
Pro�ling of Task-based Applications on Shared

Memory Machines: Scalability and Bottlenecks

Ralf Ho�mann and Thomas Rauber

Department for Mathematics, Physics and Computer Science
University of Bayreuth, Germany

{ralf.hoffmann,rauber}@uni-bayreuth.de

Abstract. A sophisticated approach for the parallel execution of irreg-
ular applications on parallel shared memory machines is the decompo-
sition into �ne-grained tasks. These tasks can be executed using a task
pool which handles the scheduling of the tasks independently of the ap-
plication. In this paper we present a transparent way to pro�le irregular
applications using task pools without modifying the source code of the
application. We show that it is possible to identify critical tasks which
prevent scalability and to locate bottlenecks inside the application. We
show that the pro�ling information can be used to determine a coarse
estimation of the execution time for a given number of processors.

1 Introduction

Due to the dynamic computation structure of irregular applications, task pools
have been shown to be a well suited execution environment for these types of
applications [1]. Applications decomposed into a large number of �ne-grained
tasks managed by task pools can be executed e�ciently on a wide variety of
parallel shared memory machines. This includes large systems like IBM p690
or SGI Altix2 with more than 32 processors but also smaller dual or multi-core
SMP systems. The task pool implementation takes care of executing available
task and storing newly created tasks to realize a dynamic task structure.

The granularity of the di�erent tasks is a major factor for the resulting per-
formance, since it partially determines the overhead introduced by the task man-
agement. It is however di�cult to predict the performance and scalability of a
speci�c application. It has been shown in our previous work [1] that this overhead
can be reduced by using hardware operations for the task pool management, but
the performance also depends on other parameters which cannot be improved
easily. A limited number of available tasks, and therefore a larger waiting time
for new runnable tasks, is an example of a limiting factor beyond the scope of
the task pool implementation.

A detailed analysis of the internal task structure of an application is required
to determine bottlenecks, to �nd scalability problems, and to suggest code im-
provements. For programs with a static task structures this can be done by
analyzing the directed acyclic graphs (DAGs). But for irregular applications the

task graph is usually not known before execution, and even then it may only be
known partially. Analyzing the source code and predicting the performance can
be di�cult for complex and irregular multi-threaded applications.

Applications designed to utilize task pools are completely independent from
the actual task pool implementation. Therefore, a pro�ling task pool can be
used to analyze performance characteristics of the application in the background.
Possible information gathered in the pro�ling process include the task creation
scheme (i.e., the task graph), statistics about the execution time of each indi-
vidual task, task stealing operations for load balancing, and so on. In this paper
we concentrate on gathering information about the task runtime and the time
each processor waits for new tasks to identify bottlenecks in the application. The
contribution of the paper is to propose a method to analyze the task structure
of arbitrary applications utilizing task pools and to show that it is possible to
predict the performance for a large number of processors by using pro�ling re-
sults from runs with a small number of participating processors. As case study
the method is applied to the hierarchical radiosity from the SPLASH-2 suite [2].

The rest of the paper is organized as follows. Section 2 introduces the pro�ling
method and Section 3 describes the data analysis. Section 4 presents a detailed
case study. Section 5 discusses related work and Section 6 concludes the paper.

2 A pro�ling task pool

For a task based execution the application de�nes tasks by providing the oper-
ations executed by the tasks as functions. Figure 1 shows the generic structure
of a task-based application. After creating initial tasks, depending on the actual
input of the application, each processor executes the main loop and asks for tasks
to execute until all tasks are �nished. Each task is a sequential function, and it
can create an arbitrary number of new tasks. The number of executable tasks
varies over time, but usually there is a much larger number of tasks than proces-
sors. The internal implementation of the task pool is hidden but it is accessible
by all threads via an application programming interface.

The granularity of the tasks depends on the actual computations done by
the corresponding functions and it can have a large in�uence on the resulting
performance. For example, many small tasks lead to frequent access to the task
pool with a potentially larger overhead due to mutual exclusion while a small
number of larger tasks can limit the available degree of parallelism.

