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Abstract. We investigate the problem of detecting termination of a distributed
computation in an asynchronous message-passing system where processes may
crash and recover. We show that it is impossible to solve the termination detec-
tion problem in this model. We identify necessary and sufficient conditions under
which it is possible to solve the stabilizing version of the problem in which a
termination detection algorithm is allowed to make finite number of mistakes.
Finally, we present an algorithm to solve the stabilizing termination detection
problem under these conditions.
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1 Introduction

Termination detection involves determining whether a distributed computation has cea-
sed all its activities. It arises when a computation terminates implicitly and no process
knows about the termination [1]. As a result, a separate algorithm may have to be used
to detect termination of the computation. The termination detection problem has been
studied quite extensively in fault-free models (e.g., [2–6]). It has also been studied in
the crash-stop model (e.g., [7–12]). However, little is known about the problem when
processes may crash and recover. We believe that the crash-recovery failure model is
more realistic than crash-stop failure models because, in practice, to avoid resource
exhaustion we must allow crashed processes to recover. However, it is also harder to
deal with than the other two failure models as shown by earlier work in this failure
model on solving other important distributed computing problems such as consensus
[13], reliable broadcast [14] and atomic broadcast [15, 14].

In this paper, we investigate the termination detection problem in the crash-recovery
model. It turns out that it is impossible to solve the problem in this failure model with-
out weakening the problem and/or strengthening the model. The main reason for this
impossibility result is that it is not possible to determine the future behavior of a cur-
rently down process, that is, whether it will stay down permanently or may recover later.
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To circumvent the impossibility result, we weaken the problem by allowing a termina-
tion detection algorithm to make mistakes, that is, it may falsely announce termination
albeit only a finite number of times. We refer to this problem as the eventually safe
termination detection problem.

Even the eventually safe termination detection problem cannot be solved without
strengthening the model. To that end, we make the following two assumptions about
the model. First, there are no unstable processes in the system, i.e., there are no pro-
cesses that crash and recover infinitely often. Second, processes are equipped with an
eventually perfect failure detector. We show that both conditions are necessary.

We finally describe an algorithm for solving the stabilizing termination detection
problem under the two assumptions. Such an algorithm is very usefull in scenarios
where only performance and not correctness of the application is affected by false ter-
mination announcements. For example, it is possible to construct an efficient mutual
exclusion algorithm in the following way: a first distributed algorithm establishes a
spanning tree in the network, while a second algorithm circulates a token in a repeated
depth-first traversal of the tree. The second algorithm is only started once the first al-
gorithm has terminated. Suppose several devices use a mutual exclusion algorithm to
select a channel for communication. If due to false termination announcement mutual
exclusion property is violated, in the worst case two or more devices choose the same
channel and their communication will interfere. Eventually, the algorithm satisfies the
safety property and will work properly thereafter. Due to lack of space, for the proofs
of some lemmas and theorems we refer to [16].

2 Model and Notation

Distributed System We assume an asynchronous distributed system consisting of a
set of processes, given by Π = {p1, p2, . . . , pn}, in which processes communicate
by exchanging messages with each other over a communication network. A process
changes its state by executing an event. The system is asynchronous in the sense that
there is no bound on the amount of time a process may take to execute an event or a
message may take to arrive at its destination.

Failure Model We assume that processes may fail by crashing. Further, a crashed pro-
cess may subsequently recover and resume its operation. While a process is crashed,
it does not execute any events. This failure model is referred to as the crash-recovery
model. In the crash-recovery model, a process may be either stable or unstable. A pro-
cess is said to be stable if it crashes (and possibly recovers) only a finite (including
zero) number of times; otherwise it is unstable. A stable process can be further classi-
fied into two categories: eventually-up or eventually-down [13]. A process is said to be
eventually-up if the process eventually stays up after crashing and recovering a finite
number of times; otherwise it is eventually-down. An eventually-up process is said to
be always-up if it never crashes. Sometimes, eventually-up processes are referred to
as good processes, and eventually-down and unstable processes are referred to as bad
processes [13]. A process that is currently operational is called an up process, whereas
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a process that is currently crashed is called a down process. We use the phrases “up pro-
cess” and “live process” interchangeably. Likewise, we use the phrases “down process”
and “crashed process” interchangeably.

