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Abstract. Free riding is a common phenomenon in P2P networks. Al-
though several mechanisms have been proposed to handle free riding—
mostly to exclude free riders, few of them have actually been adopted
in practical systems. This may be attributed to the fact that they are
nontrivial, and that completely eliminating free riders could jeopardize
the sheer power created by the huge volume of participants in a P2P
network. Rather than excluding free riders, in this paper we incorporate
and utilize them to provide global index service to the files shared by
other peers. The simulation results indicate that our model can signifi-
cantly boost the search efficiency of a plain Gnutella, and the model is
quite resistant to system churn rate and the ratio of free riding.

1 Introduction

Free riding is a common phenomenon in peer-to-peer (P2P) systems. The study
by Adar et al. [1] in 2000 found that 66 percent of peers in Gnutella were free
riders. Moreover, the top 1 percent of peers were responsible for 47 percent of
requests, while the top 25 percent of peers provided for 98 percent. Follow up
study by Hughes et al. [2] in 2005 found that free riders had increased to 85
percent, whereas the top 1 percent of peers were responsible for 50 percent of
requests and the top 25 percent of peers still provided for 98 percent of requests.

Most people believe that free riding may degrade system performance and
add vulnerability, possibly corruption, to the system. Therefore, several mecha-
nisms have been proposed to handle free riding. These include payment-based [3,
4], where each resource has a price so that a peer needs to “pay” for downloading
the resource; reciprocal-based [5, 6], where a peer’s ability to consume resources
is based on its contribution to the system;* reputation-based [7, 8], where a peer’s
ability to consume resources is based on it’s reputation, which is evaluated by
other peers based on past interactions with the peer; and punishment [9], where
a free rider’s request is eventually ignored to force it to disconnect from the
network.

However, few of these proposals have been implemented in a practical system.
For example, Gnutella, which has attracted more than two million users by

4 In addition, BitTorrent’s “tit-for-tat” peer selection strategy, which has been proven
quite successfully in limiting free riding, may also be classified into this category. The
BitTorrent platform, however, is very different from the Gnutella-like unstructured
P2P networks we will be studying in the paper.



Dec. 2005, is still reluctant to implement any anti-free-riding measures. In fact,
the above findings on Gnutella also show that even though the level of free riding
has increased, the system can still sustain it. Moreover, even though free riders
do exist, there are always some peers willing to share due to an altruistic or the
so called “glow worm” effect. This has been supported by an empirical study on
human behavior conducted by Gu et. al [10]. Another reason may be attributed
to that existing measures for combatting free riders often have high overhead on
communication, storage, and/ or computation, and some even require an external
centralized authority.

By observing human behaviors, we believe that free riders may always exist
regardless of any action taken against them. On the other hand, a P2P network is
often appraised by the sheer power created by the huge volume of its participants
(for example, such a network is particularly useful for disseminating information,
for, say, marketing and advertising). Completely eliminating free riders could
jeopardize its power. Therefore, why not to make free riders part of the network
and try to utilize them, rather than expelling them from the network?

Based on the studies in [1,2,11,12], we can see that free riders have the
following characteristics: (a) short connection time, (b) often requesting popular
files, and (c) obviously, they do not like to share—if they have a choice. This
motivates us to think of making them to contribute what they cannot control
(e.g., the platform and the protocol) and, usually, do not care much.

In this paper we propose a Gnutella-like unstructured P2P network that
utilizes free riders (those that share none) to serve as indexing nodes to normal
peers (those that share some files). Since free riders often request popular files,
they can easily point to the peers that have the target files one is looking for.
Free riders’ short connection time can be overcome by the large number of their
pals. Our simulation results indicate that the network can significantly boost
the search efficiency of a plain Gnutella. Moreover, routing and search costs are
effectively shifted to free riders and, with a proper setting, the search success rate
of normal peers can be much higher than that of free riders—all of these provide
some incentive for peers to contribute files to the network. More importantly,
our network is quite resistant to system churn rate and the increasing ratio of
free riding. Below we present our system.

2 The System

2.1 Neighbor Tables

Like ordinary P2P networks, each peer u in our model maintains a neighbor table
of contact information about peers to which u may forward a query. The contact
information consists of node IP and port. We say that v is a neighbor of u if u
maintains v’s contact information in its neighbor table.

In addition, each entry in the neighbor table also contains a Bloom filter [13,
14] summarizing the files shared by the corresponding peer (see Fig. 1). With the
Bloom filters in the neighbor table, a peer receiving a query can check if any peer
it maintains in the neighbor table may have the queried file. If so, the query can
be sent directly to the peer for a final check. Otherwise, the query will be resolved
using our search mechanism that is to be described shortly in Section 2.3. The
fields TTL and Version in a neighbor table entry are for maintenance of the
entry. This will also be clear shortly.
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Fig. 1. Overview of network architecture (left) and the neighbor table structure (right).

