
Distributed Computation of All Node

Replacements of a Minimum Spanning Tree �

Paola Flocchini1, T. Mesa Enriquez2, Linda Pagli3, Giuseppe Prencipe3, and
Nicola Santoro4

1 University of Ottawa, Canada, flocchin@site.uottawa.ca
2 Universidad de La Habana, Cuba, tonymesa@matcom.uh.cu
3 Università di Pisa, Italy, {pagli,prencipe}@di.unipi.it
4 Carleton University, Canada, santoro@scs.carleton.ca

Abstract. In many network applications the computation takes place
on the minimum-cost spanning tree (MST) of the network; unfortu-
nately, a single link or node failure disconnects the tree.
In this paper we consider for the first time the problem of computing
all the replacement minimum-cost spanning trees distributively, and we
efficiently solve the problem. We design a solution protocol and we prove
that the total amount of data items communicated during the computa-
tion is O(n2). This communication can be achieved either transmitting
O(n) long messages, if the system so allows, or O(n2) standard messages.
Even in systems that do not allow long messages, the proposed protocol
constitutes a significant improvement over the individual computation of
the replacement trees.

Keywords. Minimum Spanning Tree, Replacement Tree, Node Failure, Dis-
tributed Algorithms.

1 Introduction

1.1 The Framework

In most network applications, the computation takes place not on the entire
network but solely on a spanning subnet. There are several reasons for this fact;
first and foremost, it is done to reduce the amount of communication and thus
the associated costs; it is done also for security reasons, e.g. to minimize the
exposure of messages to external eavesdroppers. The subnet used is typically a
special spanning tree of the network G; in particular, the minimum-cost spanning
tree (MST) is used for basic network tasks such as broadcasting, multicasting,
leader election and synchronization. The major drawback of using a MST is the
high vulnerability of its tree structure to link and/or node failures: a single failure
disconnects the spanning tree, interrupting the message transmission. Hence it is
crucial to update the MST after changes in network topology. In this paper we

� Research partially supported by NSERC Canada.

update MST after single node deletions. In a graph G = (V, E), with n nodes
there are n possible instances of a single node deletions. Let T be the MST
of G. Informally, the All Node Replacements (ANR) problem is to update T in
each of the instances of single node deletion. Observe that this problem is much
more difficult than the related All Link Replacement (ALR) problem where the
goal is to update T in each of the instances of single edge deletion. In fact, the
deletion of a single node u is equivalent to the simultaneous deletion of all its
deg(u) incident edges.

The re-computation of the new MST in each instance is rather expensive.
This is particularly true if the re-computation is done distributively in the net-
work after a failure; in addition, if the failures in the system are mostly tem-
porary, the usefulness of these re-computations is limited and the rational for
affording their cost becomes questionable. For these reasons, to solve the All
Node Replacements problem in reality means to pre-compute the n replacement
minimum spanning trees, one for each possible node failure in the tree [4, 10,
13]; the computed information is then used only if a node fails, and only as
long as the failure persists. The computational challenge is to be able to com-
bine work among the n different pre-computations, so that the the total cost is
much less than that incurred by computing each replacement tree individually.
This problem has been extensively investigated, and efficient solutions have been
developed for both the sequential and parallel settings (e.g., see [3, 4, 10, 13, 15]).

In this paper we consider the distributed version of this problem. That is we
investigate the All Node Replacements problem when the computational enti-
ties are nodes of G themselves, and each can only communicate by exchanging
messages with its neighbours. The network itself must pre-compute the n re-
placement minimum spanning trees; the information so obtained is then stored
(distributively) together with the original MST tree T , and used whenever a
node failure is detected; the original minimum spanning tree T is reactivated
once the network has recovered from the transient fault.

The repeated application of a distributed MST construction protocol (e.g.,
[7, 11]) will cost at least O(nm + n2 log n) messages, where m denotes the num-
ber of edges. Surprisingly, no more efficient distributed solutions exist for this
problem, prior to this work. As stated in [4] (where efficient serial and parallel
solutions were presented): Designing an efficient distributed algorithm for ANR
remains an open problem.