The actual execution time (in the following referred to as task size) of each
task instance is hard to predict since it depends on hardware parameters like
CPU speed or memory bandwidth as well as input-dependent parameters like
loop bounds. Another important factor is the time which threads have to wait
for new runnable tasks (referred to as task waiting time). It is not easy to predict
whether there are enough tasks available at any given time.

If an application does not scale well there are several issues to consider to
improve the performance of the application. A limiting factor may be the task
structure of the application, but also the task pool implementation may limit the

struct Task { Function, Argument };
// 1. Initialization phase (processor 1)
for (each work unit U of the input data)

TaskPool.create_initial_task(U.Function,
U.Argument);

// 2. Working phase
processor 1. . . p:

loop:

Task T ← TaskPool.get();
if (T = ∅) exit;
T.execute(); // may create new tasks
T.free();

Fig. 1. Programming interface for task-
based application.

Fig. 2. Parallel execution scheme of a
task-based application

scalability. But even if an application scales well on a given machine, it remains
unclear whether it will achieve good speedups when using a larger number of
processors or faster machines. To obtain the pro�ling information required to
address these issues we select a well performing yet simple task pool implemen-
tation from previous work [1] and a modi�ed version is used to gather statistical
information about the task execution. Because the task pool appears as a black
box to the application this does not require code changes in the application.

Figure 2 illustrates the parallel execution of a task-based application. Each
thread accesses the task pool to obtain executable tasks. The code of the task is
executed in the application context which can create new tasks for later execu-
tion. Besides the application context there is a task pool context which covers
the task management, i.e. searching or waiting for new tasks. In this paper we
concentrate on pro�ling the time spent in both contexts and show how this infor-
mation can be used to identify problems within the application. The time spent
in the application context is the execution time of the task code which we call
the task size. This time represents the work done by the actual application. The
larger the task size the more work is done in a single task, so this value helps
to identify the task granularity of the application. The task size does not only
provide information about the task granularity, it can also be used to obtain
information about possible bottlenecks due to parallel execution. For example,
if the granularity of a task is independent of the number of threads, but the
actual execution times increase with the number of threads then this indicates
non-obvious scalability problems. Reasons for such a behavior can be a higher
number of cache misses, increased memory access time due to remote access, or
higher lock contention. For each single task the pro�ling mechanism stores which
function has been executed along with the corresponding execution time.

The time spent in the task pool context is the time needed for the task
management including waiting for new executable tasks. We refer to the sum
of these times as waiting time. This is the time which is not spent executing
the actual application, so it indicates an overhead. An increase in the waiting
time also indicates a scalability problem. Reasons can be: the threads access the

task pool too often causing mutual exclusion or there are not enough executable
task available, so some threads need to wait. Some of the reasons for scalability
problems can be addressed at the task pool level, e.g., by modifying the task
pool implementation (as shown, for example, in [1]); other problems need to be
addressed at the application level. In any case, detailed information about the
waiting time can be used to �nd bottlenecks. For the waiting time the pro�ling
mechanism measures the time spent in the task pool after �nishing a task and
before executing a new task. This waiting time is associated with the new task
indicating that this task was not available early enough for execution.

3 Pro�ling Methodology

The execution of a task based application using the pro�ling task pool generates
a large data set which needs to be analyzed for detailed information. In the
�rst step we determine global statistical values which include the number of
tasks executed, the total task size (i.e., total time spent in the application),
the average task size, the total waiting time (i.e., total time spent outside the
application), and the average waiting time.

This information allows �rst overall conclusions about the task pool usage for
a speci�c application. If the number of tasks is small compared to the number of
processors the load balancing e�ect of the task pool is limited. The waiting time
can be considered as overhead as this is the time spent in the task pool and not
in the application. If the waiting times are long compared to the task size, then
this indicates that too few tasks are available for execution at some times.

For a detailed analysis we create task histograms (see Figure 3 for an exam-
ple) which count the number of occurrences for every task size. Together with
the waiting time these plots allow detailed statements about the performance
impacts of the interaction between the application and the task pool. The im-
portant observations from the histogram can be summarized as follows:

� Large tasks mean a low overhead but possibly indicate limited parallelism
or load imbalance.

� Many medium sized tasks suggest a good balance between high overhead
and load imbalance.

