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Abstract. In this work we present the design principles of a wearable
positioning system for users in unprepared indoor environments. We de-
scribe the most suitable technology for our application and we model the
dynamics of a walking user. The system uses inertial sensors and a loca-
tion system based on ultrawideband (UWB). Data fusion is carried out
with a Kalman filter. The user position is estimated from data provided
by the UWB location system. To update the position and direction of the
user we use a dead reckoning algorithm. The use of redundant sensors
and the data fusion technique minimises the presence of shadow zones in
the environment. We show the advantages of combining different sensors
systems.

1 Introduction

The precise determination of the position of users or objects in an environment
is a crucial task for many applications. The task was inaccessible a decade ago,
for precision location in mobile systems, due to the lack of technology. The
development of micro-electromechanical systems (MEMS) has allowed the design
of sensors based on the principles of the location systems found in boats or
airplanes. We now find on the market several low cost, miniature gyroscopes or
accelerometers. This evolution has facilitated the development of applications
that use the position of the user, often known as Location Based Services.

There are a great number of applications that need to know the position of
a user. Among them we can mention access and security control in enterprises
or institutions, civil defense and rescue tasks, or the guidance of users in facili-
ties such as museums or monuments. In the implementation of Location Based
Services, the efficiency of the service depends strongly of the location system
used.

Present technology allows the design of location systems precise enough for
most applications. Systems able to operate in prepared indoor environments
have been described. Optical, acoustic and magnetic technologies allow the pre-
cise location of a user in indoor environments. Their main disadvantage is that



they require complex, expensive infrastructures. On the other side, vision based
systems are imprecise, and also require previous preparation of the environment,
usually placing markers - fiducials - that assist the recognition process.

In this work we present the design principles of a system for locating users in
ad hoc (unprepared) indoor environments. The system uses inertial sensors and
specific data fusion techniques. We describe the most suitable technology for our
application and we model the dynamics of a walking user. The user’s position is
estimated from data provided by the system based on UWB. The update of the
position and direction of the user is done with dead reckoning algorithm. The
use of redundant sensors and the data fusion technique minimises the presence
of shadow zones in the environment.

2 Background

Over the past decade research in ubiquitous computing has been impelled by the
demand of mobile applications. A fundamental component in mobile systems is
the location system. The design of a location system implies the integration of
different disciplines and technologies as needed for the application. In this work
we propose the design of a location system suitable for unprepared indoor envi-
ronments. We seek to avoid the use of complex infrastructures while preserving
the reliability and robustness of the system.

At the moment, the most widely used technique to determine the position
of a user is the combination of different technologies such as optic, acoustic or
inertial technologies. There are other technologies, such as those used by cellular
telephones (time delay) or the triangulation methods based on wireless networks.
We did not consider these technologies because they are not precise enough for
most applications. None of them is able to detect with exactitude the position
of a user in a room. The main disadvantages of optical or acoustic technologies
are that they require complex and expensive infrastructures that usually are not
practical. Additionally, the presence of smoke, echoes or other phenomena that
affect the transmission or reception of the signal, introduces errors. A direct
line-of-sight between the receiver and the transmitter must exist.

Recently the High Sensitivity GPS technology (HSGPS) has been devel-
oped for the location of users in indoor environments. The technology solves
the problems that conventional GPS reception presents in zones where its signal
is obstructed or where there are multi-path effects. Nevertheless, the works of
Lachapelle [11], Mezentsev et al, and Mezentsev and Lachapelle, [12], [13], show
that HSGPS technology does not work as a stand-alone system, but rather it
requires additional technologies for the precise location of users.

2.1 Related Work

The design of location systems based on the fusion of data estimated by differ-
ent sensors has been described in many investigations. Golding et al.[2] present
a system based on machine-learning techniques and multi-sensor data fusion.



They use accelerometers, magnetometers, temperature sensors and light sen-
sors. They show that measuring the characteristics of the environment can help
to determine the position of the user, using statistically significant information.
The complexity of the method prevents its application in systems that operate
in real time.

Gabaglio et al. [4] propose a navigation system based on a Kalman filter. It
uses the information provided by magnetic compass, gyroscope, accelerometers
and a GPS. Although the system complements GPS when the signal is blocked,
the accuracy is lower for particular applications. Kourogi and Kurata [7] propose
a location system for Augmented Reality (AR) applications. The user carries a
system composed of self-contained sensors (accelerometers, gyroscopes, magne-
tometers and inclinometers) and a camera. They obtain the data needed to
estimate the displacement, register images and fuse the information by means
of a Kalman filter. The use of computer vision techniques requires a very large
database that is also dependent on the application environment.

Stirling et al. [8] and Foxlin [9] propose location systems based on Inertial
Measurement Units (UMI) installed on the feet of the users. The system de-
tects the steps of the user to incrementally calculate its present position. Both
works conclude that the system cannot work correctly as a stand-alone system.
However, the work is a first step in the search of an integral solution.