1.2 Main Result

In this paper we consider the problem of computing all the replacement
minimum-cost spanning trees distributively, and we efficiently solve the prob-
lem.

We design a distributed algorithm for computing all the replacement MST s
of the minimum cost spanning tree T of the network G, one for each possible
node failure, and we show how to store the computed information in order to
restore the tree’s connectivity when the temporary fault occurs.

We prove that the total amount of data items communicated during the com-
putation (the data complexity) is O(n2). This communication can be achieved
transmitting only O(n) long messages between neighbours, if the system so al-
lows; otherwise O(n2) standard messages suffice. In other words, with this com-
plexity, our protocol constructs a MST that maintains its minimum-cost prop-
erties even after a single (but arbitrary) link or node failure.

Even in systems that do not allow long messages, the proposed protocol
constitutes a significant improvement over the individual computation of the
replacement trees. Indeed, for dense graphs, our protocol constructs all the n
replacement MST s of the minimum spanning tree T with the same number of
messages required just to compute T .

The communication structure of the algorithm is surprisingly simple, as it
consist of a single broadcast phase followed by a convergecast phase. The dif-
ficulty is to determine what information is locally needed, which items of data
have to be transmitted in these two phases, and how the communicated infor-
mation must be locally employed. This schema is reminescent of the one used for
computing all the swap-edges of a shortest-path tree [8, 9], but the similarity is
limited to the structure. In fact, since the failure of a single node u is equivalent
to the simultaneous deletion of all its deg(u) incident edges, the nature of the
problem changes dramatically, and those approaches can not be used here.

They can however be employed, as we show, to solve the simpler All Link Re-
placement (ALR) problem where the goal is to update T in each of the instances
of single edge deletion.

1.3 Related Work

The All Node Replacements (ANR) problem was first studied in a serial envi-
ronment by Chin and Houck [3]. A more efficient solution has been developed by
Das and Loui [4], and later improved by Nardelli, Proietti and Widmayer [13].
When G is planar, improved bounds have been obtained by Gaibisso, Proietti
and Tan [10]. The simpler All Edge Replacements (AER) problem is implicitly
solved by Dixon, Rauch and Tarjan [5]; an improved solution was later developed
by Nardelli, Proietti and Widmayer [13].

In the parallel setting, Tsin presented an algorithm to update a MST after
a single node deletion [15]; thus, concurrent use of this algorithm solves ANR
in parallel. A subsequent parallel solution to ANR is obtained by combining
the parallel algorithms presented by Johnson and Metaxas [12]. A more efficient
parallel technique has been designed by Das and Loui [4]. The simpler All Edge
Replacements (AER) problem is efficiently solved by using the parallel verifica-
tion algorithm of Dixon and Tarjan [6].

In the distributed setting, the construction of the MST of a network has
received considerable attention. The well known protocol by Gallager, Humblet
and Spira uses O(m + n logn) messages, where m denotes the number of edges
[11]. This protocol is not only elegant but also optimal, since Ω(m + n log n)
messages are needed regardless of their size [14]. In fact, all subsequent work (e.g.,
[7]) has been dedicated to reducing the time needed in synchronous executions.

To solve AER and ANR, one may use repeated applications of a dis-
tributed MST construction protocol; this brute-force approach will cost at least
O(nm+n2 log n) messages. The more complex problem of updating a MST with
multiple node and edge deletions was considered by Cheng, Cimet and Kumar
[2]; however, when used in the ANR and in the AER problems, their solution
would not yield any improvement over the brute-force approach (it would actu-
ally be worse). Indeed, prior to this work, no efficient distributed solutions exist
for either problems.

