raw input data ready time ERRT(ti, pj) and EST(ti, pj) can be formulated as:

)/(min),(),(,11 ,
xjiDmxjiji dwrptEPSTptERRT

xj =∧≤≤
+=

)),(),,(max()(jijiji ptERRTptLIRT, ptEST = (3)
For simplicity, the while loop iterates using integer time, but actually, the value of
ACS only changes when a new data transfer is started or space is released. In the worst
case, the while loop will run O(v*L) times, where L is a constant indicating the
maximum degree of a metatask graph. According to the restrictions and cache
management policy, when a metatask node is scheduled, all of its predecessors have
been already scheduled, so the scheduler can know precisely what the cache space
status was at any time in the past. Therefore, tracing back and inserting input data is
not going to conflict with any other scheduled metatasks, or result in deadlock.

With EST(ti, pj) and performance of pj in different times slots, it is straightforward
to get the earliest complete time of ti on pj ECT(ti, pj), according to (2) where sstart =
EST(ti, pj) and scomplete = ECT(ti, pj). At each step, the scheduler chooses the
unscheduled metatask which has the highest dynamic rank.

3.2 Resource Assignment

In the second phase, the scheduler selects a resource for a metatask. Intuitively, a
“good” assignment for a metatask should be the resource that can complete it the

earliest. But the problem of this intuitive way is that it may lead to a local optimum.
For example, we can consider the following case with a sequence of metatasks that
forms a path P from metatask ta to an exit node. It can happen that after ta is assigned
to a resource px that can finish ta the earliest, the rest of metatask nodes on P also have
to be assigned to px because the communication cost between any of them might delay
their earliest complete time otherwise. But, if they are scheduled to another resource,
say py, it is possible that the execution of the remaining metatasks on P can make up
the communication delay because py has a faster computational speed. So instead of
using the simple earliest complete time strategy, JDCS adopts a look-ahead approach,
which is described by Rule 1 to avoid a biased schedule.

Rule 1: If ti is the current metatask to be scheduled and tj is the direct child of ti on the
longest path measured by task rank from ti to an exit node, then ti should be
scheduled to resource px which satisfies:

))}(,,()({min
,1 jytjnyx

tPESTpPEPTtPEST
i

+
≤≤

where and

We cannot know the real earliest start time of tj, since at least one predecessor of tj
has not been scheduled yet. Function EPT computes the estimated total execution time
of metatasks on path using the average performance of each resource after PEST(tj).
Therefore, Rule 1 states that instead of finding the processing node that can finish ti
the earliest, we are trying to find a pair of resources, px and py, so that execution time
for the metatasks on the longest path from ti to an exit node will be minimized.

To utilize idle time slots on resources, JDCS allows task insertion, which is
formalized by Rule 2. It states that a task can be assigned to a resource only if there
are time slots large enough to accommodate it without delaying metatasks already
scheduled or violating precedence orders among the metatasks.

Rule 2: A metatask ti can be assigned to resource pj which is already assigned with a
sequence of metatasks { , , …, } at time s, if there is some m such that for every
metatask in { , , …, }, ECT(, pj)≤ EST(ti, pj), and for every metatask in
{ , , …, }, ECT(ti, , pj) ≤ EST(, pj).

The pseudo code of the JDCS algorithm is shown in Fig.2. The total complexity of
JDCS is in the order of O(n2v2+nkv).

4 Experiments

Simulation experiments are conducted to evaluate the performance of JDCS in the
Grid. The performance metric we used for the comparison is the Scheduled Length
Ratio (SLR), defined as the ratio of the real makespan to the lower bound of any
possible scheduling, which is the minimum length of the critical path. In the
experiments, the basic topology of Grid resources is generated using GridG1.0 [3].
This tool allows us to get realistic computational resources and networking settings
for simulation, such as processing capability, data cache size, bandwidth and delay for
LAN and WAN. Grid data storage sites are assumed to follow a uniform geographic

