Esodyp—+: Prefetching in the Jackal Software DSM

Michael Klemm,! Jean Christophe Beyler,? Ronny T. Lampert,!
Michael Philippsen,! and Philippe Clauss?

! University of Erlangen-Nuremberg 2 Université de Strasbourg
Computer Science Department 2 LSIIT/ICPS
Martensstr. 3 Pole API, Bd Sébastian Brant
91058 Erlangen 67400 Ilkirch-Graffenstaden
Germany France

{klemm, philippsen}@cs.fau.de {beyler, clauss}@icps.u-strasbg.fr
ronny.lampert@gmail.com

Abstract. Prefetching transfers a data item in advance from its stor-
age location to its usage location so that communication is hidden and
does not delay computation. We present a novel prefetching technique for
object-based Distributed Shared Memory (DSM) systems and discuss its
implementation. In contrast to page-based DSMs, an object-based DSM
distributes data on the level of objects, rendering current prefetchers for
page-based DSMs unsuitable due to more complex data streams. To pre-
dict future data accesses, our prefetcher uses a new predictor (Esodyp+)
based on a modified Markov model that automatically adapts to pro-
gram behavior. We compare our prefetching strategy with both a stride
prefetcher and the prefetcher of the Delphi DSM system. For several
benchmarks our prefetching strategy reduces the number of network mes-
sages by about 60 %. On 8 nodes, runtime is reduced by 15 % on average.
Hence, network-bound programs benefit from our solution. In contrast
to the other predictors, Esodyp+ achieves a prediction accuracy above
80 % with only 8 % of unused prefetches for the benchmarks.

1 Introduction

Today’s high-performance computing landscape mainly consists of Symmetric
Multi-Processors (SMPs) and clusters [1]. SMPs provide a hardware-managed
global address space; clusters are assembled from nodes with private memory.
Thus, programmers must explicitly communicate (e. g. with MPI’s send /receive)
to access remote data. An Software-based Distributed Shared Memory system (S-
DSM), e.g. TreadMarks [2], Delphi [3], or Jackal [4], provides a shared-memory
illusion on top of the distributed memory. The DSM adds a high-latency level
(the remote memory) to the memory hierarchy of the nodes (registers, caches,
main memory); performance drops due to the growing data access latencies.
Prefetching provides a solution to this problem by prematurely request-
ing data before it is needed. Most current hardware (e.g. Intel Itanium, IBM
POWER) offer prefetch instructions, that let the CPU asynchronously fetch
data from main memory. Instead of adding such instructions at compile time,
Esodyp [5] inserts prefetches into the program while it is executed; the inserted

prefetches are then executed by the CPU as usual. Esodyp continuously moni-
tors all accesses to local memory in a Markov-like model, allowing it to predict
future accesses. Esodyp+ extends Esodyp for use in an S-DSM on a cluster. It
is implemented in Jackal, an object-based DSM, whose compiler prefixes each
object access with an access check to test whether or not the object is cached
on the local node. If not, the runtime system (RTS) requests the object from
its home node. Esodyp+ extends the checks to monitor data access patterns in
order to predict future accesses and prefetches the objects by bulk transfers.

Obviously, a dynamic prefetcher is superflous for embarrassingly /pleasingly
parallel applications or if data access patterns can be analyzed and optimized
statically. In contrast, network-bound applications with complex data access
patterns benefit from our prefetching solution.

Section 2 covers related work. Section 3 introduces the Jackal DSM protocol.
Section 4 presents the modified Markov model and the necessary extensions of
the Esodyp+ approach for an S-DSM. Section 5 discusses issues of the Esodyp+
integration into the Jackal DSM. Section 6 shows the performance gain that
Esodyp+ achieves and compares it to two known predictors.

2 Related Work

The related work can roughly be divided into a hardware axis and a size axis.
With respect to hardware, prefetching occurs either (1) for single CPUs/SMPs
or (2) in clusters, especially in S-DSMs. With respect to size, either (A) a single
data item is prefetched or (B) a bulk transfer is used.