2 Terminology and Problems

2.1 Definitions

Let G = (V, E) be an undirected graph, with n = |V | vertices and m = |E|
edges. A label of length l ≤ log n is associated to each vertex of G. A non
negative real weight w(e) is associated to each edge e. A subgraph G′ = (V ′, E′)
of G is such that V ′ ⊆ V and E′ ⊆ E. If V ′ ≡ V and G′ is connected, then G′

is a spanning subgraph. A graph G is 2-edge connected or 2-node connected if it
remains connected after the removal of any one of its edges (or any one of its
nodes). Let T = (V, E(T)) be a spanning tree of graph G rooted in r, arbitrary
node of T . A spanning tree T = (V, E(T)) is called minimum spanning tree MST
of G if the sum of tree edge weights is minimum over all spanning trees.

A subtree rooted at some node x is denoted by Tx. The parent of a node
x is indicated as parent(x) and its children as children(x). Consider an edge
e = (x, y) ∈ E(T) with y closer to r, the root of T ; if such an edge is removed,
the tree is disconnected in two subtrees: Tx and T \Tx. A swap edge for e = (x, y)
is any edge e′ = (u, v) ∈ E \ {e} that connects the two subtrees. It can be easily
seen that the MST of G− e, called the replacement tree TG−e can be computed
by selecting the swap edge of minimum weight connecting Tx and T \ Tx.

We consider a distributed computing system with communication topology G.
Each computational entity x is located at a node of G, has local processing and
storage capabilities, has a unique label λx(e) from a totally ordered set associated
to each of its incident edges e, knows the weight of its incident edges, and can
communicate with its neighboring entities by transmission of bounded sequences
of bits called messages. The nodes do not know the topology G, but only their
incident edges with their labels. The communication time includes processing,
queueing, and transmission delays, and it is finite but otherwise unpredictable.
In other words, the system is asynchronous. All the entities execute the same
set of rules, called distributed algorithm (e.g., see [14]).

In the following, when no ambiguity arises, we will use the terms entity, node
and vertex as equivalent; analogously, we will use the terms link, arc and edge
interchangeably.

2.2 The All Edges Replacement Problem and its Solution

Let G be 2-edge connected. The All Edges Replacement problem, denoted as
AER(G,T) with input G and T is that of finding TG−e for every edge e ∈ E(T).

The AER(G,T) problem can be solved distributively by applying one of the
algorithmic shells of [9], where the input tree is now an MST of G, instead of a
shortest-path tree, and where the best swap edge e′ for e is the one leading to the
minimal total weight; hence, this function can be computed locally by each node
by simply summing the weight of e′ and subtracting the weight of e from the
total MST ’s weight. The overall message complexity is then the same as in [9]
amounting to O(n∗

r), where n∗
r is the number of edges of the transitive closure

of T \ {r} and 0 ≤ n∗
r ≤ (n − 1)(n − 2)/2, which is of O(n2).

2.3 The All Nodes Replacement Problem

Let G = (V, E) be 2-node connected. Consider a node x ∈ V ; if such node is
removed from T together with its incident edges, the tree is disconnected into
the subtrees Tx1 , ... , Txk

, where x1, ..., xk are the children of x; let T ′ = T \
{Tx1, ..., Txk

, {x}}. Let x0 be the parent of x, and E′ be the set of non tree edges;
we will call Ux = {e = (u, v) ∈ E′|u ∈ Txi, 1 ≤ i ≤ k, v ∈ T ′} the set of upwards
edges of x and Hx = {e = (u, v) ∈ E′|u ∈ Txi , v ∈ Txj , 1 ≤ i, j ≤ k, i �= j}
the set of horizontal edges of x. For node x, the set of the best upward edges
U ′

x ⊆ Ux is the set containing the edges of minimum weight (if any) connecting
Txi , 1 ≤ i ≤ k and T ′, and the set of the best horizontal edges is the set H′

x ⊆ Hx

containing the edges of minimum weight connecting Txi and Txj , 1 ≤ i �= j ≤ k
(if any). In the following, we will use also the notation U , U ′, H, and H′, when
the reference to the removed node is clear from the context.

