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Abstract. We present in detail a GCA (Global Cellular Automaton)
algorithm with 3n cells for Hirschberg’s algorithm which determines the
connected components of a n-node undirected graph with time complex-
ity O(n log n). This algorithm is implemented fully parallel in hardware
(FPGA logic). The complexity of the logic and the performance is evalu-
ated and compared to a former implementation using n(n+1) cells with
a time complexity of O(log2(n)). It can be seen from the implementation
that the presented algorithm needs significantly fewer resources (logic el-
ements times computation time) compared to the implementation with
n(n + 1) cells, making it preferable for graphs of reasonable size.

1 Introduction

The GCA (Global Cellular Automata) model [1, 2] is an extension of the classical
CA (Cellular Automata) model [3]. In the CA model the cells are arranged in a
fixed grid with fixed connections to their local neighbors. Each cell computes its
next state by the application of a local rule depending on its own state and the
states of its neighbors. The data accesses to the neighbor’s states are read-only
and therefore no write conflicts can occur. The rule can be applied to all cells in
parallel and therefore the model is inherently massively parallel.

The GCA model is a generalisation of the CA model which is also massively
parallel. It is not restricted to the local communication because any cell can be
a neighbor. Furthermore the links to the neighbors are not fixed; they can be
changed by the local rule from generation to generation. Thereby the range of
parallel applications for the GCA model is much wider than for the CA model.

The CA model suits to all kinds of applications with local communication,
like physical fields, lattice-gas models, models of growth, moving particles, fluid
flow, routing problems, picture processing, genetic algorithms, and cellular neural
networks. Typical applications for the GCA model are – besides all CA appli-
cations – graph algorithms, hypercube algorithms, logic simulation, numerical
algorithms, communication networks, neuronal networks, games, and graphics.
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owner. In principle, the GCA is able to implement any PRAM algorithm, as any
algorithm consists of a finite number of instructions from a finite instruction set.
However, an automaton implementation is particularly advantageous for simple
algorithms, which are however available in abundance in the PRAM community.
In particular, Hirschberg’s algorithm is well-studied on the PRAM model [8].

A general simulation of CRCW or CREW PRAMs onto a GCA can be
achieved by sorting the requests according to owners; efficient sorting is available
on owner-write PRAMs [9]. Yet, as the PRAM algorithm for a particular prob-
lem can be compiled into the GCA rule set when using reconfigurable hardware,
i.e. FPGAs, more efficient methods normally are available.

On a PRAM one seeks an algorithm with a short parallel runtime Tp on a
number of processors P with P · Tp = Ts, where Ts is the sequential complexity
of the problem at hand, i.e. a work-optimal algorithm. Either, P is driven to its
maximum value in the range of the problem size, to explore the limits of paral-
lelism in a problem, or P is chosen so that a practical implementation is available.
While the latter case in general can be derived from the first one via Brent’s
theorem, often direct methods lead to simpler and faster implementations. In a
previous paper [5], we have investigated the first case, here we investigate the
latter, for the reasons given below.

If the number of processors is taken as a measure of machine cost or price, and
parallel time (for a fixed work) is seen as the inverse of performance, then P ·Tp

represents a price/performance ratio. While the cost measure may be appropriate
for PRAMs because even RISC microprocessors are much more complex than
memory cells, in GCAs the memory cost has to be taken into account, because a
finite automaton with a few registers is cheap in reconfigurable hardware, while
memory cost is comparatively high. This means that the price of a GCA requiring
n2 memory cells does not vary much no matter if one takes n2 or n2/ log2(n)
processors. This enables further simplification of algorithms.

Yet, our feeling was that employing n instead of n2 processors, and giving
each a local memory of size n, not implemented in registers as before but in
much denser RAM storage, might still improve the price-performance ratio, and
give processor counts that become practical.

Implementing a CROW PRAM algorithm or a GCA requires similar consid-
erations. The memory is mapped to the owners. For non-local read accesses, the
congestion, i.e. the number of cells reading from one cell, has to be controlled.
In the case that we investigate here, where each GCA cell only has a single data
value to be accessed, congestion can only occur because of concurrent reading.
Yet, this can be ameliorated by appropriate routing networks, such as Ranade’s
butterfly network. Hence, we will list the congestion numbers in our result table,
but not deal further with the congestion and routing problem.