A more important role of the Bloom filters is for a peer to select neighbors
in its neighbor table, which allows some form of clusters to be established in
the network, thereby speeding up search process. For our purpose, a peer u’s
neighbor table is partitioned into two zones: alike and unlike. Intuitively, the
alike zone is for peers that are “akin” to u in terms of whether or not they wish
to share, while the unlike zone is for peers that are “different” from u. Thus, a
normal peer’s neighbors in the alike zone are all normal peers, and its neighbors
in the unlike zone are all free riders. On the other hand, a free rider’s neighbors
in the alike zone are all free riders, while its neighbors in the unlike zone are all
normal peers.

When there are more candidates than a zone can fit, a replacement scheme
is needed to help select better neighbors in the zone. There are several possible
schemes. Here we select peers based on how “similar” their Bloom filters are
(i.e., based on the keywords they have in their files). Specifically, let B; and
Bs be two Bloom filters, and let B; A By denote the Bloom filter B such that
B[i] = B1[i] A Bg[i]. Then

sim(By, Bg) = |{i| B[i] = 1,where B = B; A B}

That is, sim (B, Bz) is the number of bit-1 the two Bloom filters have in common.

The replacement scheme for the alike zone is as follows: u prefers v to w in
filling u’s alike zone if their Bloom filters B,,, B, satisfy the following condition:
sim(By, By) > sim(By, By). If sim(By, B,) = sim(By, Byw), then the one that
is least recently used (LRU) is replaced. In addition, we require that a peer v
can fill in u’s alike zone only if One(B,,) > 0 = One(B,) > 0, and One(B,) =
0 = One(B,) = 0, where One(B) denotes the number of bit-1 in B. Because a
normal peer’s Bloom filter is a nonzero vector, the condition implies that only
normal peers can fill in a normal peer’s alike zone, and only free riders can fill
in a free rider’s alike zone.

On the other hand, a peer that cannot fill in u’s alike zone is a candidate for
u’s unlike zone, and if there is more than one candidate, the replacement scheme
is simply based on LRU. Note that by the criterion given for the alike zone, only
free riders can fill in a normal peer’s unlike zone, and only normal peers can fill
in a free rider’s unlike zone.



We call the percentage p of a neighbor table that is allocated to the alike
zone the NT congeniality. Thus, 1 — p is the percentage of the unlike zone in a
neighbor table.

2.2 Network Construction and Maintenance

Our network, as shown in Fig. 1, is a typical Gnutella like unstructured P2P
network. A peer u that wishes to join the network first prepares a Bloom filter
to summarize the files it wishes to share. Then it sends PING-PONG messages
via some hook-up node to the network. Like the Gnutella protocol, the purpose
of the messages is to learn a list L of nodes in the network. ;From the list,
u can build its neighbor table according to the rules described in Section 2.1,
thereby connecting itself to the network. Note that during the operation of the
network, u may also learn more peers in the network, e.g., when other peers
join the network and send PING-PONG messages to u, or when u involves in a
search process in which query messages from other nodes arrive at u. The new
peer information allows u to modify its neighbor table entries so as to improve
search efficiency. Again, neighbor table entries are replaced according to the rules
described in Section 2.1.

Because a peer may leave the network without notifying other peers that
maintain it as a neighbor, neighbor table entries may become stale. Moreover,
when peers change the files they wish to share, their Bloom filters must also
be updated. So in the network each peer must periodically refresh its neighbor
table entries. The TTL field in a neighbor table entry (see Fig. 1) allows the
owner of the entry to determine when the entry needs to be verified with the
peer specified in the entry. The version field allows both peers to verify if the
Bloom filter in the entry is up to date.

2.3 Search Scheme

The basic idea of our system is to let free riders collectively provide index service
to normal peers. To do so, we recall that by the neighbor selection mechanism, a
normal peer will have normal peers in its alike zone and free riders in its unlike
zone; while a free rider will have free riders in its alike zone and normal peers
in its unlike zone. If the size of unlike zone is relatively large compared to the
size of alike zone, then a normal peer connects to a lot of free riders, while each
of the free riders connects to a lot of normal peers. By storing normal peers’
Bloom filters at free riders, the free riders can collectively provide index service
to normal peers.