From [13] we know that the MST of G − x can be computed through the
computation of the MST of the contracted graph Gx = (Vx, Ex), where Vx =
x0, x1, ...xk and Ex = H′ ∪ U ′, obtained contracting to a single vertex each
subtree Txi, 1 ≤ i ≤ k, and T ′. The edges of the obtained MST , say TG−x, are
the replacement set of edges for x.

The computation of all the replacement sets for each node failure will be
called the All Nodes Replacement or simply ANR(G,T) problem in the following.
We are interested in the distributed solution of the ANR(G,T) problem.

3 Solving the ANR problem

Consider the problem of computing the replacement edges for the failure of
node x of T ; the computation is performed simultaneously for all possible node
failures. We first present a distributed algorithm described at high level, while
the details of each module will be discussed later. At high level the algorithm
consists of a broadcast phase started by the children of the root, followed by a
convergecast phase started by the leaves. The idea is that each node x is able
to compute its replacement set, when all its children have already computed
their replacement sets in the convergecast phase. Node x determines also a set
of edges, useful to compute the replacement sets for all its ancestors (except for
the root), that is for ai, 2 ≤ i ≤ s, where a2 is the parent of x in T and as a
child of r.

Once node x has computed its replacement set, composed of edges having at
least one endpoint in its subtrees, it sends them back to its children, each one to
the root of the proper subtree. In the case node x fails, each child knows which
edges have to be activated in its subtree.

ALL NODES REPLACEMENT (ANR(G,T))

[Broadcast.]

1. Each child x of the root starts the broadcast by sending to its children a list
containing its name.

2. Each node y, receiving a list of names from its parent, appends its name to the
received list and sends it to its children.

[Convergecast.]

1. Each leaf z selects, among its non tree incident edges, the best upwards edge
and the best horizontal edges for each ancestor a in the received list. Then sends
the lists of those edges to its parent (if different from r).

2. An internal node y waits until it receives the information computed from each
of its children: this information contains the set of the upwards edges U ′ and
the set of horizontal edges H′ for y.
(a) y computes the MST of the graph Gy = (Vy, Ey) where Vy =

{parent(y), children(y)} and Ey = {U ′ ∪ H′} and sends the edges of TGy ,
that is the replacement set RSy for y to its proper subtrees.

(b) y then selects, among its incident non tree edges and the information re-
ceived from its children, the best upwards edge and the best horizontal edges
for each of its ancestor.

(c) y finally sends the lists of these edges to its parent (if different from r).

To show how this high level algorithmic structure works we must specify in
more details the convergecast phase and, in particular, the operations executed
by each node. First of all, let us define the structure of the information received
by a node x from each of its children: it is composed by s lists, one for x and
one for each of the other s − 1 ancestors aj , 2 ≤ j ≤ s (except for the root).
For each xi, 1 ≤ i ≤ k let Li

j , 1 ≤ j ≤ s be the list from xi for x and for the
other ancestors aj . Each Li

j is composed of two fields, called UP and HOR. For
Li

1, 1 ≤ i ≤ k, the field UP , denoted as UP (Li
1) will contain the best upwards

edge from Txi for x. The set composed by UP (L1
1), ... , UP (Lk

1) are used to
compute U ′; UP (Li

j), 1 ≤ i ≤ k, 2 ≤ j ≤ s, will contain the best upwards edge
encountered until now for aj , that is the best upwards edge for aj outgoing from
Txi . Note that every edge is always stored together with its weight.

The field HOR of each list Li
1, 1 ≤ i ≤ k, denoted as HOR(Li

1), is a pointer
to a possibly empty list of at most k − 1 best horizontal edges connecting Txi

and Txh
, 1 ≤ h ≤ k, h �= i. The edges in the lists HOR(L1

1), . . . , HOR(Lk
1) form

the set H′. Let d(aj) be the degree of aj in T ; the size of the lists HOR(Li
j),

1 ≤ i ≤ k and 1 ≤ j ≤ s, is at most equal to d(aj) − 1. For j > 1, such
lists contain the best horizontal edges found until now for aj , that is the best
horizontal edges outgoing from Txi for aj .