3 Hirschberg’s Algorithm

Our example application is Hirschberg’s well known algorithm [6] to compute
the connected components of an undirected graph on a CREW PRAM. Yet,



only a CROW PRAM is really needed. Hirschberg’s algorithm was seminal and
is work-optimal for dense graphs, i.e. graphs with n nodes and m = Θ(n2) edges
where the sequential complexity of the problem is Θ(m + n) = Θ(n2). Starting
with every single node as a component, the algorithm divides the number of
components in every iteration by at least two, so log n iterations are needed at
most. Each iteration needs time O(log n) on n2/ log2(n) processors, therefore
the overall time complexity is O(log2(n)). Each component is represented by
its node vi with the smallest index i. These representing nodes are called super
nodes. The index of a component is the index of its super node. Our goal is to
show that the algorithm of Hirschberg et al. works efficiently on the GCA with 3n
cells, for the reasons given in the previous section. Our implementation will need
O(n log n) steps, hence we will see a speedup for graphs with m = Ω(n log n)
edges, and see maximum speedup for graphs with m = Θ(n2) edges. Examples of
such graphs appear e.g. when very large graphs are collapsed into smaller ones.

Listing 1.1 shows the original algorithm (reference algorithm) consisting of
6 steps. Each iteration starts with several non connected components. During
every iteration, each component searches a connection to another component.
First every node of the component searches a connection to a node belonging to
another component (step 2). If the node can connect to more than one compo-
nent, the component with the lowest index is selected. Afterwards the super node
picks the component with the lowest index (step 3). The components connect to
each other and for each new component a super node is chosen (step 4-6).

1. for all i in parallel do C(i) ← i
do steps 2 through 6 for log n iterations

2. for all nodes i in parallel do
T(i) ← minj{C(j) |A(i,j)=1 AND C(j) != C(i)} if none then C(i)

3. for all i in parallel do
T(i) ← minj{T(j) |C(j)=i AND T(j) != i} if none then C(i)

4. for all i in parallel do
C(i) ← T(i)

5. repeat for log n iterations
for all i in parallel do T(i) ← T(T(i))

6. for all i in parallel do
C(i) ← min{C(T(i)) ,T(i)}

Listing 1.1. Pseudo code for the algorithm of Hirschberg et al. on the PRAM
(reference algorithm)

The original algorithm was defined for SIMD (single instruction multiple
data) parallel processors (e.g. vector machines). Later the algorithm was investi-
gated for the PRAM machines [8]. All these algorithms use a common memory.
The algorithm uses the following variables and constants: Input is the adjacency
matrix A = {A(i, j)|i, j = 1 . . . n}. If A(i, j) = A(j, i) = 1 then there is a link be-
tween node i and node j. C(i) and T (i) are of type integer and hold the number
of a node or a super node: C = {C(i)|i = 1 . . . n}, T = {T (i)|i = 1 . . . n}. The
constant A, the variables C, T and the temporary variables have to be stored in
the common memory of the SIMD or PRAM computer.
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Step State Active # cells with δ = # of N algor. N2 algor.
Cells read access concurrent Gen. Sub- Gen. Sub-

(modifying read accesses gen. gen.
cell state) (congestion)

1 0 n 0 0 1 1

2 1 n 0 0 2 + n n 3 + log n log n
2 n n + 2n 2 + 0
3 2n n + 2n 0 + 1

3 4 n n + 2n 0 + 1 1 + n n 3 + log n log n
5 2n n + 2n 0 + 1

4 6 n n + 2n 1 + 0 1 1

5 7 n n + 2n n + 0 log n log n log n log n

6 8 n n + 2n n + 0 1 1

Table 1. Generations for each step. Active cells are cells that perform a calculation
within a generation. δ is the number of concurrent read accesses to each of the # cells.

in the data operation. Therefore the assignment symbol ”=” is used for pointer
operations. In contrast the synchronous assignment symbol ”←” is used for the
data operations.

Although in principle each cell obeys to the same uniform algorithm, the
operations to be performed may depend on certain conditions. In this algorithm
the data operations depend on the positions of a cell in the field, in partic-
ular whether a cell is located in C, T or Temp. The conditions to distiguish
between the three vectors are: row(index) = 0 for C, row(index) = 1 for T ,
and row(index) = 2 for Temp. The GCA algorithm (Fig. 4) consists of 8 states
which correspond to the 6 steps of the original algorithm as shown in Table 1.

State 0. The first step of the reference algorithm requires the data of the
cell vector C to be set to the corresponding index (C(i)← i). So the data of the
vector C is initialized with the column number of each cell.