Almost all current CPUs provide prefetch instructions for single data items
(1A). There are also projects, e.g. ADORE [6] or Chilimbi/Hirzel’s work [7],
that dynamically insert prefetches into programs. Modern hardware platforms
with caches show a simple form of bulk prefetching (category 1B) since a whole
cache line is “prefetched” upon memory accesses. On clusters, prefetching single
data items (2A) is prohibitively expensive. As our proposal is in category 2B,
we present this related work in more detail.

JIAJIA [8] uses a history of past accesses to predict. Delphi [3] predicts
by means of a third order differential finite context method. Adaptive++ [9]
relies on lists of past accesses to predict. In [10], an OpenMP DSM uses the
inspector /executor pattern to determine future accesses. All these projects asyn-
chronously request predicted pages one by one. For an object-based DSM this is
not viable, as prefetching small objects cannot hide high network latencies.

Stride predictors [11] often separate data streams by using the instruction
address as a hash key. While this works for stable access patterns/regular strides,
it does not for the more complex access patterns of object-based DSM systems.

Whereas most prefetchers in S-DSMs request page by page, our approach
bulk-transfers sets of objects. MPI programmers often use this technique to
manually transfer large amounts of data by one MPI send /receive pair. Similarly,
Java RMI [12] ships a deep copy of arguments to remote method invocations even
if some of the shipped objects are not needed at the remote side. Jackal statically

1 int foo(SomeObject o) { 1 int foo(SomeObject o) {

2 2 if (!readable (o))

3 3 fetch(o, readable);
4 return o.field; 4 return o.field;

5 3} 5 }

Fig. 1. A function before (left) and after the insertion of an access check (right).

groups associated objects into larger ones [13] and, aggregating access checks,
it requests a set of objects and ships it in bulk fashion [14]. Esodyp+ is not
limited to for loops, but can be applied to arbitrary sequences of code, and it
dynamically decides which objects to combine for transfer.

Instead of object combining, TreadMarks dynamically builds page groups,
i.e. larger prefetching units [2]. A predictor continuously monitors page faults
and decides which pages to group. The predictor is also capable of ungroup-
ing pages if too much false sharing is caused. Our approach is similar in that
it requests a set of objects during a prefetching request. However, the to-be-
prefetched objects are not grouped and un-grouped, but the set is dynamically
formed at each prediction step as necessary.

3 The Jackal DSM Protocol

Jackal [4] implements an object-based DSM for Java on clusters. Instead of
cache lines or pages, data transfer and memory consistency are implemented on
the granularity of Java objects to reduce false sharing. Jackal respects the Java
Memory Model (JMM) [15] and provides a single system image to programmers.

Jackal compiles to a native executable, e.g. for TA-32 or Itanium, and in-
serts access checks into the Java code to prepare it for the usage in the DSM
environment. Fig. 1 shows a bit of original Java code (left) and the added check
as Java-like pseudo-code (right). If the accessed object is not locally available,
a message is sent to the home-node that stores the object’s master copy. This
request is answered with message that contains the requested data. Thus, the
delay caused is roughly two times the network latency plus the cost of object se-
rialization and deserialization. A prefetcher suffers from about the same latency
for its request, but reduces the number of blocking waits by requesting the next
accessed objects at the same time.

To uniquely identify each object that is allocated in the DSM, a Global Object
Reference (GOR) is created. A GOR is a tuple (alloc-node, alloc-address), where
alloc-node is the logical rank of the node that created the object and alloc-address
is the object’s address on that node. The GOR is fixed during an object’s life
time; only if the object is reclaimed by the garbage collector, the GOR is released
and may be recycled. When a non-local object is received, it is stored in a local
caching heap and it is assigned a local address in the local address space for
efficient object access. The DSM system maps these local addresses to their
corresponding GORs and hence to the home-nodes (for status or data updates).

'® ®"® ® ©
(B (B-©

Fig. 2. The Esodyp+ graph (with a depth of 2) after two accesses (a), three accesses
(b), and after the full sequence has been passed to the model (c).