Some of the information sent to a node from its children is shown in Fig-
ure 1(a). Note that, since the horizontal edges are computed independently by
each subtree, each edge will appear twice in the lists.

�
�
�
�

�
�
�
�x

x1

c
b

w y

T ′

e

x3x2

G

d
f

z

a

z

y
x w

a

c d

3

3

2

f
1

e

b

(a) (b)

Fig. 1. (a) The upwards and horizontal edges sent to x by its children x1, x2, x3 used
for the computation of the replacement set for x. UP (L1

1) contains the upwards edge
w, UP (L2

1) contains z and UP (L3
1) contains y. U ′ = {w, y, z} HOR(L1

1) contains the
edges (a, b) and (c, d); HOR(L2

1) contains (d, c) and (e, f) and HOR(L3
1) contains (b, a)

and (f, e). H′ = {(a, b)(c, d)(d, c)(e, f)(b, a)(f, e)}. (b) Selection of the horizontal edges
for z in algorithm MyAUH executed by x.

Once a node has received the sets U ′ and H′ from its children, it has to
compute the MST of the contracted graph Gx. This can be done locally with
an optimal sequential algorithm, with no exchange of additional messages. The
only problem is that in the sets U ′ and H′, the edges are indicated by their
endpoints, while the nodes of the contracted graph Gx are the children and the
parent of x. For this purpose, the endpoints of these edges must be relabeled.

Let us describe in detail the operations executed by node x. First of all x
computes the new MST for the contracted graph Gx = (Vx, Ex) by considering
the lists transmitted to it from its children (Algorithm MyMST).

MyMST

(* Algorithm for node x*)

1. Construct the contracted graph Gx = (Vx, Ex) of G − x where
Vx = {parent(x), children(x)}. Ex is obtained by the union of the sets
{UP (Li

1), HOR(Li
1)}, 1 ≤ i ≤ k, relabeled as follows: any edge e = (a, b) ∈

UP (Li
1) becomes (xi, parent(x)). For any edge e = (a, b) ∈ HOR(Li

1) search

the list HOR(Lj
1), 1 ≤ i, j ≤ k, i �= j, containing the edge e = (b, a) and rename

(a, b) as (xi, xj).
2. Compute the MST of Gx locally with an optimal algorithm.
3. Reassign to the set of edges ETGx of TGx their original names besides the new

names. ETGx is the replacement set for x.
4. Send any edge e = (a, b) ∈ ETGx , relabelled as (xi, xj) to child xi.

Note that the relabeling operation is needed because even if node x knows the
label i of the child from which it receives the information, an edge (a, b) coming
from xi does not explicitly specify to which subtree of x the node b belongs.

We now describe the algorithm of x which computes the best upwards edge
for each ancestor aj , 2 ≤ j ≤ s, among its incident upwards edges and the

edges in UP (Li
j), 1 ≤ i ≤ k. In addition x computes the best horizontal edges

among its incident edges that are horizontal with respect to aj and the edges in
HOR(Li

j), 1 ≤ i ≤ k, 2 ≤ j ≤ s (Algorithm MyAUH).
Node x will produce the new s − 1 lists Lx

j , 2 ≤ j ≤ s to send to its parent.
Note that while the best upward and horizontal edges that x computes for its
parent are the final ones, the edges computed for all the other ancestors can be
worse than the final ones; they will be ultimately computed for each node when
their children execute Algorithm MyAUH.

Algorithm MyAUH makes use of the boolean function anc(x,y) which is true
if and only if node x is an ancestor of y, and of the function nca(x,y) which
returns the nearest common ancestor of x and y in a given tree, that is the
common ancestor of x and y, whose distance from x and y is smaller than the
distance of any other ancestor. Let In(x) be the set of non tree edges incident
to x. With respect to a node x, the horizontal edges connecting the same pair
of subtrees of x will be called analogous in the following.