� Many small tasks (i.e. a high occurrence of tasks on the left side of the
histogram) indicate a large overhead in the task pool.

� An similar shape of the task size histogram for di�erent number of processors
indicate a suitable task structure, as the execution time of a task does not
depend on the number of processors. Otherwise, memory or lock contention
or cache invalidations are possible reason for unsatisfactory performance.

� The waiting time should always be as low as possible, i.e., most of the oc-
currences should be on the left-hand side of the histogram.

� The majority of the waiting times should be below the task size curve. Oth-
erwise, the waiting time is more signi�cant than the actual computation
indicating a serious problem in the parallel application.

(a)

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000 100000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in mikroseconds

Radiosity − Visibility task (1 thread)

Task size
Waiting time

Average task size
Average waiting time (b)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in mikroseconds

Radiosity − Visibility task (32 threads)

Task size
Waiting time

Average task size
Average waiting time

Fig. 3. Task histogram for the �visibility� task of the radiosity application using 1 (a)
and 32 (b) threads on the Power4 system.

� Large waiting times, even if they occur rarely, indicate limited parallelism
at some time inside the application.

In the following, we discuss the analysis of the pro�ling information for a selected
task type to show how this information can be evaluated for an actual task.
The information are gathered from an IBM p690 server which is a symmetric
multiprocessor (SMP) with 32 Power4 processors running at 1.7 GHz. A more
detailed analysis of the complete application is given in Section 4. Figure 3 shows
the results of the data analysis for the hierarchical radiosity application for a
speci�c task type using 1 and 32 threads. For single threaded execution the
waiting time for most of the tasks is 1 (0 is counted as 1 due to the logarithmic
scale), i.e., there is almost no time spent in the task pool. On average, a task
takes 201 µs to �nish and there are only several hundreds out of about 70,000
tasks with a task size ≤ 5 µs. Taking all zero waiting times into account, the
average waiting time is ≈ 0.5 µs so the task size is roughly 400 times larger than
the waiting time in the task pool on average. The maximum waiting time of
63 µs is also much smaller than the average task size.

For 32 threads, Figure 3b indicates that there are no signi�cant dependencies
on the number of threads for this task type as the shape of the task size curve
is similar to the single thread curve. All tasks take nearly the same time to
complete when executing the application with 32 threads so the execution is not
limited by memory bandwidth or cache size. On the other hand, the waiting
time increases from 1 to 32 threads. The average waiting time is 4.4 µs which is
around 10 times more than for the single thread run, but the average task size
increases only from 201 µs to 340 µs. Even more important, the largest waiting
time is 6319 µs which is around 100 times more than for the single thread run.
However, the majority of the waiting time is ≤ 1 µs and the average task size is
still almost 80 times larger than the waiting time on average. On this system,
the large increase in the waiting time is not re�ected by a performance decrease

Algorithm 1 Framework of the hierarchical radiosity application.
Phase 1:

for all input patches P do

insert P into BSP tree;
create task REFINEMENT(P);

Phase 2:

repeat

for all patches P in BSP tree do
create task RAY(P);

execute tasks;
until error small enough;

Phase 3:

for all patches P in BSP tree do
create task AVERAGE(P,average);

execute tasks;
for all patches P in BSP tree do
create task AVERAGE(P,normalize);

execute tasks;

Task REFINEMENT(P):
compute form factor and re�ne recursively;

Task RAY(P):
for all interactions I do
if error(I) too large then
re�ne element(I) and create interactions;

else if un�nished(I) then
create task VISIBILITY(I);

else

gather energy;
if P is leaf then propagate to parent;
else for each child C do

create task RAY(C);
Task VISIBILITY(P):
compute visibility for given interactions;
continue task RAY(P);

Task AVERAGE(P, mode):
if P is leaf then average or normalize values;
else for each child C do

create task AVERAGE(C,mode);

as the maximum waiting time of ≈ 7 ms is much smaller than the largest task
which took almost 70 ms to complete. It can be expected that on a larger or a
faster system the problem may limit the scalability especially because such large
waiting times occur several times. For this task type we can draw the following
conclusions using the pro�ling information:

1. large task sizes in contrast to waiting times even for 32 processors indicate
good scalability;