it
P

1j
t

2j
t

nj
t

xj
t

1j
t

2j
t

mj
t

xj
t

yjt
mj

t
1+mj

t
nj

t
yjt

yxxij cwjieptECTtPEST ,/),(max(),()(+= .)/(/)(),,(,∑∑
≤≤∈

−=
kjT

ji
Pt

ji TkcqTpPEPT
i

it
P

distribution in the Grid. Performance of a computational resource is assumed to
follow a Poisson distribution having the average value given by GridG as the average.
TGFF [4] is used to generate basic DAGs. TGFF allows customized settings such as
average number of metatask nodes in the graph, average out-degree and in-degree for
a node, and range of computation and communication costs. However, TGFF cannot
generate raw input data for a metatask. As a result, a graph generated by TGFF is
reprocessed and raw data input is inserted randomly to metatasks in the graph. The
size of raw input data is also uniformly distributed in the same range given to TGFF
for cost generation.

Find_Preloading_StartTime(t

i
, p

j
,

time)
1. EPST = time;
2. if (ACS(p

j
, PST) > = r

i
){

3. While (ACS(p, EPST) > = r
i
)

4. EPST--;
5. }else
6. while (ACS(p, EPST) < r

i
)

7. EPST++;
8. Return EPST
�
Algorithm JDCS(DAG G)
1. Compute initial task rank

u
;

2. Initialize the ready queue RQ
with the entry metatask;

3. While(there are unscheduled
metatasks){

4. Select the highest rank
metatask t in RQ;

5. Call Select_Resource(t);
6. Update rank

u
;

7. }
�
Select_Resource (metatask t)
1. Find the longest path P from t;
2. For available resources p

i
{

3. Get EST(t,p
j
) and ECT(t,p

i
);

4. For available resources p
j

5. Call EAT(P, p
j
, PEST(t));

6. }
7. Assign t to p

i
 that satisfies

Rule 1;
8. Set Data transfer time for t

and write the cache log of p
i
;

9. For all available resources p
i
,

update AVLT
i
 of p

i.

�

Fig. 2. Pseudo code of JDCS.

To test JDCS in different resource settings and workflow patterns, six groups of
experiments are conducted to test the influence of the following parameters to
schedule results: 1) the number of input data replicas (DR) in the Grid; 2) the ratio of
the average data input size to the average data cache size (ICR) on computational
resources, 3) the ratio of the average degree of a node to the total number of metatasks
in a graph (DTR); 4) the percentage of metatasks having raw input data (RIP) in a
workflow, 5) the average ratio of computation cost to communication cost a metatask
graph (CCR) (a high CCR value means a metatask graph is computation-intensive);
and 6) the resource background workload factor (BWF) which decides the percentage
that the performance of a computational resource can increase or drop in different
time slots. For every group of experiments, we used five sets of workflows whose
average metatask number varied from 20 to 100.

To test how the number of replicas of input data in the Grid will influence
scheduling results, three different settings are compared, namely, (1) no replica, which
means each metatask only has one copy of raw input data on data storage sites, (2)
one replica, and (3) two replicas. As expected (Fig. 3 (a)), data replication benefits the
schedule because the scheduler has more choices to reduce the preloading cost. But
the small margin between the curves of one replica and two replicas implies that the
gain from increasing the numbers of replicas is limited if they are evenly distributed

in the network. We also test the outcome of the original HEFT [3] algorithm, which
only considers intermediate results but not raw input data preloading when it makes a
schedule, and a revised HEFT algorithm using the trace-back method introduced in
this paper. The results show that the original approach will bring significant lag to the
performance, which supports the basic motivation of our work in this paper.

Another element impacting scheduling results is how large the data cache of
computational resources is. To make results comparable, we use a normalized ratio of
input data size to cache size (Fig. 3(b)). It can be observed that as the ratio increases,
SLR is increased dramatically and slopes of curves turn from sub-linear to super-linear.
The explanation is that as the ratio is higher, it becomes more difficult for a metatask
to get a free data cache space to preload its input data. In particular, when the ratio is
higher than 0.5, in most cases, simultaneous preloading is impossible because a data
cache can only hold input data for one metatask.