Whereas Jackal mostly transfers individual objects, arrays are handled dif-
ferently for performance reasons. Since transferring an array as a whole is not
an option, the RTS partitions it into regions of 256 bytes. Thus, a failing access
check requests only one region from the array’s home-node.

4 Esodyp+

Esodyp+ extends Esodyp, the Entirely Software DYnamic data Prefetcher, a
dynamic predictor that models address sequences with a variation of the classic
Markov model [5]. This section briefly presents the model, how it reacts to the
addresses passed by the DSM framework, and how it can help to prefetch objects.
A complete explanation can be found in [5].

Classical Markov predictors [16] use two major parameters: depth and
prefetching distance. The depth defines the number of past items used to cal-
culate the predictions. The prefetching distance defines how much items will
be predicted; a value of 1 means that one next element is predicted. Esodyp+
is more flexible by creating and applying a graph instead of these parameters.
With this graph, the model can define a maximum depth and can handle all
smaller depths simultaneously. When predicting the next N accesses, Esodyp+
uses counters to prioritize the predictions. This is a major difference to other
table-driven models [16].

To illustrate graph creation, let us assume Esodyp+ sees the following se-
quence of addresses: 4, B,C, B, A, B, C. Fig. 2(a) shows the depth-2 graph after
the first two accesses. For depth 2, the model takes into account the last two
accesses. The arrow signifies that, after an access to A, an access to B occurred.
For nodes without a successor, the predictor cannot predict anything. The single
node B symbolizes that, if all we know is there was an access to B, nothing can
be predicted. The edge label 1 indicates that Esodyp+ has seen the sequence
(A, B) once. Graph construction evolves to Fig. 2(b) when the next address is
seen. Two more nodes are added to the graph; C' is attached to both Bs. This
symbolizes that C' occurs both after accessing B and after a sequence (A, B).
After the whole sequence has been processed the full graph has 7 nodes, see
Fig. 2(c). There, the edge label 2 indicates that an edge has been followed twice.
By keeping in memory the current position in the graph, if the next access maps
to a known pattern, Esodyp+ predicts in constant time. This is a major benefit
compared to other predictors that perform calculations in order to predict.

Moreover, Esodyp+ does not just handle simple addresses but it can store any
type of information in its prediction model. Hence, we could directly map GORs
to the model and would get an exact prediction. However, for each monitored
GOR, at least one node in the graph would be created. Since this would make the
model unmanageable for large working sets, it has to be kept compact without
losing prediction accuracy. Our solution to this problem is similar to a stride
prefetcher, as we compute the differences between two subsequent GORs and
store only the difference in the model.

Originally, Esodyp was implemented using a construction phase to create the
model that later is used in the prediction phase. Esodyp+ merges both phases
and emits predictions even while it is constructing. This helps to reduce the
overhead of the model by starting to predict earlier. This means that prediction
strides must be recalculated if changes are made in the graph. Every time a
change to the most probable child of a node is more recent than the last change
of the current node, the prediction is recalculated. This makes Esodyp+ more
dynamic and lightweight than other predictors. Like Esodyp, Esodyp+ triggers
a flushing mechanism as soon as there are too many mispredictions [5].

5 Integration of a Predictor into Jackal

There are several ways a predictor for an object-based DSM must be special.
Since predictors cannot guarantee accuracy, the DSM runtime must still check
the validity of predicted GORs. Except for an object’s creator, nodes do not
know GORs without previously having accessed the object. Hence, only the
home-node of an object can check a GOR for correctness. Thus, the predicted
GORs are sent to the home-nodes and an object is only sent back for valid
GORs; otherwise the request is safely ignored.

