Hirschberg’s Algorithm on a GCA and its
Parallel Hardware Implementation

Johannes Jendrsczok!, Rolf Hoffmann!, and Jorg Keller?

1 TU Darmstadt, FB Informatik, FG Rechnerarchitektur
Hochschulstrafie 10, D-64289 Darmstadt
{jendrsczok, hoffmann}@ra.informatik.tu-darmstadt.de
2 FernUniversitit in Hagen, Fakultit fiir Mathematik und Informatik
Universitatsstr. 1, D-58084 Hagen
Joerg.Keller@FernUni-Hagen.de

Abstract. We present in detail a GCA (Global Cellular Automaton)
algorithm with 3n cells for Hirschberg’s algorithm which determines the
connected components of a n-node undirected graph with time complex-
ity O(nlogn). This algorithm is implemented fully parallel in hardware
(FPGA logic). The complexity of the logic and the performance is evalu-
ated and compared to a former implementation using n(n+1) cells with
a time complexity of O(log?(n)). It can be seen from the implementation
that the presented algorithm needs significantly fewer resources (logic el-
ements times computation time) compared to the implementation with
n(n 4 1) cells, making it preferable for graphs of reasonable size.

1 Introduction

The GCA (Global Cellular Automata) model [1, 2] is an extension of the classical
CA (Cellular Automata) model [3]. In the CA model the cells are arranged in a
fixed grid with fixed connections to their local neighbors. Each cell computes its
next state by the application of a local rule depending on its own state and the
states of its neighbors. The data accesses to the neighbor’s states are read-only
and therefore no write conflicts can occur. The rule can be applied to all cells in
parallel and therefore the model is inherently massively parallel.

The GCA model is a generalisation of the CA model which is also massively
parallel. It is not restricted to the local communication because any cell can be
a neighbor. Furthermore the links to the neighbors are not fixed; they can be
changed by the local rule from generation to generation. Thereby the range of
parallel applications for the GCA model is much wider than for the CA model.

The CA model suits to all kinds of applications with local communication,
like physical fields, lattice-gas models, models of growth, moving particles, fluid
flow, routing problems, picture processing, genetic algorithms, and cellular neural
networks. Typical applications for the GCA model are — besides all CA appli-
cations — graph algorithms, hypercube algorithms, logic simulation, numerical
algorithms, communication networks, neuronal networks, games, and graphics.
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Fig. 1. The operation principle of the GCA.

The general aim of our research (supported by Deutsche Forschungsgemein-
schaft, project Massively Parallel Systems for GCA) is the hardware and software
support for this model [4]. Recently we have investigated how graph algorithms
can be implemented on the GCA. In [5] we have described the hardware imple-
mentation of Hirschberg’s algorithm to compute the connected components of an
n-node undirected graph [6] on the GCA using n? +n cells. The time complexity
was O(log?(n)). We use field programmable gate arrays (FPGAs) as hardware
platform.

In this paper we present a different hardware implementation of Hirschberg’s
algorithm on a GCA using only 3n cells with two pointers per cell. This im-
plementation will be evaluated with respect to time complexity and hardware
complexity. Also this algorithm will be compared to the GCA algorithm with
n? + n cells in order to find out the advantages. The FPGA reconfigurability
allows to implement different GCAs with very low overhead, thus enabling the
use of highly efficient co-processors, as argued in a recent journal issue, see [7].

The remainder of the paper is organized as follows. In Section 2 we sketch
relations and differences between PRAMs and GCAs. In Sections 3 and 4, we
review Hirschberg’s algorithm and present how it can be mapped onto a GCA.
Section 5 presents results about our hardware realization. Section 6 concludes.

2 GCAs and PRAMs

The state of a GCA cell consists of a data part and an access information part.
In a common implementation the access information part contains one or more
pointers (Figure 1). The pointers are used to dynamically establish links to
global neighbors. We call the GCA model one handed if only one neighbor can be
addressed, two handed if two neighbors can be addressed and so on. Additionally
we call the GCA cells uniform if all cells have the same transition rule and
otherwise non-uniform.

As the GCA cells work synchronously and can only read from other cells,
the GCA resembles the concurrent-read owner-write (CROW) PRAM model,
where each memory location may only be written by a dedicated processor, the



owner. In principle, the GCA is able to implement any PRAM algorithm, as any
algorithm consists of a finite number of instructions from a finite instruction set.
However, an automaton implementation is particularly advantageous for simple
algorithms, which are however available in abundance in the PRAM community.
In particular, Hirschberg’s algorithm is well-studied on the PRAM model [8].