Intermediate results in a workflow are also competing for data cache space on
computational resources. So the ratio of intermediate data size to the data cache size
also influences a schedule. Given a uniform distribution of intermediate result size
when a metatask graph is generated, the total size of intermediate results is
proportional to the number of edges in the graph, or the degrees of metatask nodes. To
describe the edge density in a graph, the ratio of the average degree of each node to
the total number of nodes is used in our experiments (Fig. 3 (c)). Results show that the
performance of JDCS is stable in different ratios. Intuitively, SLR will be higher as the
size of intermediate results increases. But increasing the degree of metatasks implies
the task graph is more connected and the length of the path to an exit node might
become shorter. As JDCS uses a look-forward strategy in the resource selecting phase,
a shorter path means a more accurate estimation of the execution time, which will
benefit the task assignment. Another reason is given in the following analysis.

The third element relating to data cache competition is the number of metatasks
having raw input data. Different percentages of the metatasks having raw input data in
a workflow are tested (Fig. 3 (d)). It can be observed that, as the percentage increases,
gaps between different curves increase, which implies that JDCS is more sensitive to
changes in the number of raw input data than that of intermediate results. The reason
behind this is that the timing of intermediate results transfer is more restricted by both
precedence orders among metatasks and cache size limitation, while the raw input
data preloading solely depends on cache availability.

In our experiments, we assume CCR only influences the ratio of computation to
intermediate data, but not the raw input data. Fig. 3 (e) shows that, as CCR increases,
the SLR drops significantly. The reason behind is that the more communication in the
workflow, the higher SLR is going to be. But as CCR reaches a point in our model, the
main contribution of the communication cost will come from raw input data
preloading, which will then limit the drop of SLR.

The last group of experiments is to discover how JDCS adapts to performance
fluctuation of computational resources. In the experiments, we allow the background
workload of a computational resource to increase up to a certain percentage of its full
performance in different time slots (Fig. 3 (f)). It can be observed that, as the
fluctuation in performance grows, SLR is going to be extended. However in every
workflow set, the increase remains stable and moderate. This implies that JDCS can
work well even with resource performance changes in a wide range of up to 80%.

20 40 60 80 100
Number of Metatasks

30

40

50

60

70

SL
R

JDCS-No Replica
JDCS-1 Replica
JDCS-2 Replica
HEFT-1Replica
HEFT-No Preloading

20 40 60 80 100
Number of Metatasks

40

80

120

SL
R

ICR:0.1
ICR:0.2
ICR:0.4
ICR:0.8

20 40 60 80 100
Number of Matatasks

20

40

60

80

SL
R

DTR:0.05
DTR:0.1
DTR:0.2
DTR:0.4

 (a) (b) (c)

20 40 60 80 100
Number of Metatasks

20

40

60

80

100

SL
R

RIP:20%
RIP:40%
RIP:60%
RIP:80%

20 40 60 80 100
Number of Metatasks

40

80

120

SL
R

CCR:0.5
CCR:1
CCR:2
CCR:4
CCR:10

20 40 60 80 100
Number of Metatasks

20

40

60

80

SL
R

BWF: 20%
BWF: 40%
BWF: 50%
BWF: 60%
BWF: 80%

 (d) (e) (f)

Fig. 3. Performance on different settings of: (a) DR (ICR=0.2, DTR =0.2, RIP=40%, CCR = 2,
BWF=50%). (b) ICR (DR=1, DTR =0.2, RIP=40%, CCR = 2, BWF=50%). (c) DTR (DR=1,
ICR=0.2, RIP=40%, CCR = 2, BWF=50%); (d) RIP (DR=1, DTR =0.2, ICR=0.2, CCR = 2,
BWF=50%), (e) CCR (DR=1, DTR =0.2, ICR=0.2, RIP=40%, BWF=50%) and (f) BWF
(DR=1, DTR =0.2, ICR=0.2, RIP=40%, CCR =2).