Predictors often only predict the next probable address. For each address
a prefetch instruction is emitted into the instruction stream [7,6]. Because of
high network latencies in the DSM, prefetching of single objects does not give
enough overlap of communication and computation. Hence, Esodyp+ emits pre-
dictions to the next N objects. If IV objects are bulk-transferred, the program
can continue without delay until the (N + 1)th object is needed. In addition,
the message count is reduced from 2NN to 2 by serializing together IV objects
into a single message. While predicting the next object can be fairly accurate,
the farther away a predicted access is, the smaller is the accuracy. This causes
predictions of unused objects. In addition, a growing NN increases the chance of
false sharing, which in turn increases DSM protocol activity. Our measurements
have shown that, on average, N = 10 is a good trade-off between false sharing
and message reduction for the Jackal DSM.

Since prefetching alters the sequence of memory accesses (accesses that would
regularly happen later in the execution are now performed earlier when a node
prefetches data), it interferes with memory consistency. As a data item might
be updated while a prefetch is outstanding, depending on the memory model,
a prefetch either can continue or has to be canceled. Jackal implements the

JMM [15] even in the presence of a prefetcher. Simplified, each thread owns
a private memory to cache its working set of data items that must be flushed
when a synchronization point is reached. Hence, an update is usually not visible
to other threads until all of them have reached a synchronization point as well
and have flushed their caches. Prefetching blends well with such a weak memory
consistency model. An active prefetch is not affected by concurrent updates that
happen in the private cache of the updater. If the update hits a synchronization,
it still does not affect the prefetch, since the JMM requires a synchronization
for a cache refresh as well. As the requestor waits for the prefetch request to
complete, it cannot reach a synchronization point in the meantime.

6 Performance

To evaluate the performance of Esodyp+ in Jackal, we compare it to both a
stride predictor and the Delphi predictor on a Gigabit Ethernet cluster of Xeon
3.20 GHz nodes with 2GB of memory and Linux (kernel 2.6.14.2). Since all
prefetchers use the same RTS interfaces and the same maximum of N objects
for each prefetching request, the measured differences are only caused by the
overhead incurred and by the prediction quality. In all tests, each thread uses
its own predictor model (since a global predictor does not make sense). Hence,
the memory consumptions below are per thread and not globally.

We present four benchmarks and discuss the effects of the prefetchers. Since a
predictor is useless in an embarrassingly parallel program, the benchmarks repre-
sent classes of applications that communicate with different access patterns. We
feel that the selection is representative for applications that make use of general
purpose DSMs. The results are the averages over 5 runs of each benchmark.

6.1 Predictors

To validate our predictor, we compare it to two other predictors.

Our multi-stream stride predictor implementation [11] with a table of 128
bytes calculates a new stride as the difference between the current GOR and
the last GOR. Using a confidence counter, predictions are only made if the same
stride occurs a certain number of times in sequence. To give the stride prefetcher
a better chance to keep recurring strides, we use a dirty counter that enables
the predictor to ignore a different stride as long as the recurring stride reappears
quickly enough in the sequence of strides. The next data accesses are predicted
by adding the active stride to the current address. Stride predictors can only
predict very regular accesses. As a GOR not only consists of a memory address
but also contains a node rank, the Stride often mispredicts in non-array programs
or for complex data distributions.

Our Delphi predictor implementation [3] continuously updates its infor-
mation and uses a constant memory cache. As it cannot detect the frequency of
sequences, rare sequences cause it to forget earlier sequences and to emit mispre-
dictions. Delphi uses a hash function to map sequences to its table. In the best

Table 1. Runtimes and message counts for the benchmarks (best in bold).

Runtime (in seconds) Messages (in thousands)

Nodes| w/o|Stride | Delphi | Esodyp+| w/o| Stride | Delphi|Esodyp+

2 24.0| 23.7 23.7 23.9 27.6 7.1 5.4 6.0

SOR 4 13.2| 12.3| 12.3 12.4 83.1 22.7 17.9 17.6
6 9.4 8.6 8.6 8.7 139.2 36.2| 29.9 30.0

8 8.0 7.2 7.3 7.3| 196.0 53.9| 40.6 42.3

2 113.8| 113.7| 114.5 102.31593.0|1593.0 | 1593.0 962.4

Water 4 78.0| 78.2 78.5 62.1|2651.6 | 2651.6 | 2651.5| 1593.9
6 64.4| 644 64.5 52.6 | 3260.4|3260.5 | 3260.6 | 1967.9