A general simulation of CRCW or CREW PRAMs onto a GCA can be
achieved by sorting the requests according to owners; efficient sorting is available
on owner-write PRAMs [9]. Yet, as the PRAM algorithm for a particular prob-
lem can be compiled into the GCA rule set when using reconfigurable hardware,
i.e. FPGAs, more efficient methods normally are available.

On a PRAM one seeks an algorithm with a short parallel runtime 7}, on a
number of processors P with P - T, = T, where T is the sequential complexity
of the problem at hand, i.e. a work-optimal algorithm. Either, P is driven to its
maximum value in the range of the problem size, to explore the limits of paral-
lelism in a problem, or P is chosen so that a practical implementation is available.
While the latter case in general can be derived from the first one via Brent’s
theorem, often direct methods lead to simpler and faster implementations. In a
previous paper [5], we have investigated the first case, here we investigate the
latter, for the reasons given below.

If the number of processors is taken as a measure of machine cost or price, and
parallel time (for a fixed work) is seen as the inverse of performance, then P - T},
represents a price/performance ratio. While the cost measure may be appropriate
for PRAMs because even RISC microprocessors are much more complex than
memory cells, in GCAs the memory cost has to be taken into account, because a
finite automaton with a few registers is cheap in reconfigurable hardware, while
memory cost is comparatively high. This means that the price of a GCA requiring
n? memory cells does not vary much no matter if one takes n? or n?/log?(n)
processors. This enables further simplification of algorithms.

Yet, our feeling was that employing n instead of n? processors, and giving
each a local memory of size n, not implemented in registers as before but in
much denser RAM storage, might still improve the price-performance ratio, and
give processor counts that become practical.

Implementing a CROW PRAM algorithm or a GCA requires similar consid-
erations. The memory is mapped to the owners. For non-local read accesses, the
congestion, i.e. the number of cells reading from one cell, has to be controlled.
In the case that we investigate here, where each GCA cell only has a single data
value to be accessed, congestion can only occur because of concurrent reading.
Yet, this can be ameliorated by appropriate routing networks, such as Ranade’s
butterfly network. Hence, we will list the congestion numbers in our result table,
but not deal further with the congestion and routing problem.

3 Hirschberg’s Algorithm

Our example application is Hirschberg’s well known algorithm [6] to compute
the connected components of an undirected graph on a CREW PRAM. Yet,



only a CROW PRAM is really needed. Hirschberg’s algorithm was seminal and
is work-optimal for dense graphs, i.e. graphs with n nodes and m = ©(n?) edges
where the sequential complexity of the problem is ©(m + n) = ©(n?). Starting
with every single node as a component, the algorithm divides the number of
components in every iteration by at least two, so logn iterations are needed at
most. Each iteration needs time O(logn) on n?/log®(n) processors, therefore
the overall time complexity is O(log?(n)). Each component is represented by
its node v; with the smallest index ¢. These representing nodes are called super
nodes. The index of a component is the index of its super node. Our goal is to
show that the algorithm of Hirschberg et al. works efficiently on the GCA with 3n
cells, for the reasons given in the previous section. Our implementation will need
O(nlogn) steps, hence we will see a speedup for graphs with m = 2(nlogn)
edges, and see maximum speedup for graphs with m = ©(n?) edges. Examples of
such graphs appear e.g. when very large graphs are collapsed into smaller ones.

Listing 1.1 shows the original algorithm (reference algorithm) consisting of
6 steps. Each iteration starts with several non connected components. During
every iteration, each component searches a connection to another component.
First every node of the component searches a connection to a node belonging to
another component (step 2). If the node can connect to more than one compo-
nent, the component with the lowest index is selected. Afterwards the super node
picks the component with the lowest index (step 3). The components connect to
each other and for each new component a super node is chosen (step 4-6).

1. for all i in parallel do C(i) « i
do steps 2 through 6 for log n iterations
2. for all nodes i in parallel do
T(i) « min;{C(j) |A(i,j)=1 AND C(j) != C(i)} if none then C(i)
3. for all i in parallel do
T(i) « min;{T(j) |C(j)=i AND T(j) != i} if none then C(i)
4. for all i in parallel do
C(@i) « T()
5. repeat for log n iterations
for all i in parallel do T(i) «— T(T(i))
6. for all i in parallel do
C(i) <« min{C(T(i)) ,T(1)}
Listing 1.1. Pseudo code for the algorithm of Hirschberg et al. on the PRAM
(reference algorithm)

The original algorithm was defined for SIMD (single instruction multiple
data) parallel processors (e.g. vector machines). Later the algorithm was investi-
gated for the PRAM machines [8]. All these algorithms use a common memory.
The algorithm uses the following variables and constants: Input is the adjacency
matrix A = {A(4,j)|i,7=1...n}. If A(i,j) = A(j,7) = 1 then there is a link be-
tween node 7 and node j. C(i) and T'(¢) are of type integer and hold the number
of a node or a super node: C = {C(i)[i=1...n}, T ={T()|i =1...n}. The
constant A, the variables C, T and the temporary variables have to be stored in
the common memory of the SIMD or PRAM computer.



col(index)

0 1 eee (n1)
0 OO...O C
row(index)< 1 OO e O T
2 OO+ Temp

Fig. 2. GCA Field.