To make use of the index service, the search scheme is simply as follows: Let
u be a peer that receives a query. If v has the target file, then it returns the
file to the querier and the search process ends. Otherwise, u checks the Bloom
filters in its neighbor table to see if any of its neighboring peers may have the
file. If so, it forwards the query message to the neighbor, say v, to confirm this.
If v does have the file, it sends the result to u, which in turn forwards the result
to the querier and then ends the search process. Note that v will not forward
the query message for u if it does not have the file. In general, in the absence
of false positives, normal peers do not involve in the search process unless they
have the target files.

If none of w’s neighboring peers has the queried file, u forwards the query
message to all free riders in its neighbor table, and waits for the result. Each of



u’s free rider neighbors, upon receiving the query message from u, processes the
query in the same way as u does, and so on, until a certain depth of search path
has been reached. If the target file is located at some peer w, then w returns the
file along the search path back to u that initiates the query. Each peer in the
returning path learns of w (and its Bloom filter), and may add w to its neighbor
table if w can replace an existing entry.

3 Experimental Result

3.1 Evaluation Metrics

Observe that if objects are randomly distributed to a network of N nodes, then
the probability for locating a unique object o from a randomly selected set of
P nodes is %. By comparing to this random search, we can evaluate whether
a system or a search mechanism can offer a better success rate than a blind
search. Therefore, we define a metric called search condensity as follows: Let
A be a search mechanism over a network of N nodes. Suppose that the search
success rate is s when the search space size (number of nodes visited) is P. Then

the search condensity SC of A is defined by

That is, SC is a measure of how effective a mechanism can “boost” the search
success rate of a network as compared to a random blind search. Note that SC
may vary with P and IV, and so it is sometimes more meaningful to write SC
as a function of P/N, i.e., SC(P/N). Also note that SC(1) = 1.

The second parameter is the workload for a peer to process a query. We
measure the workload of a peer by the number of query messages it has received
during some observation interval.

The third parameter is to measure the duplication ratio of query messages.
Observe that because search in an unstructured network is more or less a blind
process, duplicated query messages may arrive at the same node. The query
duplication ratio measures how many query messages are duplicated during a
search process. It is defined as follows: Let P be the search space size of a query,
and let M be the total number of query messages sent for the query. Then the
query duplication ratio is defined by %.

3.2 Dataset

Since real P2P dataset is hard to obtain, we use Web proxy logs collected from
Boeing® to simulate file distribution in a P2P environment. The logs basically
record which clients have requested which URLs. We use the file path in a log to
represent a queried file owned by the host IP in the URL. The dataset we used
consists of 3,761,054 URLs belonging to 31,743 Web hosts, which then allows us
to model 3,761,054 files distributed over 31,743 peers.

Because query in our system is by keywords, we need to extract keywords
from each queried file to represent the file. To do so, we extracted words from the

5 See http://www.web-caching.com /traces-logs.html.



Table 1. Statistics of the dataset obtained from the Boeing Proxy Log.

owner| owns max |min| avg
Peer | File [103,880] 1 [87.28
Peer [Keyword| 981 1 [35.87
File |Keyword| 137 1 |4.47

Table 2. Default simulation settings.

Parameter Default Value
Network Size 50,000
Free Rider Ratio 0.85
Routing Table Size 20
Bloom Filter Size 8,000
Median Session Time 36,000
Average Message Delay 2.84
Search TTL 3
Query Frequency 0.5 per time unit

file path using the following characters ‘/’, *?’, -’ ‘ and ‘&’ as delimiters. After
the process, each word may contain some non-alphanumeric characters such as
‘%’ and could have a length more than 20. For simplicity, we further removed
non-alphanumeric characters, and truncated words that have length more than
20. The remaining words are then treated as keywords associated with the file.
To avoid having a long Bloom filter, a host that has more than 1,000 keywords in
its files was also removed from our dataset. In total, 61 out of 31,743 hosts were
removed. Table 1 gives some statistics about the dataset. Moreover, on average
the peer support of a file (number of peers having the file) is nearly 1.

3.3 Simulation Settings

Our simulator is written in Java. It uses a single-process event-driven architecture
to simulate concurrent activities of peers, such as joining, querying, and message
delivery. All time measured in the simulation will be relatively to the time unit of
the simulator (which is calibrated to 0.1 second.) The default simulation settings
are shown in Table 2.

To simulate the dynamics of P2P networks, each peer will be given a session
time when it connects to the network. We use the method presented in [15]
to model peer session time so that peers’ behaviors are close to the empirical
results studied in [16]. Moreover, free riders typically have shorter session time
than normal peers [11]. Our network dynamics model will also reflect this.

