Search Strategies for Automatic Performance
Analysis Tools*

Michael Gerndt and Edmond Kereku

Technische Universitdt Miinchen, Fakultat fiir Informatik 110,
Boltzmannstr.3, 85748 Garching, Germany
gerndt@in.tum.de

Abstract. Periscope is a distributed automatic online performance
analysis system for large scale parallel systems. It consists of a set of
analysis agents distributed on the parallel machine. This article presents
the architecture of the node agent and its central part, the search strat-
egy driving the online search for performance properties. The focus is on
strategies used to analyze memory access-related performance properties
in OpenMP programs.

1 Introduction

Performance analysis tools help users in writing efficient codes for current high
performance machines. Since the architectures of today’s supercomputers with
thousands of processors expose multiple hierarchical levels to the programmer,
program optimization cannot be performed without experimentation.

To tune applications, the user has to carefully balance the number of MPI
processes vs the number of threads in a hybrid programming style, he has to
distribute the data appropriately among the memories of the processors, has to
optimize remote data accesses via message aggregation, prefetching, and asyn-
chronous communication, and, finally, has to tune the performance of a single
processor.

Performance analysis tools can provide the user with measurements of the
the program’s performance and thus can help him in finding the right transfor-
mations for performance improvement. Since measuring performance data and
storing those data for further analysis in most tools is not a very scalable ap-
proach, most tools are limited to experiments on a small number of processors.
To investigate the performance of large experiments, performance analysis has
to be done online in a distributed fashion, eliminating the need to transport
huge amounts of performance data through the parallel machine’s network and
to store those data in files for further analysis.

Periscope [4] is such a distributed online performance analysis tool. It con-
sists of a set of autonomous agents that search for performance bottlenecks in a

* This work is being funded by the German Science Foundation under contract GE
1635/1-3

subset of the application’s processes and threads. The agents request measure-
ments of the monitoring system, retrieve the data, and use the data to identify
performance bottlenecks. The types of bottlenecks searched are formally defined
in the APART Specification Language (ASL) [2, 1].

The focus of this paper is on the agent’s architecture and the search strate-
gies guiding the online search for performance properties. We present the search
strategies not for analyzing MPI programs on large-scale machines, but for an-
alyzing the memory access behavior of OpenMP programs on a single shared
memory node.

The next section presents work related to the automatic performance analysis
approach in Periscope. Section 3 presents Periscope’s architecture. The detailed
description of the agent architecture and the role of the search strategy is dis-
cussed in Section 4. Search strategies implemented for memory access properties
are presented in Section 5. Results from experiments are given in Section 6 and
a summary and outlook in Section 7.

2 Related Work

Several projects in the performance tools community are concerned with the au-
tomation of the performance analysis process. Paradyn’s [7] Performance Consul-
tant automatically searches for performance bottlenecks in a running application
by using a dynamic instrumentation approach. Based on hypotheses about po-
tential performance problems, measurement probes are inserted into the running
program. Recently MRNet [8] has been developed for the efficient collection of
distributed performance data. However, the search process for performance data
is still centralized.

The Expert [10] tool developed at Forschungszentrum Jiilich performs an
automated post-mortem search for patterns of inefficient program execution in
event traces. Potential problems with this approach are large data sets and long
analysis times for long-running applications that hinder the application of this
approach on larger parallel machines.

Aksum [3], developed at the University of Vienna, is based on a source code
instrumentation to capture profile-based performance data which is stored in a
relational database. The data is then analyzed by a tool implemented in Java
that performs an automatic search for performance problems based on JavaPSL,
a Java version of ASL.

Periscope goes beyond those tools by performing an automatic online search
in a distributed fashion via a hierarchy of analysis agents.

3 Architecture

Periscope consists of a user interface, a hierarchy of analysis agents and two
separate monitoring systems (Figure 1).

The user interface allows the user to start up the analysis process and to
inspect the results. The agent hierarchy performs the actual analysis. The node

Performance Cockpit

Performance Analysis Agent Network
VRN

Master agent |

Node agem;/"\/T\

VRN ‘/\ VRN Ve \‘ VR
N2 RN RN RN

Peridot Monitor MRI
EP-Cache
Monitor

Fig. 1. Periscope currently consists of a frontend, a hierarchy of analysis agents, and
two separate monitoring systems.

agents autonomously search for performance problems which have been specified
with ASL. Typically, a node agent is started on each SMP node of the target
machine. This node agent is responsible for the processes and threads on that
node. Detected performance problems are reported to the master agent that
communicates with the performance cockpit.

The node agents access a performance monitoring system for obtaining the
performance data required for the analysis. Periscope currently supports two
different monitors. The work described in this article is mainly based on the
EP-Cache monitor [6] developed in the EP-Cache project focusing on memory
hierarchy information in OpenMP programs.