3 System description

In this work we propose a location system based on inertial sensors and an ultra-
wideband (UWB) location system. In this section we will describe the hardware
used to implement the system, the mechanisms of data gathering and fusion,
and the dynamic model proposed for a walking user.

3.1 Hardware

Our goal was to design a system that returns the position (X, Y) and orientation
(roll, pitch, azimuth) of human users in indoor environments. In order to select
the most suitable sensors for our application we considered characteristics such
as the precision, autonomy or the availability of the sensor. Based on these
parameters, the following sensors have been selected:

1. Ubisense: a location system based on ultrawideband (UWB). It uses a net-
work of sensors installed at well-known positions and a set of tags located in
the moving users or objects of the environment. The system uses an Ethernet
network for the communication between the different elements. This system
can be very useful in large environments. However, it is not suited for envi-
ronments where larger flat metallic surfaces exist which can cause reflections
and therefore affect the transmission and reception of the sensor’s signals.
We use this system to estimate the positions (X, Y) of the elements to be
located.



2. InertiaCube2: an Inertial Measurement Unit (IMU), which determines the
direction of a user as three Euler angles (roll, pitch, azimuth). It has a
static accuracy of 1° rms and a dynamic accuarcy of 3° rms, communication
through USB or serial port and its dimensions are suited for mobile applica-
tions. In our system, we use this sensor to detect the orientation of the user’s
head. The sensor rests on a helmet that is worn by the user. See Figure 1.

3. Xsense: It is an Inertial Measurement Unit (IMU), which determines the
direction like the InertiaCube2. It has a static accuracy less than 0.5° for
roll and pitch and 1° for azimuth, and a dynamic accuracy of 2° rms. In our
system, we use this sensor to estimate the values of linear acceleration and
azimuth of the user. The sensor rests in a belt that is worn by the user. See
Figure 1.

The information provided by the sensors is processed in a Tablet PC, as shown
in Figure 1.

(a) User wears the system. (b) Sensors.

Fig. 1. Prototype of wearable System

3.2 Data Reception and Fusion

To gather data from the sensors we use OpenTracker, an open source software
package developed at the Vienna University of Technology and the Graz Uni-
versity of Technology. OpenTracker® can be used in real time applications and
collects data with a timestamp. Opentracker defines the interface with sensors by
means of modules implemented in C++. The different modules used are called
from parameters defined by an XML configuration file, to gather the data from
each sensor. After this data gathering process, the final result is obtained by
means of a data fusion process.

Data fusion is a multidisciplinary field that considers all aspects from the
modeling of the physical system to the final estimation techniques. Its main goal
is to obtain an optimal estimation of a state vector, or vector of variables that

3 More details are in [1]



allows predicting the behavior of the system. The selected estimation technique is
the Kalman Filter (KF). This filter has demonstrated its reliability in navigation
systems (Brown and Hwang [6]). The Kalman filter inputs are the measured
values of a set of parameters. These parameters define the observed state of the
dynamic system and are stored in a vector. The filter uses the vector of observed
parameters to make a prediction of the state in the next time step . In our work
the dynamic system is a user walking around an environment.

3.3 Dynamic Model

The estimation of position is more difficult for a walking user than for vehicles or
robots. The added difficulty is due to the unpredictable nature of its trajectory.
In order to model the characteristics of the movement of a walking user we must
use methods such as Dead Reckoning algorithms. In this class of algorithms we
consider two fundamental parameters of the walking movement: the length of the
step of the user and its azimuth. The estimation of the length of the step is made
from acceleration patterns (Ladetto et al. [5]). Figure 2 shows the behavior of
the vertical acceleration, where the peaks of the curve correspond with the foot
strike.
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Fig. 2. Acceleration signal from Xsense, when a user walks.

The next set of equations model the movement of a walking user. If we
use another type of displacement (for example to jump or to slide) it becomes
necessary to define another specific dynamic model. Since our system follows a
2D-navigation dynamic scheme, the equations are as follows:

X=X -l—SkCOS (Qﬁk) (1)
Yi =Yio1 + spSin (¢¥y)

where, X}, and Y} are the information of position provided by the Ubisense, sj
is the length of the step and v is the azimuth or heading.
3.4 Kalman Filter

The data obtained from the Ubisense and the IMUs are integrated with a Kalman
filter. The KF requires a model of the system to be defined. In other words, it
must implement two models: state model and observation model.



State Model The state equation of a Kalman filter is (Brown and Hwang [6]):
Tp=f*xp_1+b*xup +wp_1 (2)

where, xj is the state vector, f is the transition matrix that relates the state
of a previous time to the current time, b relates the input control u; and wy
represents the noise state vector.

The state vector in our system is x = [Xi Yi Ok o ¥ &1 Bk Yk, the tran-
sition matrix f = Iszs, b = [Cos (¢r) Sin( psir) 00000 0]", the vector uy
represents the length of the step (Kourogi and Kurata [7]). 6 oy 9y, are the
angles roll, pitch, heading from the waist’s user respectively; ¢x Bi v are the
angles roll, pitch, heading from the head’s user. Although we don’t know the
value of the noise at each state, we can approximate the state model as:

Tp = frTp_1+bxuy (3)

Observation Model This model is defined according to the information pro-
vided by the sensors. Its general form is:

2 = Hy x xp + v (4)

where, zi, is the observation vector, H relates the observation and state
vector, and vy is the observation error vector.