5 Related Works

In [7], Park classifies different scenarios about locations of data and computation in
the Grid into five different categories. JDCS belongs to the category of Remote Data
and Different Remote Execution, because both computation and data sites are selected
dynamically and not necessarily close to each other. We believe this is a more general
case compared with the other four patterns in the Grid. There are two different points
of view on the relationship between data scheduling and computation scheduling,
namely, decoupling the two kinds of scheduling or combining them. In a decoupled
method given in [8], data replication strategies are independent from task scheduling
strategies, and a complete scheduling algorithm is an arbitrary combination of the two.
The primary goal of that approach is to maximize the system throughput. By contrast,
the goal of JDCS is to optimize the finish time of each Grid workflow, and the
algorithm does not generate new data replication in scheduling procedures.
Scheduling of computation is combined with data replica selection in [9] to reduce the
execution time of a collection of applications which can be unified to compose a DAG.
The goal of the approach is the same as JDCS, but main differences include: 1) JDCS
focuses on finding the right time to start a data input preloading other than selecting a
replica; and 2) JDCS does not partition a DAG graph to make a schedule. The
algorithm in [10] considers the constraint of storage capacity of each computation site

when it tries to optimize the throughput of a Grid system for independent jobs each of
which requests to refer to a certain data set. The differences from JDCS includes
taking independent jobs as input and system throughput as objective function. Finally,
the algorithm in [11] introduces economic cost as a part of the objective function for
data and computation scheduling. It does not use data replication, and is designed for
independent Grid jobs as well.

6 Conclusions

A joint data and computation scheduling algorithm for Grid workflow is proposed in
this paper. JDCS considers realistic situations of workflow scheduling in the Grid,
such as limited data cache space on computational resources and resource
performance fluctuation. Experiments and analysis verify the effectiveness of JDCS
under different system and workflow settings and support our basic motivation for
this research. The current implementation of JDCS does not consider the possibility of
wrong performance prediction, which is likely in real situations. This is the focus of
our current research. Future work also includes improving the resource selection
algorithm in the second phase, in order to make it more adaptive to performance
fluctuations as we did in [12].

References

[1] L. Yang, J. M. Schopf and I. Foster, Conservative Scheduling: Using Predicted Variance
to Improve Scheduling Decisions in Dynamic Environments, Super-Computing, 2003.

[2] K. Aggarwal and R. D. Kent, An Adaptive Generalized Scheduler for Grid Applications,
the 19th HPCS, 2005.

[3] H. Topcuoglu, S. Hariri and M.Y. Wu, Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing, IEEE Trans. on Parallel and Distributed
Systems, Vol. 13, No. 3, 260 - 274, 2002.

[4] D. Lu and P. Dinda, Synthesizing Realistic Computational Grids, Super-Computing 2003.
[5] R.P. Dick, D.L. Rhodes and W. Wolf, TGFF Task Graphs for Free, the 6th. International

Workshop on Hardware/Software Co-design, 1998.
[6] H. El-Rewini, T. Lewis, and H..Ali, Task Scheduling in Parallel and Distributed Systems,

ISBN: 0130992356, PTR Prentice Hall, 1994.
[7] S. Park and J. Kim, Chameleon: a Resource Scheduler in a Data Grid Environment, the

3rd CCGrid, 2003.
[8] K. Ranganathan and I. Foster, Decoupling Computation and Data Scheduling in

Distributed Data-Intensive Applications, the 11th HPDC, 2002.
[9] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, A Unified Resource Scheduling

Framework for Heterogeneous Computing Environments, the 8th HCW Workshop, 1999.
[10] F. Desprez and A. Vernois, Simultaneous Scheduling of Replication and Computation for

Bioinformatic Applications on the Grid, in Proc. of CLADE 2005.
[11] S. Venugopal and R. Buyya, A Deadline and Budget Constrained Scheduling Algorithm

for eScience Applications on Data Grids, 6th ICA3PP, 2005.
[12] F. Dong and S. Akl, PFAS: A Resource Performance Fluctuation Aware Workflow

Scheduling Algorithm for Grid Computing, the 16th HCW Workshop, 2007.