8 58.7| 58.7 59.1 49.6 | 3756.5|3756.7 | 3758.4| 2248.9

2 10.6 5.9 9.3 3.6| 223.9| 223.9| 134.6 33.4

Blur2D 4 6.9 6.6 5.9 4.0 385.4| 385.4| 190.0 99.8
6 7.9 10.0 6.1 5.0| 483.4| 483.4| 230.6 166.2

8 8.8 13.5 7.1 6.9| 581.5| 581.5| 277.2 232.3

2 69.2| T1.7 71.8 69.9 9.2 5.9 8.7 5.9

Ray 4 35.4| 36.1 36.5 35.2 27.3 17.4 25.8 17.1
6 24.1| 24.2 24.6 23.8 45.4 29.0 42.1 28.4

8 18.4| 18.5 18.9 18.3 57.3| 42.7 59.9 41.1

Table 2. Accuracy of different prefetchers and their unused but prefetched objects.

Accuracy (in %) Unused objects (in %)
Stride| Delphi|Esodyp+ | Stride| Delphi|Esodyp+
SOR 81,09% (97,183 % | 95,39% | 2,48%| 0,75 % 6,61 %
Water 891%| 31,81%| 67,81 % |79,42%| 7,88% | 12,83%
Blur2D | 0,00%| 49,94% | 76,81 % | 0,00% 1,96% | 10,36 %
Ray 79,99 % 0,00% | 83,12% | 6,31 % |100,00 % 1,93 %
Average |42,50% | 44,72% | 80,78 % |22,06% | 27,65%| 7,93 %

case, each sequence receives a unique index. However, the number of conflicts de-
pends on the memory access pattern. Our implementation employs a 4096-entry
hash table that uses the last three accesses as the hash key. Each entry contains
a pointer to a structure containing a GOR and access check information. Hence,
the total size of the table is 96 KB per thread. In a certain sense, Delphi is closest
to a Markov model, as it uses a fixed depth of 3. But it cannot handle depths
of 1 or 2 simultaneously. For n sequences (A, B, *), Delphi needs n entries, each
of which stores A, B, and the last element. Esodyp+, however, handles all the
depths 1, 2, and 3, and stores the subsequence (A, B) only once. A prioritized
linked list then covers the n possibilities.

6.2 Benchmarks

SOR iteratively solves discrete Laplace equations on a 2D grid (4,100x4,100; 50
iterations). It computes new values of a grid point as the average value of four
neighboring points. Each thread of SOR receives a contiguous set of rows of the

grid. SOR only communicates at the boundaries of the partitions, at which the
threads read the values of the grid points of other threads.

Although restructuring compilers for array-based languages may handle such
highly regular programs better, it is instructive how a prefetcher affects SOR.
With a model of 2.2 KB, Esodyp+ reduces SOR’s runtime by about 9 % and the
message count by about 78 %. As can be seen in Table 1, all prefetchers roughly
achieve the same gain; Stride is slightly faster due to its lower internal overhead.
Table 2 shows that Delphi is most accurate closely followed by Esodyp+. Stride
cannot outperform the others as the access sequence is not simple enough.

Water [17] simulates moving water molecules by means of an (N-square)
N-body simulation. Work is divided by assigning molecules to different threads.
After a thread has finished computing new directions and accelerations for its
molecules in the current time step, it publishes these results for the other threads
by means of a special class that implements both synchronization and simulta-
neous exchange of updates with other threads.

Water has a large working set (1,792 molecules) that is communicated after
each time step, making it highly network-bound. The Stride cannot correctly
predict, as the objects are scattered over the DSM. Delphi suffers from a number
of conflicts in its database and from the high number of objects being accessed.
In contrast, Esodyp+ builds an almost perfect model of 14.8 KB and reduces
runtime by up to 20 % (for 4 nodes). The message count is decreased by about
40 %. No static analysis can achieve similar results for such irregular applications.
Esodyp+ achieves 68 % accuracy (Table 2), which is twice as good as Delphi and
about 8 times better than Stride. Stride predicts many unused objects since, once
a decision is made, the program behavior has already changed.