Detected performance bottlenecks are reported back via the agent hierarchy
to the frontend.

4 Node Agent Architecture

The node agents search autonomously for performance bottlenecks in the pro-
cesses/threads running on a single SMP node. Figure 2 presents the architecture
and the sequence of operations executed within a node agent.

The figure consists of three main parts, the agent, the monitor, and the data
structures coupling the agent and the monitor. These data structures reside in
a shared memory segment and are used to configure the monitoring as well as
to return performance data.

The agent’s main components are the agent control, the search strategy, and
the experiment control. As presented in Section 3, the node agent is part of an
agent hierarchy. The master agent starts the bottleneck search via the Agent
Control and Command (ACC) message ACC check marked as (1) in the

-
ASL
Properties

Search
Strategy

i)
13

See

e ACC check

; Agent
Candldgte Proven Cc?ntrol
Properties Properties

5

Performance Experiment
Database Contro].._
10 §
Phase
Structure

Measurement
Control

Fig. 2. The agent’s search is triggered by a control message ACC check from its parent
in the agent hierarchy. Performance data are obtained from the monitor linked to the
application via the Monitor Request Interface (MRI)

diagram. Before the message is sent, the application was started and suspended in
the initialization of the monitoring library linked to the application. In addition
the node agent was instructed to attach to the application via the shared memory
segment.

The agent performs a multistep bottleneck search. Each search step starts
(2) with determining the set of candidate performance properties that will
be checked in the next experiment. This candidate set is determined by a search
strategy based on the set of properties found in the previous step (3). At the
beginning, the set of evaluated properties is empty. The applied search strategy
is determined when the agent is started. Most of the strategies take also the
program’s structure into account.

The source code instrumenter used for insertion of the monitor library
calls [5] generates information about the program’s regions (main routine, sub-
routines, loops, etc.) and the data structures used in the program in the Stan-
dard Intermediate Program Representation (SIR) developed in the Euro-
pean American APART working group on automatic performance analysis tools.
The SIR is an XML-based language defined for C++, Java, and Fortran [9].

After the candidate set was determined, the agent control starts a new ex-
periment (4). The experiment control accesses all the properties in the can-
didate set and checks whether the required performance data for proving the
property are available. If not, it configures the monitor via new MRI measure-
ment requests. The requests, such as measure the number of cache misses
in the parallel loop in line 52 in file foo.f, are inserted into a con-
figuration table (6).

Once all the properties were checked for missing performance data, the exper-
iment is started (7). The MRI provides an application control interface that
allows the experiment control to release a suspended application and to specify
when the application is suspended again to retrieve the performance data.

This approach is based on the concept of program phases. Usually pro-
grams consist of several phases, e.g., an initialization phase, a computation phase,
and a termination phase. Frequently the computation phase is repetitive, i.e., it
is executed multiple times. Such repetitive phases can be used to perform the
multistep search of the node agent. Program phases need to be specified by the
user. We provide two ways for specification. The user can mark program parts
as a user region via directives that are replaced by calls to the monitoring
library by the source instrumenter. As an extension, phases can also be marked
by manual insertion of phase boundary function calls that specify additional
properties of the phase, e.g., whether it is a repetitive phase or a execute-once
phase. Currently, our prototype supports the specification of a single user re-
gion which is assumed to be repetitive. If no such region is specified, the whole
program is taken as a phase and is restarted to perform additional experiments.

During program execution, the monitoring library checks whether the end
of the current phase is reached (8) and configures hardware and software
sensors for measuring the requested performance data. These data are inserted

(a) Data Structure (b) Processtroven Set
Refine Strategy Brick

(c) Process DS Set Brick

Save Proven
Properties

Process
Proven Set
Process
DS Set

Candidate
Set empty?

get and delete
region from
DS Set

Proven Set
empty?

!

create properties
for data structures

Get and delete next prop.
from Proven Set

L—3

(d) Process Subregion Set
Brick

Candidate
Set empty?

Process
Call Set

Subregion Set
empty?

Add to Add to -
Subregion Set Routine Set get and delete
region from
‘ Subregion Set
Add to l
DS Set
create properties
| for subregions

LT

Fig. 3. Implementation of the strategy that refines the search with respect to data
structures, subregions, and called subroutines.

into a trace buffer (9) if trace information is requested or into a summary
table if aggregated information is to be computed.

When the application is suspended (10) the experiment control is informed
by the MRI and it retrieves the measured performance data via the MRI into
the internal performance database (11). Trace data are handled differently.
If the trace buffer is filled during execution, a callback function of the agent is
triggered to extract the data into the performance database. Currently our node
agent does not use this feature. All the performance properties are based on
summary data.