2. the overhead of the task pool is negligible;
3. there is a small increase in task size and a bigger increase in waiting time

when more processors are used, so perfect scalability will not be reached
especially for a larger number of processors;

4. the small number of very small tasks also indicates a suitable task structure;

4 A case study for performance prediction

In this section we describe how the task pro�ling can be used to predict the
performance of an application. The case study is done by considering the hier-

archical radiosity application [3] which is a global illumination algorithm that
renders geometrical scenes by computing the equilibrium distribution of light. A
hierarchical subdivision of the object surfaces is performed dynamically at run-
time, and interactions between the surface elements representing the transport
of light are evaluated. Parallelism is exploited across interactions and subdivision
elements. The application is subdivided into four task types, see Algorithm 1 for
an overview of the application. At the beginning the surfaces (or patches) of the
initial scene are divided into sub-patches. This is done by the �re�nement� task
which can be executed in parallel for di�erent patches. The computation is done
by the �ray� task which calculates the energy exchange with other patches. This
task can issue new �visibility� tasks and �ray� tasks to evaluate sub-patches. The
�average� task post-processes the computed values.

(a)

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in mikroseconds

Radiosity − Average task (1 thread)

Task size
Waiting time

Average task size
Average waiting time (b)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in mikroseconds

Radiosity − Average task (32 threads)

Task size
Waiting time

Average task size
Average waiting time

Fig. 4. Task size histogram for the �average� task of the radiosity application using 1
(a) and 32 (b) threads on the Power4 system.

4.1 Application evaluation

The implementation uses four di�erent task types for di�erent stages of calcu-
lating the resulting images of a given scene.

Visibility task. We already have investigated the �visibility� task in the
previous section, see Figure 3. We have seen that this particular task performs
well also for a large number of processors (32).

Average task. Figure 4 shows the task histogram for the �average� task.
This task performs a post-processing step for averaging and normalizing the
calculated radiosity values. The majority of the task sizes is very small, less
than 10 µs. For one thread (Figure 4a), the average task size is 2.67 µs and there
are only a few tasks larger than 100 µs. The average waiting time is 0.44 µs.

For 32 threads, the shape of the task size graph changed much more than
for the �visibility� task shown in Figure 3. There is now a signi�cant number of
task sizes larger than 100 µs. The average task size is with 37.35 µs almost 14
times larger than in the single threaded run. Because the number of participat-
ing threads does not in�uence the granularity of this task type, this signi�cant
increase indicates a performance problem. The average waiting time is 10 times
larger (4.44 µs) in contrast to a single thread execution. This is 12% of the aver-
age task size which is a signi�cantly larger fraction than for the �visibility� task
considered in the previous section.

The conclusion is that this particular task type does not scale very well. The
increase in waiting time is not extremely large but the fraction of the waiting time
on the task size is large enough to in�uence the performance. More important
is the signi�cant increase of the task size which needs attention to improve the
performance of the application.

Ray task. The �ray� task actually calculates the energy of the patches. The
shape of the task histogram is similar to the histogram for the �average� task.
When using a single thread (Figure 5a) the majority of the tasks are small (less
than 10 µs), but there are also several larger tasks leading to an average task

(a)

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in mikroseconds

Radiosity − Ray task (1 thread)

Task size
Waiting time

Average task size
Average waiting time (b)

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in mikroseconds

Radiosity − Ray task (32 threads)

Task size
Waiting time

Average task size
Average waiting time

Fig. 5. Task histogram for the �ray� task of the radiosity application using 1 (a) and
32 (b) threads on the Power4 system.

size of ≈ 10.3 µs. The average waiting time is very small (≈ 0.46 µs, ≈ 4% of the
task size). For 32 threads we see the expected increase in the average waiting
time which is with ≈ 2.94 µs only around 6.5 times larger. The average task
size is ≈ 5.47 times larger (56.43 µs) which is less than the increase in the task
size for the �average� task, but it indicates a similar problem. The conclusion is
that this task type works slightly better than the �average� task, but still has
scalability problems due to the majority of small tasks and an increase in the
task size when using more processors.