Blur2D implements a 2D convolution filter that softens a picture of 400x400
gray-scale points (20 iterations). It uses a 2D array of double precision values
that describe the pixels’ gray values. The value of a pixel is computed as the
average of itself and its eight neighbors. For such a stencil computation (like
SOR) accesses are difficult to predict because the parallelization does not fit to
the data distribution of the DSM. While Jackal favors a row-wise distribution
scheme, Blur2D uses a column-wise work distribution. Hence, false sharing and
irregular access patterns make Blur2D highly network-bound.

In contrast to Stride and Delphi, Esodyp+ (5.4 KB model size) saves roughly
20 % runtime on 8 nodes and the number of messages drops by 60 %. Esodyp+
predicts more accurately (almost 77 %) due to the additional information in its
model. In contrast to Delphi and Stride, when constructing the request message,
Esodyp+ first tries the most probable next access. If this leads to an object
that has already been requested, it uses another edge of its graph to predict a
less probable but still possible access. Hence, Esodyp+ prefetches not only the
most likely sequence but also less frequently ocurring data access sequences. For
increasing node counts, it cannot compensate the false sharing. Stride’s simplistic
model is the reason for its poor behavior. Due to a high number of consecutive
accesses to the same DSM region, Stride does not emit any good predictions.
As of the confidence counter, Stride does not prefetch when a pattern change

occurs. Disabling this counter causes a 50 % slow-down due to mispredictions.
Delphi’s hash table is not able to provide enough slots to store the complex data
access sequences of Blur2D.

Ray renders a 3D scene constructed from 2,000 randomly placed spheres.
The image is stored as a 2D array (500x500) of RGB values. For parallelization,
the image is partitioned into independent sub-images that are assigned to the
threads. Raytracing is inherently parallel: it has a read-only working set (the
spheres) and a thread-local working set that is written (the sub-images).

On average, the prefetchers do not gain any performance, although Stride and
Esodyp+ (1.5 KB model) save roughly 35% of the messages. Delphi is unable
to make correct predictions due to conflicts in the hash table. This leads to an
accuracy of 0% and an unused percentage of 100 %. Stride is able to keep a score
of 79% compared to the 83 % of Esodyp+. However, Stride makes more unused
predictions (6,31 % vs. 1.93%). Transferring read-only data at initialization, the
threads work on local data that is only transferred at the end of the computation.
Obviously, for embarrassingly parallel applications prefetching does not improve
performance. Variations in the cluster load cause the fluctuations in Table 1.

To summarize, let us compare the overheads of the predictors. When learn-
ing, Stride has the lowest overhead as it only considers strides relative to the
last access. Delphi causes a higher overhead by computing the hash index for
each access. Esodyp+ updates a few nodes and counters in the model, which also
results in a higher overhead. When predicting, Delphi still calculates the hash
index of the current access sequence, whereas Esodyp+ predicts by just following
pointers to the most probable prefetch candidates. Hence, for stabilized models,
Esodyp+ reaches the low overhead of a stride predictor. This is a major ad-
vandage of the Esodyp+ model, as it is able to modelize complex memory access
behavior with a low prediction overhead once the model has been created.

7 Conclusions and Future Work

In this paper, we have shown that it is worthwhile to integrate a predictor into an
object-based DSM, since generally predictors can compensate their overheads.
Esodyp+, a novel Markov-based prefetcher performs better than two existing
prefetchers. It is more precise and more efficient in predicting and emitting
prefetches and reduces the message count by about 60 %. It reduces runtime
by 15 % on an 8-node computation. On average, it achieves an accuracy of 80 %
compared to 45 % of the other predictors. Hence, our prefetcher is well-suited
for network-bound applications with complex data access patterns.