We assume eventually-reliable channels in this paper. Such channels guarantee re-
liable communication between good processes that do not crash anymore.

Process Incarnations We assume that each process has access to volatile storage and
stable storage. When a crashed process recovers, we say that the process has a new
incarnation. At the very least, we use stable storage to distinguish between various
incarnations of the same process. Each process maintains an integer in its stable storage
that keeps track of its incarnation number, that is, the number of times the process has
crashed and recovered. The integer is initially set to 0 for all processes. Whenever a
process recovers from a crash, before taking any other action, it reads the value of the
integer from its stable storage, increments the value and writes the incremented value
back to its stable storage.

Failure Detector for Termination Detection In this paper, we focus on realistic fail-
ure detectors which are not capable of predicting the future behavior of a process (e.g.,
whether a process will stay up forever) [17]. The termination detection algorithm de-
scribed in this paper needs an eventually perfect failure detector [18]. Intuitively, an
eventually perfect failure detector is responsible for monitoring the operational state of
all processes in the system. It may make mistakes in the beginning. For instance, it may
believe that a process is down when, in fact, the process is actually up, and vice versa.
However, it should eventually have a correct view of the system.

In this paper, we do not distinguish between the local failure detector at a process
and the process itself unless necessary. If process pi believes process pj to be down, we
say that pi suspects pj . On the other hand, if pi believes pj to be up, we say that pi trusts
pj . We model the output of the failure detector using a list of trusted processes. For a
failure detector to be eventually perfect, the list at different processes should satisfy the
following properties:

– Completeness (two parts): (1) Every bad stable process is eventually permanently
suspected by all good processes. (2) Every bad unstable process is either eventually
permanently suspected by all good processes, or suspected and trusted infinitely
often by all good processes.

– Accuracy: Every good process is permanently trusted by all good processes.

Note that if there are no unstable processes in the system, then eventually all good
processes agree on which processes are currently up.

3 The Termination Detection Problem

The distributed computation whose termination has to be detected is typically mod-
eled using the following four rules. First, a process is either in active state or passive
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state. Second, a process can send a message only if it is active. Third, an active pro-
cess may become passive at any time. Fourth, a passive process may become active
only on receiving a message. Intuitively, an active process is involved in some local
activity, whereas a passive process is idle. The termination detection problem involves
determining whether the computation has ceased all its activities. Formally,

Definition 1 (termination condition). A computation is said to have terminated if no
process is currently active and, further, no process becomes active in the future.

We consider a process to be in an active state only when it is up. Further, we con-
clude that a process, on recovery, restarts in an active state only if it failed in an active
state. Any termination detection algorithm should satisfy the following two desirable
properties:

– No false termination announcement (safety): If the termination detection algorithm
announces termination, then the computation has indeed terminated.

– Eventual termination announcement (liveness): Once the computation terminates,
the termination detection algorithm eventually announces termination.

Note that the termination condition, as formulated in Definition 1, requires rea-
soning on future states of processes. For failure-free and crash-stop failure models,
however, it is possible to reformulate the termination condition so that the condition
can be evaluated on a current state of the system and does not require any future knowl-
edge. For instance, for the failure-free model, the termination condition can be redefined
as: all processes are passive and all channels are empty. Likewise, for the crash-stop
model, the termination condition can be redefined as: all live processes are passive and
all channels towards live processes are empty. However, for the crash-recovery model,
in general, it is not possible to formulate the termination condition in a manner that
does not require knowledge of future behavior of processes. One of the main reasons is
that a termination detection algorithm in general should be able to distinguish between
whether a process is only temporarily down or is permanently down. We now prove this
impossibility result:

Theorem 1. It is impossible to solve the termination detection problem unless it is
possible to distinguish between whether a process is temporarily down or permanently
down.

