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Abstract. Profiling is often the method of choice for performance anal-
ysis of parallel applications due to its low overhead and easily compre-
hensible results. However, a disadvantage of profiling is the loss of tempo-
ral information that makes it impossible to causally relate performance
phenomena to events that happened prior or later during execution. We
investigate techniques to add temporal dimension to profiling data by in-
crementally capturing profiles during the runtime of the application and
discuss the insights that can be gained from this type of performance
data. The context in which we explore these ideas is an existing profiling
tool for OpenMP applications.

1 Introduction

Performance is an important concern for many developers of parallel applications
and a large number of tools are available that support can be used for analyzing
performance and to identify potential bottlenecks.

Most tools for parallel performance analysis capture data during the execu-
tion of an application to later analyze it offline. Depending on the kind of data
recorded, tracing and profiling is commonly distinguished. Profiling denotes the
reporting of performance data in a summarized style (such as fraction of to-
tal execution time spent in a certain subroutine call) and tracing refers to the
recording of individual time-stamped program execution events.

Profiling is often preferred over tracing since it generates less performance
data and greatly facilitates a manual interpretation. However, a detailed analysis
of the interaction of processes or threads can sometimes require the level of
insight only time-stamped event recoding offers. More generally, a significant
drawback of profiling is the fact that the temporal dimension of performance
data is completely lost. That is, with “one-shot” profiles is not possible to relate



performance phenomena in profiling reports to the time when they occurred in
the application and to explain the reason and consequences in terms of causal
relations with other phenomena or events happening earlier or later.

In this paper we investigate the utility of incremental profiling (or “profil-
ing over time”) for performance analysis of parallel applications. We discuss
general approaches to add a temporal component to profiling data and the
kind of insights that can be derived from incremental profiling. The context
in which we explore these ideas is our own profiling tool for OpenMP applica-
tions, called ompP [1]. Examples that show the utility of our proposed approach
come from several applications from the SPEC OpenMP benchmark suite (SPEC
OMPM2001) [2].

The rest of this paper is organized as follows: Sect. 2 briefly introduces our
profiling tool and describes its existing capabilities. Sect. 3 then lists general
options to add temporal dimension to performance data and describes the ap-
proach we have taken with ompP. Sect. 4 serves as an evaluation of our ideas:
we describe the new types of performance data of incremental profiling (often
graphical views) that are available to the user and show examples of their utility
on application examples that come from the SPEC OpenMP benchmark suite.
We describe related work in Sect. 5 and conclude and discuss further directions
for our work in Sect. 6.

2 The OpenMP Profiler ompP

ompP is a profiling tool for OpenMP applications that relies on the Opari in-
strumenter [3] for source code instrumentation. ompP is a static library linked to
the target application and delivers a text-based profiling report that is meant
to be easily comprehensible by the user at program termination. As opposed to
subroutine-based profiling tools like gprof, ompP is able to report timings and
counts for various OpenMP constructs in terms of the user execution model [4].
As ompP is based on instrumentation-added measurement calls (and not on PC
sampling, like gprof), it is exact in the sense that the reported values are not
subject to sampling inaccuracy. An example for the profiling data delivered by
ompP is shown in Fig. 1.

R00002 main.c (34-37) (default) CRITICAL

TID execT execC bodyT enterT exitT PAPI_TOT_INS

0 3.00 1 1.00 2.00 0.00 1595

1 1.00 1 1.00 0.00 0.00 6347

2 2.00 1 1.00 1.00 0.00 1595

3 4.00 1 1.00 3.00 0.00 1595

SUM 10.01 4 4.00 6.00 0.00 11132

Fig. 1: An example for ompP’s profiling data for an OpenMP critical section. The
body of this critical section contained a call to sleep(1.0) only.