The experiment control evaluates the candidate performance properties and
inserts the proven properties into the proven properties set (12). At the end
of this search step, the control is returned to the agent control (13).

5 Search Strategies

Periscope currently supports a number of search strategies. The strategies pro-
vide a simple interface which consists of a routine creating an initial candidate

set and a refinement routine that determines from the set of proven properties
a new candidate set for the next search step. Since the node agent only accesses
those routines, search strategies can be implemented as classes that are dynam-
ically loaded and thus, without having to recompile the agent if a new strategy
is available.

Search strategies are based on a number of strategy bricks supporting reuse of
code. Figure 3 introduces the Data Structure Refine Strategy which was designed
to perform a search for memory access inefficiencies. It takes a memory access-
related property and searches for occurences of this property in the program’s
execution. The refinement is based on a novel feature of the EP-Cache monitor.
It not only provides measurements of cache misses etc. via hardware counters for
program regions, but allows to restrict measurements to address regions. Thus,
the agent can check properties that are related to individual data structures,
e.g., high number of cache misses for array A in loop 20.

The refinement routine in Figure 3.a first processes the set of proven proper-
ties from the previous search step. It then refines proven properties with respect
to the data structures accessed in the program region (Fig. 3.c). After analyzing
the current set of program regions with memory access inefficiencies with respect
to the data structures, these regions are further analyzed with respect to their
subregions (Fig. 3.d) in the next search step. If no refinement of the current set
of proven properties with respect to data structures and subregions is possible,
properties found for individual subroutine calls are further investigated. The
strategy brick Process Call Set is not shown in the figure. It is very similar
to the two bricks discussed before, but also keeps track of the already checked
subroutines. Since there might be multiple call sites, redundant searches of a
subroutine would be possible otherwise.

The missing strategy brick is Process Proven Set (Fig. 3.b). This brick
starts with saving the found properties since all the properties are ranked ac-
cording to their severity and presented to the user of Periscope. Then all the
properties are analyzed and classified for further refinement. If a property is
already data structure-related, it is not further refined. Otherwise the region is
extracted and either added to the Subregion Set and to the DS Set or to the
Routine Set. The strategy bricks process these sets and generate more precise
candidate properties.

Figure 4 presents a second implemented search strategy. Instead of refining
the properties with respect to the data structures, it refines with respect to
more specific property types. This refinement is based on the specification of a
property hierarchy. For example, the property LC2DMissRateInSomeThread is
refined into the more precise property UnbalLC2DMissRate. The first property
only highlights a cache problem in a thread while the second gives information
about the relative behavior of all threads. Other obvious refinements are from a
property identifying a high number of cache misses to individual properties for
read and write misses and for local vs remote misses on ccNUMA architectures.

(a) Property Refine)
Strategy (b) Refine Property Brick

| e ||
Property Properties
Candidate
Return
Set empty? Proven Set
P
. empty?
N

Get and delete next prop.
from Proven Set

Process
Subregion Set

Candidate
Set empty?

Process
Call Set

Create more specific

candidate properties

Extract region

Add to Add to
Subregion Set Routine Set

Fig. 4. Strategy that refines proven properties with respect to more specific properties
in the property hierarchy.

6 Experiments

We tested the search strategies with several OpenMP examples. Here, we present
the results for the SWIM benchmark from the SPEC benchmark suite. The
first experiment analyzes a sequential run of SWIM with the Data Structure
Refine Strategy. Periscope was used to search for severe LC3 miss rate. The
results of the search are presented in form of search paths which show the re-
finements on region level and on data structures.

The results of the automatic search for SWIM

Region LC3MissesInThread
Application Phase(USER_REGION, swim.f, 84)
calc2(CALL_REGION, swim.f, 92) 0.022
calc2(SUB_REGION, swim.f, 315)
(PARALLEL_REGION, swim.f, 332 0.028
(DO_REGION, swim.f, 336) 0.028

Application Phase(USER_REGION, swim.f, 84)
calc2(CALL_REGION, swim.f, 92) 0.022
calc2(SUB_REGION, swim.f, 315)
(DO_REGION, swim.f, 354) 0.302

unew(DATA_STRUCTURE, swim.f, 3) 0.279

vnew(DATA_STRUCTURE, swim.f, 3) 0.281

pnew(DATA_STRUCTURE, swim.f, 3) 0.281
Application Phase(USER_REGION, swim.f, 84)

calc2(CALL_REGION, swim.f, 92) 0.022

calc2(SUB_REGION, swim.f, 315)

(LOOP_REGION, swim.f, 360) 0.053
Application Phase(USER_REGION, swim.f, 84)

(DO_REGION, swim.f, 116) 0.046

unew(DATA_STRUCTURE, swim.f, 3) 0.046

vnew(DATA_STRUCTURE, swim.f, 3) 0.046

pnew(DATA_STRUCTURE, swim.f, 3) 0.046
Application Phase(USER_REGION, swim.f, 84)

calc3z(CALL_REGION, swim.f, 145) 0.043

The severity shown is simply the miss rate. If the severity is redefined to take
into account also the amount of time spent in the code region, the last found
property for routine CALC3Z is the most critical.