Proof. Consider the initial system state in which only one process, say pa, is active
and all other processes are passive. We construct two possible executions of the sys-
tem. In the first execution, pa crashes and never recovers. Clearly, the computation
has terminated and any correct termination detection algorithm should eventually an-
nounce termination. Assume that some process, say pc, announces termination at time
t. Next, consider the second execution that is identical to the first execution until time
t. However, after t, pa recovers and restarts in an active state. Clearly, the only differ-
ence between the two executions is in the behavior of pa after t. Specifically, in the
first execution, pa is permanently down at t, whereas, in the second execution, it is
only temporarily down at t. Since pc cannot distinguish between the two executions,
it announces termination at t in the second execution as well. However, in the second
execution, the computation has not terminated at t. ��
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To circumvent the impossibility result, we weaken the termination detection prob-
lem by relaxing the safety property. Specifically, a termination detection algorithm is
allowed to announce termination falsely. However, only a finite number of such false
announcements are allowed. Formally, a termination detection algorithm should now
satisfy the following properties:

– Finite number of false termination announcements (eventual safety): Eventually, if
a good process announces termination, then the computation has indeed terminated.

– Eventual termination announcement (liveness): Once the computation terminates,
eventually every good process announces termination.

Note that, even after weakening the safety property, the termination detection prob-
lem remains impossible to solve as long as the system contains unstable processes. An
unstable process can repeatedly crash and recover in an active state causing the termi-
nation detection algorithm to make infinite number of mistakes. Therefore we assume
that the system does not contain any unstable process, that is, every process eventually
stays either up or down. We denote the resulting model as crash/finite-recovery model.

Suppose the underlying distributed system is such that failures are expected to be
rare. Further, even the failure detector makes mistakes only rarely. In this case, we
would like the termination detection algorithm to also make mistakes only rarely. For-
mally,

– No false termination announcements in the absence of failures and false suspicions
(zero degradation): Assume that no process crashes during an execution and no
process is falsely suspected of having crashed by the failure detector. Then, a pro-
cess announces termination only if the computation has terminated.

In the next section, we describe a termination detection algorithm that satisfies even-
tual safety, liveness and zero degradation properties.

4 An Eventually Safe Termination Detection Algorithm

Our termination detection algorithm uses an eventually perfect failure detector defined
in Sect. 2. It turns out that such a failure detector is actually necessary for solving the
eventually safe termination detection problem in the stabilizing crash-recovery model.
Specifically, we can implement an eventually perfect failure detector using an eventu-
ally safe termination detection algorithm as follows. There are n computations in the
system, one for each process; the computation for process pi is denoted by Ci. In Ci,
pi is always active while it is up and all other processes are always passive. Further,
no process sends any application message in any computation. Additionally, there are
n instance of the termination detection algorithm, and the instance Ai of the algorithm
is responsible for observing the computation Ci. When instance Ai announces (respec-
tively, revokes) termination at a process pj , pj starts suspecting (respectively, trusting)
pi. It can be easily verified that this transformation correctly implements an eventually
perfect failure detector.
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Rules for updating incarnation vector on process pi:

Variables:
ivi: vector [1..n] of incarnation numbers, initially [0, 0, . . . , 0];

(A1) On sending a message m:
piggyback ivi on m;

(A2) On receiving a message m carrying incarnation vector m.iv:
for each j in [1, n] do

ivi[j] := max{ivi[j], m.iv[j]};
endfor;

(A3) On starting new incarnation x after recovery:
ivi[i] := x;
// other entries of ivi may be initialized using stable storage, if applicable

Fig. 1. Rules for maintaining incarnation vector on a process.

We now describe our termination detection algorithm. To avoid confusion, hereafter,
we refer to messages exchanged by a distributed computation as application messages
and those exchanged by a termination detection algorithm as control messages.

Each process maintains three different vectors, namely incarnation vector, sent vec-
tor and received vector. A process uses the first vector to keep track of the latest incar-
nation of other processes in the system. It uses the sent vector to keep track of the
number of application messages it has sent to the latest incarnation of other processes.
Finally, it uses the received vector to keep track of the number of application messages
it has received from the latest incarnation of other processes that were sent to its current
incarnation. The incarnation, sent and received vectors for process pi are denoted by
ivi, senti and receivedi, respectively.