In the simulation, when we need a network of size IV, the network is con-
structed and maintained as follows. Initially, we let N nodes concurrently join
the network. After the join process is completed, we start to time each peer’s
session, and remove peers from the network when their sessions end. To keep the
network size roughly stable, when a peer u leaves the network, a random peer
that is currently offline is “awakened” to rejoin the network. Similarly, u becomes
offline until it is awakened by another peer. Note that when a peer first joins the
network, it will randomly contact 3-5 hook-up nodes to build its neighbor table.
When a peer leaves and rejoins the network, it refreshes its neighbor table by
first checking if its previous neighbors are still alive, and also randomly contacts



3-5 hook-up nodes to find new peers that may fill in its neighbor table. Entries
in the neighbor table are replaced in the same way as described in Section 2.1.
Free riders are chosen randomly from the network according to their popu-
lation. For normal peers, we let each node randomly map to a unique Web host
in our Boeing dataset so that the nodes simulate normal peers that own some
files. All querying activities are performed after the join process is completed. To
simulate the querying process, we randomly select an alive peer in the network
as the originator of the query. The query target is again randomly selected from
some existing file, and is represented by the keyword set of the selected file.

3.4 Performance Evaluation

We measure the performance of the system from various perspectives. Note that
it takes time for each node to learn of other peers to fill in its routing table so as
to meet the peer selection requirement in its alike and unlike zones. According
to our preliminary test, for most parameters we shall be studying, the system
becomes stable approximately after one query has been issued per peer. So,
unless stated, otherwise all measurements in the experiments are taken after
50,000 queries have been issued to the system.

We first measure search condensity with respect to NT congeniality p. We
vary p = 0.0 to 1.0 on a scale of 0.1. The results are shown in Fig. 2(a). We see
that except for p = 0.0, small p generally implies high search condensity. Observe
that search condensity is a measure of how “effective” query messages are issued
to search the target. In general, high search condensity may be obtained when the
search space size is small. However, search success rate may also be compromised
due to this small search space. In Fig. 2(b) and (c) we have also drawn the success
rate and the actual search space (the number of peers that have been queried per
search) measured in the experiment for each p. We see that the overall success
rate reaches its high 0.58 when p = 0.5, but drops to 0.31 when p = 0.1, and to
0.44 when p = 0.9 on the other side. The actual search space size, however, grows
in polynomial with p. To see the trend of a search space size, recall that in our
search scheme, query messages will only be forwarded to free riders to expand
the search scope. So when a normal peer initiates a query, if the neighboring
normal peers do not have the target file, then (1 — p)n queries will be forwarded
to the neighboring free riders, where n is the neighbor table size. In contrast,
if a query is initiated at a free rider, then p X n queries may be forwarded to
its neighboring free riders. For TTL=3, a normal peer’s query may expand to
(1 — p)p?n3 peers, while a free rider’s query may expand to p>n® peers. Taking
the percentage of free riders and normal peers into account, on average a query
should have a search space of size

(0.15(1 — p) + 0.85p)p*n®. (1)

So the size grows in polynomial with p. By combining (b) and (c), it is not
surprising to see that search condensity drops almost in polynomial with p.
Note that p = 0 and p = 1 represent two extreme cases in our model. When
p = 0, a normal peer’s neighbors are all free riders, while a free rider’s neighbors
are all normal peers. So a query initiated by a normal peer will be forwarded to
its neighboring free riders. If they happen to have indexed the target file, the
search succeeds; otherwise, the search fails as no more free riders can be used to
forward the query. On the other hand, if a query is initiated by a free rider, then
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Fig. 2. NT congeniality vs. (a) search condensity; (b) success rate; (c) search space
size; (d) query duplication ratio; and (e) workload.

the query is resolved if the free rider’s neighboring normal peers have the target
file; otherwise the search fails as the free rider has no neighboring free riders to
forward the query. For p = 1, the situation is rather opposite. A normal peer’s
neighbors are all normal peers, while a free rider’s neighbors are all free riders.
So a query initiated by a normal peer can be resolved if the peer or its neighbors
happen to have the target file; and a query initiated by a free rider will have no
chance to be resolved, as all peers within the search range are free riders and
they do not index any normal peers.

In Fig. 2(b), we have also identified the search success rate of normal peers
and free riders. We see that when p < 0.5, normal peers have higher search
success rate than free riders, and the difference is significant when p is small.
Moreover, when p = 0.2 — 0.5, normal peers’ search success rate is even higher
than the maximum overall success rate. This suggests that when setting NT
congeniality to these values, our mechanism can also create some incentive to
normal peers, as they will have a higher search success rate. All together, we
see that p = 0.2 appears to be an attractive setting, as it can yield quite high
search condensity (206.6) without compromising too much in search success rate
for normal peers.