4 Hirschberg’s Algorithm on the GCA

The GCA algorithm uses a cell array Z in order to store the variables and
computational rules. The cell array Z consists of three rows with n cells each
(Fig. 2):

Row 0 of Z corresponds to the original vector C(i): Z0=C = Cp...Ch_;.

Row 1 of Z corresponds to the original vector T'(i): Z1 =T =Ty ...Typ_1.

Row 2 of Z is used to hold temporary results Temp(i): Z2 = Temp =
Tempg ... Temp,_1, as well as the matrix A, one column per cell. The matrix
columns are only accessible by the cell holding them?.

The cells of Z are ordered by a linear index K =0...3n—1. A cell z = Z(K)
will be accessed from another cell using the linear index K. For convenience a
cell z = Z(J,I) = Z(K) may also be accessed by the row index J = row(K) and
the column index I = column(K) using the access functions row and column.

Each cell z = (d, p0, pl) consists of a data part d and two pointers p0 and pl.
The data part is used for the computation of the connected components storing
the node or super node numbers. The pointers dynamically establish links to
two other cells (global cells z*(p0), z*(p1)). The global data is denoted as d*(p0)
and d*(pl). In general the next cell state 2/ = (d’, p0’, p1’) depends on its current
state z and the states z*(p0), z*(pl) of its current neighbors.

A GCA algorithm consists of a sequence of parallel computations. In each
computation all cells update their state in parallel in accordance to the local
rule. The global state (configuration) of the GCA is given by the cross product
of all the local cell states. The configuration changes from time step to time step.
In order to emphasize the changing of the configurations with time g the term
generation is commonly used. The configuration at time g is the g** generation.

A GCA algorithm can be clearly represented by a state graph. The state
graph consists of states which are reached under certain conditions, e.g. cen-
tral counter states. In each state two types of operations are performed: data
operations and pointer operations.

The state graph (Fig. 4) shows on the left the computation of the actual
pointer p and on the right the data operation of a cell. The pointer p can either
be computed in the current generation or one generation in advance. In our algo-
rithm the pointer is computed in the current generation to be used immediately

3 If the degree of the graph is known to be low, the matrix columns can be replaced
by lists.
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Table 1. Generations for each step. Active cells are cells that perform a calculation
within a generation. ¢ is the number of concurrent read accesses to each of the # cells.

»

is used for pointer
” is used for the

in the data operation. Therefore the assignment symbol ”=
operations. In contrast the synchronous assignment symbol 7«
data operations.

Although in principle each cell obeys to the same uniform algorithm, the
operations to be performed may depend on certain conditions. In this algorithm
the data operations depend on the positions of a cell in the field, in partic-
ular whether a cell is located in C, T' or T'emp. The conditions to distiguish
between the three vectors are: row(index) = 0 for C, row(index) = 1 for T,
and row(index) = 2 for Temp. The GCA algorithm (Fig. 4) consists of 8 states
which correspond to the 6 steps of the original algorithm as shown in Table 1.

State 0. The first step of the reference algorithm requires the data of the
cell vector C' to be set to the corresponding index (C(i) « 7). So the data of the
vector C is initialized with the column number of each cell.

State 1. In order to prepare the field for the calculation of the minimum in
the next state the vector Temp is set to co. Thereby it is possible to identify
whether a minimum will have been found in state 2 or not.

State 2. In this state all the min; functions of the Hirschberg algorithm are
computed in parallel. If the condition A(3, j) =1 AND C(j) # C(3) is fulfilled
and Temp(i) is less than C(2), Temp(7) is set to C(4), otherwise Temp(i) remains
unchanged. Thus the data of the vector Temp(i) is the minimum of C(j) after
n iterations.

In the corresponding GCA algorithm (Fig. 4) each cell is operating on its own
and the operations specified in the graph tell each cell what it has to do. In state
2 only the last row (T'emp) of the cell array with row(index) = 2 is activated.
Each cell T(I) computes the minimium of the cell C(I) compared to all cells
C(J). The pointer p0 is used to access C(I) and the pointer pl is successively
incremented (using the subgeneration counter) in order to access all J cells (see
access pattern Fig. 3).