The rules for maintaining the incarnation vector are similar to those for maintain-
ing a Fidge/Mattern vector [19, 20]. A process, on recovery, sets its own entry in the
incarnation vector to its incarnation number. A process piggybacks the incarnation vec-
tor on every message it sends. Further, a process, on receiving a message, updates its
incarnation vector by taking the component-wise maximum of each entry in the current
vector and the vector received along with the message. Figure 1 describes the actions
A1-A3 for maintaining the incarnation vector. Action A1 is executed whenever a pro-
cess sends a message. Action A2 is executed whenever a process receives a message.
Finally, action A3 is executed whenever a process recovers and starts a new incarnation.

We now describe a scheme that a process periodically uses to test if the computation
has terminated. As part of the scheme, process requests all processes in the system to
send their current local states to it. The local state of a process includes: (1) the incarna-
tion vector, (2) the state with respect to the application, (3) the sent vector, and (4) the
received vector. The process waits until it has received a local state from all processes
that it currently trusts. It first ascertains that all trusted processes have identical incarna-
tion vectors. If not, the process aborts the current instance of the testing scheme. If yes,
the process checks whether the computation has terminated by evaluating the following
two conditions:

1. all trusted processes are passive, and
2. sent and received vectors of all trusted processes “match” with each other when

restricted to only entries for trusted processes.
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If both conditions evaluate to true and the last action by the process was to revoke
termination announcement, then the process announces termination. On the other hand,
if one of the conditions fails and the last action was to announce termination, then the
process revokes that last termination announcement. A process also aborts the current
instance of the testing scheme if either its incarnation vector or the output of its failure
detector changes. Note that the two conditions for termination are similar to those used
in Mattern’s channel-counting algorithm [4], which is a fault-intolerant termination de-
tection algorithm.

We say that a system has stabilized if (1) each process has stabilized (that is, no more
process crashes and recoveries), (2) the failure detector at each process has stabilized
(that is, no more changes in the output of the failure detector), and (3) any application
message delivered hereafter is sent by the current incarnation of the sender to the current
incarnation of the receiver. We show that, once the system has stabilized, the testing
scheme satisfies the safety property. Specifically, the two conditions described above
evaluate to true only if the computation has terminated.

To ensure liveness, a process periodically uses an instance of the above-described
scheme to test for termination. Different instances of the scheme are distinguished us-
ing an instance identifier, which consists of (1) the identifier of the initiating process,
(2) its incarnation number and (3) a sequence number. The sequence number helps dif-
ferentiating between various instances of the scheme initiated by the same incarnation
of a process. The sequence number can be stored in the volatile storage.

We refer to our termination detection algorithm as TDA-ES. A formal description
of the algorithm is given in Fig. 2. It consists of seven actions B1-B7. Action B1 is
executed whenever the incarnation vector of a process changes and is invoked from ac-
tion A2 or action A3. Action B2 is executed when a process recovers and is invoked
from action A3. Action B3 (respectively, B4) is executed whenever a process sends
(respectively, receives) an application message. Note that action A1 has to be executed
after executing action B3. Further, action B4 is invoked after action A2 has been ex-
ecuted. Actions B5, B6 and B7 are executed as part of the testing scheme. Note that
REQUEST and RESPONSE messages carry instance identifier which is not shown
in the description.

We now prove that our algorithm satisfies eventual safety, liveness and zero degra-
dation properties. Note that there is no unstable process in the system and the failure
detector is eventually perfect. Therefore it follows that:

Proposition 1. The system eventually becomes stable.

We say that the incarnation vector at a good process has stabilized if its value has
stopped changing. Note that the ith entry of the incarnation vector at process pi is
incremented only when pi recovers. Any other process pj , with j �= i, simply copies a
(new) value into the ith entry of its incarnation vector from the vector it has received
along with a message. Therefore, we have:

Proposition 2. Once the system has become stable, the incarnation vector at a good
process eventually becomes stable.
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Actions of the termination detection algorithm TDA-ES for process pi:

Variables:

statei: state of pi with respect to the application (maintained by the application);
senti : vector [1..n] of number of application messages send to each process, initially [0, 0, . . . , 0] ;
receivedi : vector [1..n] of number of application messages received from each process, initially [0, 0, . . . , 0] ;
announcementi : whether termination has occurred, initially false;

(B1) Whenever the jth entry in ivi advances:
senti[j] := 0;
receivedi[j] := 0;