The search space size in Eq. (1) assumes that no two peers within the search
range have a common neighbor. Otherwise, the actual search space will be
smaller, and query message duplication ratio will increase. From Fig. 2(c), it
can be expected that the query duplication ratio will increase as p increases.
The measured query duplication ratio is shown in Fig. 2(d).

The workloads of normal peers and free riders are shown in Fig. 2(e). The
workload is measured by the number of query messages received per normal
peer /free rider for every consecutive 1,000 queries issued to the system. We see
that the workload of free riders grows in polynomial with p, while the workload



of normal peers is barely observable. This is because in our search scheme, a
normal peer x can receive a query forwarded from another peer y only when x’s
Bloom filter maintained by y indicates that z may have the target file. So the
workload of normal peers is solely due to a successful search or false positive of
the Bloom filter. On the other hand, free riders are responsible for forwarding and
processing queries. As shown in Fig. 2(c), the search space grows in polynomial
with p. Therefore, the workload of free riders also grows in polynomial with p.

For comparison, the search performance of the plain Gnutella is also shown in
the figures. Since in the plain Gnutella a peer selects its neighbors based only on
LRU, the NP congeniality parameter has no effect on the system performance. So
all measured values remain constant at the y-axis. In Fig. 2(a), Gnutella’s search
condensity is about 32.5, which is considerably low as compared to our scheme
at small p. Note that because a successful search will also cause all peers on the
query-result returning path to update their neighbor tables, search in the plain
Gnutella is not exactly a random search. So its search condensity is higher than 1.
In Fig. 2(b), Gnutella’s search success rate is about 0.61, which is slightly higher
than ours at small p. (There is virtually no difference between normal peers and
free riders in the success rate.) However, this high success rate is at the cost of
large search space size. For example, in Fig. 2(c), Gnutella’s search space is 958,
as opposed to 118 needed in our scheme at p = 0.2. Moreover, Gnutella’s query
duplication ratio in Fig. 2(d) is considerably high. In Fig. 2(e), the workload of
normal peers in Gnutella is also very high, while there is virtually no workload
to free riders. This is because as time goes by, both normal peers and free riders
will maintain only normal peers as their neighbors in their routing tables, thus
yielding all query loads to normal peers. Because there are only 15% of normal
peers, each normal peer may be connected to by a number of peers, and hence
the high query duplication ratio.

4 Concluding Remarks

We have proposed a Gnutella-like unstructured P2P network that utilizes free
riders to serve as indexing nodes to normal peers. To do so, when building the
network, we partitioned a peer’s neighbors into two groups: one that is “conge-
nial” to the peer, and the other that has an opposite characteristic. As a result, a
normal peer’s congenial neighbors are normal peers, while its uncongenial neigh-
bors are free riders. On the other hand, a free rider’s congenial neighbors are
free riders, while its uncongenial neighbors are normal peers. In addition, we
used Bloom filters to summarize the files of the peers, and let each peer keep a
copy of its neighboring peer’s Bloom filter. Let p be the portion of the congenial
neighbors within a peer’s neighbor table. Then when p is small, free riders col-
lectively can provide index service to the files shared by normal peers. Likewise,
the search scheme is simply to forward queries to free riders, as they have more
information about which normal peers may have the target files. This effectively
shifts the routing and search costs to free riders. Hence, a peer either contributes
some files to other peers, or provides indexing service to them. Note that the
indexing service is part of the network protocol, and so it is out of a peer’s
control—unless it wishes to hack the protocol. Security threats are a general
problem in P2P networks, and they are beyond the scope of the paper.

Our simulation results indicate that with a network of size 50,000, 85% of
free riders, a neighbor table of size 20, and a search TTL of 3, setting p = 0.2



can significantly boost the search condensity of a plain Gnutella—206.6 vs. 32.5!
Moreover, the search success rate of normal peers is also higher than that of free
riders (0.59 vs. 0.47), thereby offering some incentive to normal peers. More im-
portantly, our network is quite resistant to system churn rate and the increasing
ratio of free riders (although, due to space limitation, this part of simulation
result is not shown here). In fact, the higher the free riding ratio, the more the
number of peers to provide indexing service, and therefore the higher the search
success rate and search condensity.

In our model, we distinguish normal peers and free riders simply based on
whether or not they have contributed any file to the network. Although this is
a typical distinguishing criterion, a more practical (but sophisticated) approach
is to judge a peer based on its real contribution to the others: for example, how
many files it offers, how many of them have actually been requested, and how
frequent of the requests. In the future we wish to modify our system so that
a peer’s search efficiency and workload can truly reflect how much it actually
contributes.
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