MyAUH

(* Algorithm for node x *)

1. Among the edges in In(x): select those for which nca(x, y) = z, z �= x and
z �= y; let min be the one of minimum weight; For each ancestor node aj , 2 ≤
j ≤ s: compute the best upwards edge as the one of minimum weight among
UP (Li

j), 1 ≤ i ≤ k, min, and the edges belonging to In(x) such that anc(aj , x) =
true; store the best upwards edge in UP (Lx

j).
2. Among the edges e = (x, y) ∈ In(x): select those for which nca(x, y) = aj , 2 ≤

j ≤ s. For each j if there is a set of analogous edges, then choose the one of
minimum weight. For each ancestor node aj , 2 ≤ j ≤ s, d(aj) = d, consider
the selected incident edges e = (x, y) such that nca(x, y) = aj and the edges
e = (h, h′) ∈ HOR(Li

j), 1 ≤ i ≤ k; if there is a set of analogous edges then
choose the one of minimum weight. All the selected edges are then stored in
HOR(Lx

j).

4 Correctness and Complexity

4.1 Basic properties

We first introduce some properties needed to show how a node x can locally
efficiently perform the operations in Algorithm MyAUH.

In order for a node to decide if the other endpoint of an incident edge is its
ancestor it is sufficient to check the information collected in the broadcast phase.

Property 1 Given e = (x, y) ∈ In(x), anc(y, x) can be checked at node x and
no communication is needed.

Property 1 derives from the fact that, after the broadcast phase, x knows all
of its ancestors, and if y does not belong to the list of ancestors the function is
false.

The nearest common ancestor of pairs of nodes x, y ∈ T , nca(x, y) must be
also computed. In a recent work [1], it has been shown that this information can

be locally computed in constant time, through a proper labeling of the tree that
requires labels of O(logn) bits, denoted as l(x), that can be precomputed by a
depth first traversal of the tree. Therefore, our basic algorithm ANR(G,T) has
to be slightly modified to transmit, for each node x, l(x) instead of x. Once such
labeling is computed for T , each node can be distinguished by its label. Then,
from [1] and since l(y) is accessible at x, we have:

Property 2 Let e = (x, y) ∈ In(x). nca(x, y) can be computed at x and no
communication is needed.

In the selection of the horizontal edges we need to check whether two edges,
having the same nearest common ancestor z, connect the same pair of subtrees of
z, that is they are analogous: only the one with minimal weight, must be selected.
In this way, node x selects at most one edge from Tx to any other subtree rooted
in its siblings and this is important to bound the size of the information sent by
every node.

The situation is depicted in Figure 1(b), where all horizontal edges (x, y),
(b, a), (d, c), and (e, f) have the same nearest common ancestor z, but
(x, y), (b, a), and (d, c) are analogous since they connect the same pair of sub-
trees Tx and Ty; only the one of minimum weight (b, a) is chosen; edge (e, f)
is the unique connecting Tx and Tw, then is directly chosen. Besides the other
information, x will then send to z the list HOR(Lx

z) containing (b, a)(e, f).
The problem is now how to detect the analogy between two horizontal edges.

We have the following:

Lemma 1. Let (a, b) and (c, d) be two edges such that a ∈ Ty, c ∈ Ty, and
nca(a, b) = nca(c, d) = z. These edges are analogous if nca(b, d) = x, x �= z.
The condition can be checked at y for each z and no communication is needed.

The proof of Lemma 1 can be followed observing Figure 2, where, for the
edges (x, y) and (d, c), nca(y, c) is different from z, hence they are analogous.
Viceversa, for (x, y) and (e, f), nca(y, f) is equal to z, hence the condition does
not hold.