(B2) On starting a new incarnation after recovery:
for j ∈ [1..n] do

senti[j] := 0;
receivedi[j] := 0;
announcementi := false;

endfor;

(B3) On sending an application message m to process pj :
+ + senti[j];
send m to process pj ;

(B4) On receiving an application message m from process pj :
let m.iv denote the incarnation vector piggybacked on m;
if (ivi[i] = m.iv[i]) and (ivi[j] = m.iv[j]) then

+ + receivedi[j];
endif;
deliver m to the application;

(B5) On invocation of testForTermination( ):
send REQUEST message to all processes;

(B6) On receiving REQUEST message from process pj :
send RESPONSE(ivi , statei, senti , receivedi) message to process pj ;

(B7) On receiving RESPONSE(ivj , statej , sentj , receivedj ) from process pj :
let Ti denote the set of currently trusted processes;
if (a RESPONSE message has been received from all processes in Ti) then

if 〈∀ px, py : {px, py} ⊆ Ti : ivx = ivy〉 then
// all processes in Ti have identical incarnation vectors
testi := 〈∀ px : px ∈ Ti : statex = passive〉 ∧

〈∀ px, py : {px, py} ⊆ Ti : sentx[y] = receivedy [x]〉;
if (announcementi ∧ ¬testi) then

// revoke termination announcement
announcementi := false;

else if (¬announcementi ∧ testi) then
// announce termination
announcement := true;

endif;
endif;

endif;

Fig. 2. The termination detection algorithm TDA-ES.

Every good process periodically uses the testing scheme to test for termination.
Once the system becomes stable, by our assumption, all channels between good pro-
cesses become reliable. Therefore every good process receives infinite number of mes-
sages from every other good process. It can be easily verified that:

Proposition 3. If the incarnation vector at every good process has become stable, then
all good processes have identical incarnation vectors.

We say that a system has become strongly stable if the system has become stable
and the incarnation vector at every good process has become stable. We refer to the
incarnation of a good process that never crashes as the final incarnation. Note that an
instance of the testing scheme initiated after the system has become strongly stable
always completes successfully (that is, is not aborted by its initiator). Also, once the
system has become stable, every good process permanently trusts all good processes and

8



permanently suspects all bad processes. This implies that if an instance of the testing
scheme is initiated after the system has become strongly stable then its termination
conditions are evaluated on local states of all good and only good processes. We now
show that our testing scheme is safe and live if it is initiated after the system has become
strongly stable.

Lemma 1. Any instance of the testing scheme initiated after the system has become
strongly stable indicates termination only if the computation has terminated.

Lemma 2. Any instance of the testing scheme initiated after (1) the system has become
strongly stable and (2) the computation has terminated indeed indicates termination.

The liveness of our algorithm follows from the fact that every good process period-
ically initiates an instance of the testing scheme to test for termination.

Proposition 4. If no process crashes during an execution and no process is falsely
suspected of having crashed by the failure detector, then the system is strongly stable in
the initial state.

Theorem 2. TDA-ES satisfies eventual safety, liveness and zero degradation proper-
ties.

Proof. Eventual safety follows from Proposition 1, Proposition 2, Proposition 3 and
Lemma 1. Liveness follows from Proposition 1, Proposition 2, Proposition 3 and Lem-
ma 2. Zero degradation follows from Lemma 1 and Proposition 4. ��

5 Discussion

In our algorithm, as described above, each message has to carry a vector consisting of
n entries. It is possible to optimize our algorithm so that only RESPONSE messages
are required to carry a vector. An application message only needs to carry two entries
from the incarnation vector of the sender, namely entries corresponding to the sender
and the receiver. Specifically, an application message sent by process pi to process pj

carries entries ivi[i] and ivi[j]. It can be verified that all propositions and lemmas in the
previous section still hold with this modification.

An interesting question to ask is when can the termination detection problem be
solved in a safe manner under crash-recovery model. We answer this question in [21]
where we identify two conditions under which the safe termination detection problem
can indeed be solved. These conditions are rather strong compared to the conditions
identified in this paper. For example, one of the conditions requires the availability of a
perfect failure detector, processes to always restart in passive state after recovery and
processes to reject old application messages.
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