State 3. After the calculation of the minimum min; the value of C(i) is
written back in case none of the conditions of generation 2 was true. For this
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Fig. 3. Access Patterns for n = 4. Active cells are shaded.

purpose Temp(i) is substituted for the value of C(i) in case T'emp(i) equals co.
Then the value of Temp(i) is set to co in preparation of the next generation.

The cell T(I) uses its pointer p0 to access Temp(I) and its pointer pl to access
Temp(I). If p0 = co then pl is copied to the data part d of T'(¢), otherwise p0
is copied.

State 4. (Similar to state 2). In contrast to State 2 the condition has changed.
If the condition C(j) = i AND T(j) # i is fulfilled and Temp(i) is less than
T(j), Temp(i) is set to T'(j), otherwise Temp(i) remains unchanged. Thus the
data of the vector T'emp(i) is the minimum of 7'(j) after n iterations.

State 5. State 5 is identical to state 3.

State 6. Vector T is copied to vector C.

State 7. This state iterates logn times. Only the vector T' (corresponding
to Hirschberg’s T'(i) Vector) is modified. The pointers are data-dependent. The
cell T'() points to the cell T'(T'(7)). Thus the neighbor depends on the value of
the cell and it is possible to set the value of T'(%) to the value of T(T'(i)) in one
parallel computation.

State 8. State 8 is similar to state 7. In both states the pointers are data
dependent. In addition to the previous state the value of C(T'(¢)) is compared
to the stored value of T'(z). The minimum out of both values is saved as the new
value for C(7).

Time complexity. (Fig. 4, Table 1) The steps 1, 4 and 6 can be performed
in one generation. Each of the steps 2 and 3 need 1 + n + 1 respectively 1 +n
generations, because the computation of the minimum needs n sub generations.
Step 5 is repeated logn times.

The steps 2 to 6 are executed in logn iterations. So the total amount of
generations is 1 + logn - (5 + 2n + logn). This corresponds to a time bound
of O(nlogn) using 3n cells. In a previous GCA implementation [5], n(n + 1)
cells were used in order to execute the algorithm as fast as possible. There the
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Fig. 4. GCA algorithm with pointer operation (actual access pattern) and data oper-
ation

minimum function takes only logn generations instead of n as presented here.
Therefore the total amount of generations was 1 + logn - (3logn + 8). This
corresponds to a time bound of O(log®(n)) using n(n + 1) cells. In order to
distinguish the two algorithms, the algorithm with 3n cells is also denoted as
"N algorithm” and the algorithm with n(n + 1) cells as ” N? algorithm”.

5 Fully Parallel Hardware Implementation

We have implemented the two GCA algorithms with 3n cells (Fig. 6) and with
n(n + 1) cells in hardware (FPGA logic) in order to find out the complexity
and efficiency. The platform was the ALTERA Quartus synthesis tool and the
Stratix IT FPGA (EP2S180). Results from the synthesis are shown in Table 2
and Figure 6.

It turned out that the states 7 and 8 are the same in the N and N? algorithm.
Therefore the synthesis was splitted into three parts: (1) states 0-6 for the N
algorithm, (2) the corresponding states for the N2 algorithm and (3) the states
7-8 for both algorithms (abbreviated N/N?2). If we assume that the register bits
have relatively low implementation cost compared to the logic we can focus our
comparison on the used logic elements (ALUTSs). For the problem size n = 64
the number of ALUTSs needed to implement the states 0-6 are 1,853 for the N
algorithm, and 56,012 for the N2 algorithm whereas the calculation time coun-
terwise is 5.2 us (V) and 1.2 us (N?). Multiplying the number of ALUTSs with
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the calculation time gives us a good measure which corresponds to the resource
allocation needed to perform the algorithm. We call that measure resources for
short. It can be seen from Fig. 5 that the resources of the N algorithm (states
0-6) are significantly lower compared to the N? algorithm. Therefore the N al-
gorithm is more economic with respect to the consumption of resources whereas
the N? algorithm can produce the result faster.

6 Conclusion

We have presented a GCA algorithm with 3n cells for Hirschberg’s algorithm to
compute the connected components of a directed graph. The algorithm consists
of 8 states in which the appropriate operations on the pointer and the data parts
of the cells are performed in parallel. The time complexity is O(nlogn). A former
GCA algorithm with n(n+1) cells can compute the required minimum function,
which is the most time consuming part of the whole algorithm in logn time.
Thereby the time complexity can be reduced to O(log?(n)). Both algorithms
were implemented in hardware (FPGA logic) and evaluated. If the allocated
resources which have to be allocated over time (in terms of logic elements x
computation time) are used as a metric then the algorithm with 3n cells has
showed a 5 to 11 times better performance for n = 4...32 than the algorithm
with n(n + 1) cells.
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