. - . T
The observation vector is z = [Xk Y Ok ap Y o Bi ik} , H = Ig;s. In

the equations (2) and (4), wg and vy, are the state noise and the observation
noise. These noises are non-correlated, gaussian noises:

(w) N (0.Q)
"o(v) N (0, 7) ®)

where, @ represents the state noise covariance and R represents the obser-
vation noise covariance.

The KF works in two phases: the prediction and the correction. In the first
phase the filter update the state vector and the error covariance matrix P.
The usual equation to calculate P is P, = fj * Pk,lfkT 4+ Qr_1. In the cor-
rection phase the state is updated by & = 2z, + K (zk — H*ﬁ:;), where
K is the Kalman gain obtained by: K = P,C_Hg (HP,C_HT +R)71. The up-
date of the error covariances takes place with the equation in the Joseph form
P,=(I-KyHy) P, (I - KH)+ KRK™.

It is known that the EK provides bad results by factors as an incorrect
definition of the system model or the values of the covariances matrices @ or R.
We are interested in forcing the filter to converge in spite of having not an exact
definition of the model or the right values for @ or R.

We carry out this task keeping in mind the following considerations:



1. In a KF the residual of the measurement or innovation Z, should fulfill:

ZE g« P« Zp < K (6)
where:
Zkt1 = 241 — Zk41 (7)
with
1=z — Hx 2, (8)

In the equation (7) zg41, is the measurement and 2,1 is the estimate mea-
surement. The result of the equation (6) is called evaluation coefficient de-
noted by ec and K is a scalar value defined with the chi-square distribution.
2. We associated an ec for each component of the state vector. This is done with
the goal to eliminate only the wrong values. In other words, if a measurement
of any of the variables is wrong this is ignored for the fusion, but the rest
are fused.
3. According to the observations R is a factor that can be tuned up to force to
the convergence of the filter, that is,
— if ec < K, R does not change.
— if ec > K, R is decremented and the associated measurement is not taken
into account for the fusion. K is chosen based on the chi-square distribution
with a confidence limit of 95%.

4 Results and Discussion

We made preliminary tests in a small room 4x7 m? where we have installed
the Ubisense system. We wanted to observe the system in this space because
there are more critical situations to localize an user. The data were gathered
and post processed with Matlab. To test the system, (1) the user remained still
at a position during a short period of time - at different positions throughout
the room, (2) walked a predefined path and (3) walked around the room.

In (1) the filter was evaluated without keeping in mind the distances travelled,
while in (2) and (3) already existing movement is considered, specifically the
length of a step. An approximation of 50 cm has been used. Nevertheless this
can be determined in a more sophisticate way that has not been implemented
yet.

The functionality of the system can be observed especially in figure 3. The
results are more reliable if using criteria evaluation of the residuals than the
pure Kalman filter. If the data are processed with the criteria mentioned, wrong
data are ignored and the signals are smoothed. On the other hand, the results
for a fixed position are very good. After processing the signal filter the algo-
rithm smoothed the signal ignoring the outliers. Sometimes the multi-path phe-
nomenon is responsible for outliers. The results showed the standard deviation
in X decreased when using the criteria evaluation from 4 ¢cm (Kalman filter) to



2 cm. In Y direction the decrease of standard deviation was from 6cm (Kalman)
to 2 cm (criteria evaluation).

In the experiments, we observed the influence of Q). In the figure 4, we present
the results if @ is varied. We decrement @ if the residuals are not between
+o(standard deviation). While the covariance matrix R causes convergence of
the KF, @ helps to smooth the signal.

5 Conclusions and Future Work

We have presented a robust location system for users in indoor environments.
The implemented algorithms and the sensors used guarantee an acceptable sys-
tem performance. The sensors are not affected by typical signals in the environ-
ment as magnetism, sounds or changes in the lighting conditions. We can detect
if our sensors fail by evaluating the convergence of the Kalman Filter.

With the proposed combination of sensors our system increases the function-
ality of a portable system. It can work in wide indoor environments and it does
not need a previous knowledge of the environment (magnetic disturbances) or
big databases as vision based systems.

Although the Ubisense sensor shows problems in environments with metal-
lic surfaces where multi-path phenomena can appear, it is still useful if we do
not want to install complex infrastructures. These infrastructures are needed
in acoustic or optic technologies. One disadvantage of the Ubisense sytem are
multipath effects (reflections) that occur frequently. Nevertheless, we show that
our criteria evaluation filter helps to improve this situation considerably. When
implementing the filter it is very important to tune the parameters in order to
get more suitable results and better performance.

Within the future work we plan the evaluation of the latest HSGPS systems
that are on the market, because this may affect the future of the different existing
indoor technologies. Also the integration with other kind of sensors as magnetic
sensors, for instance.
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