The first line gives the source code location and type of construct. Different
counts and timing categories (depending on the particular type of OpenMP con-
struct) are listed as column headers and each line lists the accumulated values for
a particular thread, while the last line sums over all threads. ompP also supports
the measurement of hardware performance counter data for individual threads
and OpenMP constructs as well as user-defined regions using PAPI [5]. The user
selects a counter to measure via environment variables and the summed counter
values then appear as additional columns in the profiles, as shown in Fig 1.

In addition to the flat region profile shown in Fig. 1, ompP performs an over-
head analysis in which four well-defined overhead classes (synchronization, load
imbalance, thread management, limited parallelism) are quantitatively evalu-
ated. Furthermore ompP tries to detect common inefficiency situations, such as
load imbalance in parallel loops, contention for locks and critical sections, etc.
The profiling reports contains a list of the discovered instances of these – so
called – performance properties [6] sorted by their severity (negative impact on
performance).

3 Adding Temporal Dimension to Profiling Data

A straightforward way to add a temporal component to profiling-type perfor-
mance data is to capture profiles at several points during the execution of the tar-
get application (and not just at the end) and to analyze how the profiles change
between those capture points. Alternatively (and equivalently), the changes be-
tween capture points can be recorded incrementally and the overall state at
capture time can later be recovered.

Several trigger events for the collection of profiling reports are conceivable:

– Timer based, fixed: Profiles are captured in regular fixed intervals during
the execution of the target application. No prior knowledge or modification
of the application is required. Since data samples are captured in uniform
intervals, they are easy to visualize and comprehend. The overhead with
respect to storage space for profiling reports is predicable as it depends on
the duration of the program run and the capture interval only.

– Timer based, adaptive: This method dynamically adapts the duration
between two capture points based on amount of change in profiling data
that has been observed. Possible measures for this change are the number of
different constructs executed and their invocation count. This option has the
potential advantage of offering a finer-grained insight into phases of execution
where a lot of change occurs while avoiding profiling reports for phases of
largely uniform behavior.

– Overflow based: This is another method to correlate the profiling fre-
quency with the activity of the program. With this technique, profiling re-
ports are generated when a hardware counter overflows a pre-set threshold.
For floating-point intensive applications, it may for example be beneficial
to trigger profiling reports each n floating point operations have occurred.



Other potential triggers for profiling reports are the number of cache misses
or the occurrence of page faults.

– User added: A method to trigger the generation of profiling reports can
be exposed to the user. This technique is especially useful for phase-based
programs, where program phases are iteratively executed.

In this paper we investigate the simplest form of incremental profiling de-
scribed above, capturing profiles in regular, fixed-length intervals during the
entire execution time of the application.

4 Evaluation of Incremental Profiling

For both profiling and tracing, the following dimensions of performance data can
generally be distinguished:

– Kind of data: Describes which type of data is measured or reported to the
user. Examples include timing data, execution counts, performance counter
values, and so on.

– Source code location: Data can be collected globally for the whole program or
for particular source code entities such as subroutines, OpenMP constructs,
basic blocks, individual statements, etc.

– Threads or processes dimension: Measured data can either be reported for
individual threads or processes or accumulated over the whole set (by sum-
ming or averaging, for example).

– Time dimension: Describes when a particular measurement was made (time-
stamp) or for which time duration values have been measured.

An appealing property of profiling data is its low dimensionality, i.e., it can
often be comprehended textually (like gprof output) or it can be visualized as
1D or 2D graphs in a straightforward way. Adding a new (temporal) dimension
jeopardizes this advantage and requires more sophisticated performance data
displays. We came up with the following types of useful performance views that
can be extracted from the incremental profiling reports delivered by ompP:3

Performance properties over time: Performance properties [6] offer a very
compact way to represent performance analysis knowledge and their change
over time can thus be easily visualized. A property like “Imbalance in paral-
lel region foo.f (23-42) with severity of 4.5%” carries all relevant context
information with it. The severity value denotes the percentage of total execu-
tion time improvement that can be expected if the cause for the inefficiency is
completely removed. The threads dimension is collapsed in the specification
of the property and the source code dimension is encoded as the properties
context (foo.f (23-42) in the above example).