Because of its Markov-like models, Esodyp+ automatically adapts to various
access patterns and is only limited when a pattern is completely irregular. There-
fore, instead of passing GORs, we work on adding structural data about object
associations (i.e. connections between individual objects) to Esodyp+. We will
also try to automatically choose an optimal prefetching distance at runtime, such
that the distance best fits the program, reduces the potential of false-sharing,
and speeds up the program. Another avenue of work is program phase detection.

By using Jackal’s internal profilers, the predictor’s impact on the program can
be assessed. If prefetching is not efficient, it may be temporarily switched off to
get rid of its runtime overhead.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

: TOP500 List. http://www.top500.org/ (2006)

Keleher, P., Dwarkadas, S., Cox, A., Zwaenepoel, W.: TreadMarks: Distributed
Shared Memory on Standard Workstations and Operating Systems. In: Proc.
Winter 1994 USENIX Conf., San Francisco, CA (1994) 115-131

Speight, E., Burtscher, M.: Delphi: Prediction-Based Page Prefetching to Improve
the Performance of Shared Virtual Memory Systems. In: Proc. Intl. Conf. on
PDPTA, Las Vegas, NV (2002) 49-55

Veldema, R., Hofman, R., Bhoedjang, R., Bal, H.: Runtime Optimizations for a
Java DSM Implementation. In: Proc. ACM-ISCOPE Conf. on Java Grande, Palo
Alto, CA (2001) 153-162

Beyler, J., Clauss, P.. ESODYP: An Entirely Software and Dynamic Data
Prefetcher based on a Markov Model. In: Proc. 12th Workshop on Compilers
for Parallel Computers, A Coruna, Spain (2006) 118-132

Lu, J., Chen, H., Fu, R., Hsu, W., Othmer, B., Yew, P., Chen, D.: The performance
of runtime data cache prefetching in a dynamic optimization system. In: Proc. 36th
IEEE/ACM Intl. Symp. on Microarchitecture, San Diego, CA (2003) 180-190
Chilimbi, T., Hirzel, M.: Dynamic hot data stream prefetching for general-purpose
programs. In: Proc. ACM Conf. on PLDI, Berlin, Germany (2002) 199-209

Liu, H., Hu, W.: A Comparison of Two Strategies of Dynamic Data Prefetching
in Software DSM. In: Proc. 15th Intl. Parallel & Distributed Processing Symp.,
San Francisco, CA (2001) 62-67

Bianchini, R., Pinto, R., Amorim, C.: Data Prefetching for Software DSMs. In:
Proc. Intl. Conf. on SC, Melbourne, Australia (1998) 385-392

Jeun, W.C., Kee, Y.S., Ha, S.: Improving Performance of OpenMP for SMP Clus-
ters through Overlapping Page Migrations. In: Proc. Intl. Workshop on OpenMP,
Reims, France (2006) CD-ROM.

Fu, J., Patel, J., Janssens, B.: Stride directed prefetching in scalar processors.
SIGMICRO Newsletter 23(1-2) (1992) 102-110

SUN Microsystems: RMI Specification (1998) http://java.sun.com/products/jdk/
1.2/docs/guide/rmi/spec/rmi-title.doc.html.

Veldema, R., Philippsen, M.: Using Object Combining for Object Prefetching in
DSM Systems. In: Proc. 11th Workshop on Compilers for Parallel Computers,
Seeon, Germany (2004)

Veldema, R., Hofman, R., Bhoedjang, R., Jacobs, C., Bal, H.: Source-Level Global
Optimizations for Fine-Grain Distributed Shared Memory Systems. In: ACM
Symp. on PPoPP, Snowbird, UT (2001) 83-92

Manson, J., Pugh, W., Adve, S.: The Java Memory Model. In: Proc. 32nd ACM
Symp. on PoPL, Long Beach, CA (2005) 378-391

Joseph, D., Grunwald, D.: Prefetching Using Markov Predictors. IEEE Transac-
tions on Computers 48(2) (1999) 121-133

Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: The SPLASH-2 Programs:
Characterization and Methodological Considerations. In: Proc. 22nd Intl. Symp.
on Computer Architecture, St. Margherita Ligure, Italy (1995) 24-36