4.2 Analysis

We now prove the correctness of our basic algorithm ALL NODES REPLACE-
MENT ANR(G,T). We have:

Theorem 1. In algorithm ANR(G,T) each node z �= r:
(i) correctly computes the best upwards edge and the best horizontal edges for its
parent.

(ii) determines for each ancestor a, different from the parent and the root, the
best upward edges and the best horizontal edges for a in Tz.

We now establish the data complexity required by the algorithm. We recall
that the preprocessing phase consists of a depth first search of the tree requiring
O(n) messages. We have:

Theorem 2. The data complexity of algorithm ANR(G,T)is O(n2).

The algorithm ALL NODES REPLACEMENT terminates leaving, in the
children of each node, the edges to activate in case of failure. Let x be the node
which fails, x1, ...xk, 1 ≤ i ≤ k its children, and let RSx be the replacement set
of edges for xi. Every xi will contain the subset RSxi ⊆ RSx of edges having an
endpoint in Txi ; it starts a broadcast phase sending RSxi down in its subtree; in
this phase the nodes that discover to be incident to one edge e ∈ RSxi activate
the edge. This activation phase requires a data complexity of order O(dx−1×n),
since at most dx−1 edges have to reach O(n) nodes.

References

1. S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestor: A
survey and a new distributed algorithm for a distributed environment. Theory of
Computing System, 37: 441–456, 2004.

2. C. Cheng, I.A. Cimet, S.P.R. Kumar. A protocol to maintain a minimum spanning
tree in a dynamic topology. Comput. Commun. Rev., 18(4): 330–338, 1988.

3. F. Chin and D. Houck. Algorithms for updating minimal spanning trees. J.
Comput. System Sci., 16(3): 333–344, 1978.

4. B. Das and M.C. Loui. Reconstructing a minimum spanning tree after deletion of
any node. Algorithmica, 31: 530–547, 2001.

5. B. Dixon, M. Rauch, R.E. Tarjan. Verification and sensitivity analysis of minimum
spanning trees in linear time. SIAM J. Computing, 21(6): 1184–1192, 1992.

6. B. Dixon and R.E. Tarjan. Optimal parallel verification of minimum spanning
trees in logarithmic time. Algorithmica, 17(1): 11-17, 1997.

7. M. Faloutsos and M. Molle. A linear-time optimal-message distributed algorithm
for minimum spanning trees. Distributed Computing 17 (2): 151-170, 2004.

8. P. Flocchini, A. Mesa Enriques, L. Pagli, G. Prencipe, and N. Santoro. Point of
failure shortest-path rerouting. IEICE Trans. Inf. Syst., E89-D (2): 700–708, 2006.

9. P. Flocchini, L. Pagli, G. Prencipe, N. Santoro, P. Widmayer, and T. Zuva. Com-
puting all the best swap edges distributively. Proc. 8-th Int. Conference on Prin-
ciples of Distributed Systems (OPODIS’04), LNCS 3544, 154–168. 2004.

10. C. Gaibisso, G. Proietti, and R.B. Tan. Optimal MST maintenance for transient
deletion of every node in planar graphs. Proc. of International Conference on
Computing and Combinatorics (COCOON’03), LNCS 2697, 404–414, 2003.

11. R.G. Gallager, P.A. Humblet, and P.M. Spira, A distributed algorithm for mini-
mum spanning tree. ACM Trans. Prog. Lang. and Systems 5 (1): 66–77, 1983.

12. D.B. Johnson and P. Metaxas. A parallel algorithm for computing minimum span-
ning trees. J. Algorithms 19 : 383-401, 1995.

13. E. Nardelli, G. Proietti, and P. Widmayer. Nearly linear time minimum spanning
tree maintenance for transient node failures. Algoritmica, 40:119–132, 2004.

14. N. Santoro. Design and Analysis of Distributed Algorithms. Wiley, 2007.
15. Y.H. Tsin. On handling vertex deletion in updating minimum spanning trees.

Information Processing Letters, 27(4):167–168, 1988.