3 All examples shown in this section come from an execution of the SPEC OpenMP
medium size benchmark suite on a 32 CPU SGI Altix machine, based on Itanium-2
processors with 1.6 GHz and 6 MB L3 cache, used in batch mode.



Properties over time can be visualized as a 2D line-plot, where the x-axis
is the time and the y-axis denotes severity values and a line is drawn for
each property from the first time it was detected until program termination.
Depending on the particular test application, valuable information can be
deduced, depending on the behavior of the property graphs. For example,
in the example graph shown in Fig. 2 it is evident that the severity of the
properties appears to be continuously increasing as time proceeds, indicating
that the imbalance situations in this code will become increasingly significant
with longer runtime (e.g., larger data sets or more iterations).
Other applications from the SPEC OpenMP benchmark suite showed other
interesting features such as initialization routines that generated high initial
overheads which amortized over time (i.e., the severity decreased).

Fig. 2: An example for the “performance properties over time” display for the
310.wupwise application. Shown are the five most severe performance properties.

Region invocations over time: Depending on the size of the test application
and the analyst’s familiarity with the source code, it can be valuable to know
when and how often a particular OpenMP construct, such as a parallel loop,
was executed. The region-invocation over time displays offers this function-
ality.
As shown in Fig. 3 the graph gives the number of invocations of a particu-
lar region, this particular case shows the two most time-consuming parallel
regions of the 328.fma3d application.
This view is most useful when aggregating (e.g., summing) over all threads,
but in certain cases it can be valuable (for critical sections and locks, for
example) to see which particular thread executed a construct at which time.



Fig. 3: This graph shows the number of region invocations over time for the
328.fma3d application.

A surface plot can be used for visualization in this case or a heatmap display
similar to the one used for visualizing performance counters (see below).

Region execution time over time: This display is similar to the region in-
vocation over time display but shows the execution accumulated execution
time between dump intervals instead of the invocation count. Again this dis-
play allows the user to see when particular portions of the code actually get
executed.

Overheads over time: ompP evaluates four overhead classes based on the flat
profiling data for individual parallel regions and for the program as a whole.
For example, the time required to enter a critical section is attributed to the
containing parallel region as synchronization time. A detailed discussion and
motivation of this classification scheme can be found in [7].
The overheads over time display plots the incurred overheads (either for
a particular parallel region or for the entire application) over the execution
timeline of the application, as shown in Fig. 4. This graph gives the overheads
as percentage of total aggregated CPU time. Hence, for an execution with
32 CPUs, a overhead percentage of 50 means that 16 CPUs are not doing
useful work. The total overhead incurred over the entire program run is
thus the integral of the overhead function (area under the graph) and the
graph shows when a particular overhead was incurred. In the example in
Fig. 4, the most noticeable overhead is synchronization overhead starting
at about 30 seconds of execution and lasting for several seconds. A closer
examination of the OpenMP profiling reports reveals that this overhead is
caused by critical section contention. One thread after the other enters the



critical section and performs a time-consuming initialization operation. This
effectively serializes the execution for more than 10 seconds and shows up as
a overhead of 31/32 = 97% in the overheads graph.

Fig. 4: This graph shows overheads over time for the 328.fma3d application.

Performance counter heatmaps: This display is used to visualize hardware
performance counter values over time and for several threads.

Fig. 5 shows examples of the performance counter heatmap display. The x-
axis corresponds to the time (in seconds) while the y-axis corresponds to the
thread ID. A color gradient (or gray-scale) coding is indicating high or low
counter values. A tile is not filled if no data samples are available for that
time period. This type of display is supported for both the entire program
as well as for individual OpenMP regions. The example in Fig. 5a shows
the DATA EAR CACHE LAT1024 counter for the SPEC OpenMP application
318.galgel (note that the middle part of the timeline has been cut out to
facilitate presentation). This counter measures the number of cache misses
that took longer than 1024 cycles to be satisfied and thus roughly corre-
sponds to remote memory accesses on the NUMA architecture of the SGI
Alitx machine.
Depending on the selected hardware counters, this view offers very interest-
ing insight into the behavior of the applications. Phenomena that we were
able to identify with this kind of performance display include:
– The homogeneity or heterogeneity of threads. E.g., often threads 16,

8, and 24 would show markedly different behavior compared to other
threads in a 32 thread run. Possible reasons for this difference in behavior
might be in the application itself (related to the algorithm) but they
could also come from the machine organization or system software layer



(a) Cache misses that took longer than 1024 cycles to be satisfied for the 318.galgel
application.