State 1. In order to prepare the field for the calculation of the minimum in
the next state the vector Temp is set to ∞. Thereby it is possible to identify
whether a minimum will have been found in state 2 or not.

State 2. In this state all the minj functions of the Hirschberg algorithm are
computed in parallel. If the condition A(i, j) = 1 AND C(j) �= C(i) is fulfilled
and Temp(i) is less than C(i), Temp(i) is set to C(i), otherwise Temp(i) remains
unchanged. Thus the data of the vector Temp(i) is the minimum of C(j) after
n iterations.

In the corresponding GCA algorithm (Fig. 4) each cell is operating on its own
and the operations specified in the graph tell each cell what it has to do. In state
2 only the last row (Temp) of the cell array with row(index) = 2 is activated.
Each cell T (I) computes the minimium of the cell C(I) compared to all cells
C(J). The pointer p0 is used to access C(I) and the pointer p1 is successively
incremented (using the subgeneration counter) in order to access all J cells (see
access pattern Fig. 3).

State 3. After the calculation of the minimum minj the value of C(i) is
written back in case none of the conditions of generation 2 was true. For this
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Fig. 3. Access Patterns for n = 4. Active cells are shaded.

purpose Temp(i) is substituted for the value of C(i) in case Temp(i) equals ∞.
Then the value of Temp(i) is set to ∞ in preparation of the next generation.

The cell T (I) uses its pointer p0 to access Temp(I) and its pointer p1 to access
Temp(I). If p0 = ∞ then p1 is copied to the data part d of T (i), otherwise p0
is copied.

State 4. (Similar to state 2). In contrast to State 2 the condition has changed.
If the condition C(j) = i AND T (j) �= i is fulfilled and Temp(i) is less than
T (j), Temp(i) is set to T (j), otherwise Temp(i) remains unchanged. Thus the
data of the vector Temp(i) is the minimum of T (j) after n iterations.

State 5. State 5 is identical to state 3.
State 6. Vector T is copied to vector C.
State 7. This state iterates log n times. Only the vector T (corresponding

to Hirschberg’s T (i) Vector) is modified. The pointers are data-dependent. The
cell T (i) points to the cell T (T (i)). Thus the neighbor depends on the value of
the cell and it is possible to set the value of T (i) to the value of T (T (i)) in one
parallel computation.

State 8. State 8 is similar to state 7. In both states the pointers are data
dependent. In addition to the previous state the value of C(T (i)) is compared
to the stored value of T (i). The minimum out of both values is saved as the new
value for C(i).

Time complexity. (Fig. 4, Table 1) The steps 1, 4 and 6 can be performed
in one generation. Each of the steps 2 and 3 need 1 + n + 1 respectively 1 + n
generations, because the computation of the minimum needs n sub generations.
Step 5 is repeated log n times.

The steps 2 to 6 are executed in log n iterations. So the total amount of
generations is 1 + log n · (5 + 2n + log n). This corresponds to a time bound
of O(n log n) using 3n cells. In a previous GCA implementation [5], n(n + 1)
cells were used in order to execute the algorithm as fast as possible. There the
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algorithm
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algorithm
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Fig. 5. Resources vs. n (dashed: N algorithm, solid: N2 algorithm).

the calculation time gives us a good measure which corresponds to the resource
allocation needed to perform the algorithm. We call that measure resources for
short. It can be seen from Fig. 5 that the resources of the N algorithm (states
0-6) are significantly lower compared to the N2 algorithm. Therefore the N al-
gorithm is more economic with respect to the consumption of resources whereas
the N2 algorithm can produce the result faster.

6 Conclusion

We have presented a GCA algorithm with 3n cells for Hirschberg’s algorithm to
compute the connected components of a directed graph. The algorithm consists
of 8 states in which the appropriate operations on the pointer and the data parts
of the cells are performed in parallel. The time complexity is O(n log n). A former
GCA algorithm with n(n+1) cells can compute the required minimum function,
which is the most time consuming part of the whole algorithm in log n time.
Thereby the time complexity can be reduced to O(log2(n)). Both algorithms
were implemented in hardware (FPGA logic) and evaluated. If the allocated
resources which have to be allocated over time (in terms of logic elements ×
computation time) are used as a metric then the algorithm with 3n cells has
showed a 5 to 11 times better performance for n = 4 . . . 32 than the algorithm
with n(n + 1) cells.
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