Re�nement task. The �re�nement� task is used to divide the patches of
the scene into smaller sub-patches. We observe a di�erent behavior (Figure 6)
than for the other task types. For a single thread, no task is smaller than 11 µs
and the majority is 11 − 13 µs but there are several larger tasks (50 − 500 µs).
The average task size is 12.24 µs. The waiting time is small, mostly less than
1 µs. The peak at around 10 µs and the few larger waiting times up to 4500 µs
represent overhead in the task pool implementation. This task type is created
and executed �rst, so the internal data structures to store the large number of
tasks need to be created. The average waiting time is very small (0.61 µs).

For 32 threads we observe major scalability problems. The average task size
is more than 14 times larger (172.77 µs), and the average waiting time is almost
27 times larger (16.45 µs). The absence of very small tasks should be a good sign
for good scalability, but the signi�cant increase of the task size and waiting time
indicates serious scalability problems for this task.

4.2 Performance prediction

For a coarse estimation of the execution time of the application for a speci�c
number of processors, we use the pro�ling information from measurements with
a smaller number of processors to extrapolate the task sizes and waiting times for
a larger number of processors. The information for each pair of consecutive num-

(a)

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in mikroseconds

Radiosity − Refinement task (1 thread)

Task size
Waiting time

Average task size
Average waiting time (b)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

N
um

be
r

of
 o

cc
ur

re
nc

es

Task size/Waiting time in microseconds

Radiosity − Refinement task (32 threads)

Task size
Waiting time

Average task size
Average waiting time

Fig. 6. Task histogram for the �re�nement� task of the radiosity application using 1
(a) and 32 (b) threads on the Power4 system.

ber of processors is used to linearly extrapolate the task size and waiting time to
the target number of processors. Several extrapolation values are combined to
the �nal value by weighting each value by its distance to the target number of
processors. The prediction is done by using only information gathered from the
pro�ling process without considering details about the application. As tasks are
arbitrary complex functions, the actual performance depends on many param-
eters unknown to the pro�ling task pool (like lock contention inside the task,
memory bandwidth requirements, and so on). The estimated performance cannot
be expected to be exact, but it can give an indication how well the application
will scale.

Table 1 shows the estimated results and the actual results on the Power4
system for the computation time and the waiting time both for 32 processors.
The estimated values are calculated by taking measured results for 1, 2, 4, 8 and
16 processors into account. Most values are underestimated or slightly overes-
timated, and the only speci�c value which is signi�cantly overestimated is the
execution time for the re�nement tasks. It is around 66 percent above the actual
value which is still acceptable considering the low assumptions made and the
few information available.

Using these values the predicted speedup for 32 processors is 9.75 whereas the
actual speedup is 7.87. The speedup for 16 processors is ≈ 9.5 so the estimation
suggests that using twice as many processors does not give a signi�cant bene�t
for the execution time. The predicted increase of the task sizes, waiting times
and number of tasks helps pointing out which tasks need more attention than
others.

5 Related work

Application pro�ling is a well known technique to analyze the performance of an
application. Modern compilers support adding pro�ling code to the application

Table 1. Estimated combined execution and waiting time for 32 threads.

Radiosity Computation time Waiting time

Task type Estimated time Actual time Estimated time Actual time

in µs measured in µs in µs measured in µs

RAY 2,922,294.15 5,794,241.25 125,116.07 296,063.50

REFINEMENT 20,249,703.33 12,141,060.70 299,718.71 703,022.05

AVERAGE 1,751,265.41 1,556,440.05 158,188.50 123,334.20

VISIBILITY 22,136,753.20 38,105,390.00 51,363.556 361,316.50

Sum 47,060,016.06 57,597,132.00 634,386.84 1,483,736.25

to be able to �nd time consuming parts of an application. Tools like VAMPIR
[4] allow the evaluation of such information.

The method presented in [5] does not depend on compile time instrumenta-
tion but uses the binary code to pro�le the application and predict the perfor-
mance. The method pro�les memory accesses to predict the estimated execution
time for larger inputs for sequential execution. [6] tries to predict the performance
of a selected application for parallel execution even on future architectures but
requires detailed analysis of the actual application.