(b) Retired load instructions for the 316.applu application.

(c) Retired floating point operations for the 324.apsi application.

Fig. 5: Example performance counter heatmaps. Time is displayed on the horizontal
axis (in seconds), the vertical axis lists the threads (32 in this case). The middle part
of 5a of the display has been cut out.



(mapping of threads to processors and their arrangement in the machine
an its interconnect).
As another example, Fig. 5c gives the number of retired floating point
operations for the 324.apsi application and this graph shows a marked
difference for processors 0 to 14 vs 15 to 31. We were not able to identify
the exact cause for this behavior until now.

– Identification of phase-based behavior, as in Figs. 5a and 5b, some appli-
cations show a marked phase-based behavior. It is also evident in many
cases that the characteristics of each phase change from iteration to it-
eration.

– Identification of temporary performance bottlenecks such as short-term
bus-contention.

5 Related Work

There are a number of performance analysis tools for OpenMP. Vendor-specific
tools such as the Intel Thread Profiler and Sun Studio are usually limited to
their respective platform but have the advantage of being able to make use of
internal details of the compiler’s OpenMP implementation and runtime system.
Both the Intel and the Sun tool are based on sampling and can provide the user
with some timeline profile displays. Neither of those tools however has a concept
similar to ompP’s high-level abstraction of performance properties.

TAU [8, 9] is also able to profile and trace OpenMP applications by utilizing
the Opari instrumenter. Its performance data visualizer Paraprof supports a
number of different profile displays and also supports interactive 3D exploration
of performance data, but to the best of our knowledge does not currently have
support for a display similar to our performance counter heatmaps. The TAU
toolset also contains a utility to convert TAU trace files to profiles which can
generate profile series and interval profiles.

OProfile and its predecessor the Digital Continuous Profiling Infrastructure
(DCPI) are system-wide statistical profilers based on hardware counter over-
flows. Both approaches rely on a profiling daemon running in the background
and support the dumping of profiling reports at any time. Data acquisition in
a style similar to our incremental profiling approach would thus be easy to im-
plement. We are, however, not aware of any study using OProfile or DPCI that
investigated continuous profiling for parallel applications. In practice, the neces-
sity of root privileges and the difficulty of relating profiling data back to the
user’s OpenMP threading model are major stumbling blocks when using those
tools. Both issues are not a concern with ompP since it is based on source code
instrumentation.

6 Conclusion and Future Work

We have presented a study on the utility of incremental profiling for performance
analysis of shared memory parallel applications. Our results indicate that valu-
able information about the temporal behavior of applications can be discovered



by incremental profiling and that this technique strikes a good balance between
the level of detail offered by tracing and the simplicity and efficiency of pro-
filing. Using incremental profiling we where able to acquire new insights into
the behavior of applications which can due to the lack of temporal data not be
gained from pure profiling. The most interesting features are the revelation of
iterative behavior, the identification of short-term contention for resources, and
the temporal localization of overheads and execution patterns.

Future work is planned in several areas. Firstly, we plan to support other
triggers for capturing profiles, most importantly user-added and overflow based.
Secondly, be plan to integrate our profiling data with TAU’s Paraprof viewer in
order to interactively explore the incremental profiling data delivered by ompP.
Thirdly, we plan to test our ideas in the context of MPI as well, a planned
integrated MPI/OpenMP profiling tool based on mpiP [10] and ompP is the first
step in this direction.
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