We also tested SWIM on the SGI Altix Bx2 at Leibniz Computing Centre.
We run it with 16 and 32 threads on this ccNUMA architecture and applied the
Refine Property Strategy for cache problems on the level two data cache.

The results for SWIM running with 16 threads

Region LC2DMissRateInSomeThread UnbalC2DMissRate
(DO_REGION, swim.f,437) 0.36 3.24
(DO_REGION, swim.f,294) 0.29 14.91
(DO_REGION, swim.f,354) 0.29 5.67

(DO_REGION,swim.f,116) 0.08 -—=

The results for SWIM running with 32 threads

(DO_REGION, swim.f,437) 0.30 11.97
(DO_REGION, swim.f,354) 0.24 16.46
(DO_REGION,swim.f,116) 0.08 0.74

SWIM has cache problems on almost the same regions in both configurations.
What we observe is that the problem of unbalanced cache misses is aggravated
when running with 32 threads.

7 Summary

Periscope is an automatic performance analysis tool for high-end systems. It
applies a distributed online search for performance bottlenecks. The search is
executed in an incremental fashion by either exploiting the repetitive behavior
of program phases or by restarting the application several times.

The search strategies defining the refinement of found properties into new
candidate properties are loaded dynamically so that new strategies can be inte-
grated without recompilation of the tool.

This article presented the architecture of the agents and the integration of
the search strategy with the agent’s components and the monitoring system.
Search strategies are assembled from building blocks called search bricks. The
presented strategies have been developed for searching memory access inefficien-
cies in OpenMP codes.

Future work will focus on developing search strategies that take into account
instrumentation overhead, the limited number of resources in the monitor, the
progress of the search in other agents etc. The work presented here is a starting
point for the development of more intelligent automatic performance analysis
tools.

References

1. T. Fahringer, M. Gerndt, G. Riley, and J. Traff. Knowledge specification for au-
tomatic performance analysis. APART Technical Report, wwuw.fz-juelich.de/apart,
2001.

2. T. Fahringer, M. Gerndt, G. Riley, and J.L. Traff. Specification of performance
problems in MPI-programs with ASL. International Conference on Parallel Pro-
cessing (ICPP’00), pp. 51 - 58, 2000.

3. T. Fahringer and C. Seragiotto. Aksum: A performance analysis tool for parallel
and distributed applications. Performance Analysis and Grid Computing, Eds. V.
Getov, M. Gerndt, A. Hoisie, A. Malony, B. Miller, Kluwer Academic Publisher,
ISBN 1-4020-7693-2, pp. 189-210, 2003.

4. M. Gerndt, K. Fiirlinger, and E. Kereku. Advanced techniques for performance
analysis. Parallel Computing: CurrentédFuture Issues of High-End Computing
(Proceedings of the International Conference ParCo 2005), Eds: G.R. Joubert,
W.E. Nagel, F.J. Peters, O. Plata, P. Tirado, E. Zapata, NIC Series Volume 33
ISBN 3-00-017352-8, pp. 15-26a, 2006.

5. M. Gerndt and E. Kereku. Selective instrumentation and monitoring. International
Workshop on Compilers for Parallel Computers (CPC 04), 2004.

6. E. Kereku and M. Gerndt. The EP-Cache automatic monitoring system. Interna-
tional Conference on Parallel and Distributed Systems (PDCS 2005), 2005.

7. B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L.
Karavanic, K. Kunchithapadam, and T. Newhall. The Paradyn parallel perfor-
mance measurement tool. IEEE Computer, Vol. 28, No. 11, pp. 87-46, 1995.

8. Ph. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A software-based multi-
cast/reduction network for scalable tools. SC2008, Phoeniz, November, 2003.

9. C. Seragiotto, H. Truong, T. Fahringer, B. Mohr, M. Gerndt, and T. Li. Stan-
dardized Intermediate Representation for Fortran, Java, C and C++ programs.
APART Working Group Technical Report, Institute for Software Science, Univer-
sity of Vienna, Octorber, 2004.

10. F. Wolf and B. Mohr. Automatic performance analysis of hybrid MPI/OpenMP
applications. 11th Furomicro Conference on Parallel, Distributed and Network-
Based Processing, pp. 13 - 22, 2003.