[7] proposes a framework to automatically tune an application. Similar to
ATLAS [8], but more generic, the framework is able to select an e�cient imple-
mentation of certain library functions used by the application. A small amount
of source code changes are required and the optimizations are application speci�c
while we are trying to optimize generic task-parallel applications.

As a similar approach to analyze an application and identify performance
problems, [9] proposes a method to use a simulator to obtain memory access
information (cache misses etc.) and suggest improvements. In our work we are
trying to avoid the overhead of a simulator and source code modi�cations and we
also consider the impact of contention which are not modeled by cache statistics.
[10] proposes a method to pro�le parallel applications using TAU. Similar to our
work, TAU pro�les di�erent contexts (phases) but this requires instrumentation
of the source code.

6 Conclusions

The pro�ling methods proposed in this paper allow to study the behavior of
irregular applications and identify scalability problems without code changes or
even recompilations of the actual application. Splitting the execution time into
the application context and the task pool context makes it possible to evaluate
di�erent task types separately and even to consider single tasks. The applica-
tion context models the actual computations but also covers possible contention
inside single tasks. The task pool context covers the available parallelism and
overhead of the task based execution.

The proposed method allows the investigation of speci�c tasks for a given
number of processors to identify possible scalability problems inside the task and

to indicate missing parallelism inside the application or a too large overhead from
the task pool implementation. The isolated examination of single tasks allows us
to point out speci�c tasks which indicates problems and also to propose changes
to improve the scalability.

Similar pro�ling information are otherwise only available by changing the
application or recompile it to use pro�le information from compilers or utilize
hardware counters which is not always available or wanted.

Acknowledgments. We thank the NIC Jülich for providing access to their
computing systems.

References

1. Ho�mann, R., Korch, M., Rauber, T.: Performance Evaluation of Task Pools
Based on Hardware Synchronization. In: Proceedings of the 2004 Supercomputing
Conference (SC'04), Pittsburgh, PA, IEEE/ACM SIGARCH (November 2004)

2. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: Proceedings of the 22nd
International Symposium on Computer Architecture, Santa Margherita Ligure,
Italy (1995) 24�36

3. Hanrahan, P., Salzman, D., Aupperle, L.: A Rapid Hierarchical Radiosity Algo-
rithm. In: Proceedings of SIGGRAPH. (1991)

4. Brunst, H., Kranzlmüller, D., Nagel, W.E.: Tools for Scalable Parallel Program
Analysis - Vampir VNG and DeWiz. In Juhasz, Z., Kacsuk, P., Kranzlmüller,
D., eds.: DAPSYS. Volume 777 of Kluwer International Series in Engineering and
Computer Science., Springer (2004) 93�102

5. Marin, G., Mellor-Crummey, J.: Cross-Architecture Performance Predictions for
Scienti�c Applications Using Parameterized Models. In: Proceedings of Joint In-
ternational Conference on Measurement and Modeling of Computer Systems -
Sigmetrics 2004, New York, NY (June 2004) 2�13

6. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings,
M.: Predictive performance and scalability modeling of a large-scale applica-
tion. In: Proceedings of the 2001 Supercomputing Conference (SC'01), IEEE/ACM
SIGARCH (2001) 37

7. Tapus, C., Chung, I.H., Hollingsworth, J.K.: Active Harmony: Towards Automated
Performance Tuning. In: Supercomputing '02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, Los Alamitos, CA, USA, IEEE Computer Society
Press (2002) 1�11

8. Whaley, R.C., Dongarra, J.J.: Automatically Tuned Linear Algebra Software.
Technical report, University of Tennessee (1999)

9. Faroughi, N.: Multi-Cache Pro�ling of Parallel Processing Programs Using Simics.
In Arabnia, H.R., ed.: Proceedings of the PDPTA, CSREA Press (2006) 499�505

10. Malony, A., Shende, S.S., Morris, A.: Phase-Based Parallel Performance Pro�ling.
In Joubert, G.R., Nagel, W.E., Peters, F.J., Plata, O.G., Tirado, P., Zapata, E.L.,
eds.: Proceedings of the PARCO. Volume 33 of John von Neumann Institute for
Computing Series., Central Institute for Applied Mathematics, Jülich, Germany
(2005) 203�210

