Characterizing Result Errors
in Internet Desktop Grids

Derrick Kondo', Filipe Araujo?, Paul Malecot!, Patricio Domingues?,

Luis Moura Silva2?, Gilles Fedak!, and Franck Cappello?

L INRIA Futurs, France
2 University of Coimbra, Portugal
3 Polytechnic Institute of Leiria, Portugal

Abstract. Desktop grids use the free resources in Intranet and Inter-
net environments for large-scale computation and storage. While desktop
grids offer a high return on investment, one critical issue is the validation
of results returned by participating hosts. Several mechanisms for result
validation have been previously proposed. However, the characterization
of errors is poorly understood. To study error rates, we implemented
and deployed a desktop grid application across several thousand hosts
distributed over the Internet. We then analyzed the results to give quan-
titative and empirical characterization of errors stemming from input or
output (I/O) failures. We find that in practice, error rates are widespread
across hosts but occur relatively infrequently. Moreover, we find that er-
ror rates tend to not be stationary over time nor correlated between
hosts. In light of these characterization results, we evaluated state-of-
the-art error detection mechanisms and describe the trade-offs for using
each mechanism.

1 Introduction

Desktop grids use the free resources in Intranet and Internet environments for
large-scale computation and storage. For over 10 years, desktop grids have been
one of the largest distributed systems in the world providing TeraFlops of com-
puting power for applications from a wide range of scientific domains, including
climate prediction, computational biology, and physics [1]. Despite the huge com-
putational and storage power offered by desktop grids and their high return on
investment, there are several challenges in using this volatile and shared platform
effectively.

One critical issue is the validation of results computed by volatile and possibly
malicious hosts. In large and complex distributed systems, errors in results are
inevitable, and errors can stem from different sources. Some sources can be
computational. For example, an error could result from a CPU miscalculation
due to overclocking and overheating [2]. Other sources can be related to failures
during application input or output (I/O). For example, if a machine crashes
when the application is writing to an output file or checkpoint, only a partial
number in-memory data blocks could have been flushed to disk (not necessarily

in order) [3], which would lead to an erroneous result®. Thus, effective error
detection mechanisms are essential, and several methods have been proposed
previously [7,8].

However, little is known about the nature of errors in real systems. Yet,
the trade-offs and efficacy among different error detection mechanisms are de-
pendent on how errors occur in real systems. Thus, we focus on characterizing
errors, specifically I/O errors, in a real system by addressing the following crit-
ical questions. What is the frequency and distribution of host I/O error rates?
How stationary are host I/O error rates? How correlated are I/O error rates
between hosts? In light of the error characterization, what is the efficacy of
state-of-the-art error detection mechanisms?

To help answer those questions, we deployed an Internet desktop grid ap-
plication across several thousand desktop hosts. We then validated the results
returned by hosts, and we analyzed the invalid results to characterize quantita-
tively the I/O error rates in a real desktop grid project.

2 Background

At a high-level, a typical desktop grid system consists of a server from which
workunits of an application are distributed to a worker daemon running
on each participating host. The workunits are then executed when the CPU
is available, and upon completion, the result is returned back to the server.
We define a result error to be any result returned by a worker that is not the
correct value or within the correct range of values. We call any host that has
or will commit at least one error an erroneous host (whether intentionally or
unintentionally).

Workunits of an application are often organized in groups of workunits or
batches. To achieve overall low rates for a batch of tasks, the individual error
rate per host must be made small. Consider the following scenario described
in [7] where a computation consists of 10 batches, each with 100 workunits.
Assuming that any work unit error would cause the entire batch to fail, then to
achieve an overall error rate of 0.01, the probability of a result being erroneous
must be no greater than 1 x 10~°. Many applications (for example, those from
from computational biology [2] and physics [1]) require (low) bounds on error
rates as the correctness of the computed results is essential for making accurate
scientific conclusions.

3 Related Work

To the best of our knowledge, there has been no previous study that gives quan-
titative estimates of error rates from empirical data. Nevertheless, several mech-
anisms for reducing errors in desktop grids have been proposed. We discuss three

4 While a number of mechanisms exist to ensure atomic writes or to detect file corrup-
tion, in practice, few if any are provided by desktop grid systems [4,5,6] or utilized
by desktop grid applications themselves.

of the most common state-of-the-art methods [7,8,2] namely spot-checking, ma-
jority voting, and credibility-based techniques, and emphasize the issues related
to each method.

The majority voting method detects erroneous results by sending identical
workunits to multiple workers. After the results are retrieved, the result that
appears most often is assumed to be correct. In [7], the author determines the
amount of redundancy for majority voting needed to achieve a bound on the
frequency of voting errors given the probability that a worker returns a erroneous
result. Let the error rate ¢ be the probability that a worker is erroneous and
returns an erroneous result unit, and let € be the percentage of final results (after
voting) that are incorrect.

Let m be the number of identical results out of 2m — 1 required before a vote
is considered complete and a result is decided upon. Then the probability of an
incorrect result being accepted after a majority vote is given by:

Emagu(p,m) = 2%31 (2mj 1) ¢ (1 —p)Pmtd (1)

j=m

The redundancy of majority voting is %

A more efficient method for error detection is spot-checking, whereby a
workunit with a known correct result is distributed at random to workers. The
workers’ results are then compared to the previously computed and verified
result. Any discrepancies cause the corresponding worker to be blacklisted,
i.e., any past or future results returned from the erroneous host are discarded
(perhaps unknowingly to the host).

Erroneous workunit computation was modelled as a Bernoulli process [7] to
determine the error rate of spot-checking given the portion of work contributed
by the host, and the rate at which incorrect results are returned. The model uses
a work pool that is divided into equally sized batches.

Allowing the model to exclude coordinated attacks, let ¢ be the frequency of
spot-checking, let n be the amount of work contributed by the erroneous worker,
let f be the fraction of hosts that commit at least 1 error, and let s be the error
rate per erroneous host. (1 — ¢s)™ is the probability that an erroneous host is
not discovered after processing n workunits. The rate which spot-checking with
blacklisting will fail to catch bad results is given by:

sf(1—gs)"
[+ f1—gs)”

(2)

Escbl(q7 n, fa S) = (1 —

The amount of redundancy of spot-checking is given by 1%

To address the potential weaknesses of majority voting and spot-checking,
credibility-based systems were proposed [7], which use the conditional prob-
abilities of errors given the history of host result correctness. The idea is based
on the assumption that hosts that have computed many results with relatively
few errors have a higher probability of errorless computation than hosts with a

history of returning erroneous results. Workunits are assigned to hosts such that
more attention is given to the workunits distributed to higher risk hosts.

To determine the credibility of each host, any error detection method such
as majority voting, spot-checking, or various combinations of the two can be
used. The credibilities are then used to compute the conditional probability of
a result’s correctness.

Note that the methods described in this section were designed to detect
errors from any source, including a computational source (for example, CPU
miscalculations) or an I/O source (for example, a crash during a checkpoint). In
the sections that follow, we determine the methods’ efficacy in detecting errors
caused by I/0O failures.

4 Method

We studied the error rates of a real Internet desktop grid project called Xtrem-
Lab [9]. XtremLab uses the BOINC infrastructure [4] to collect measurement
data of desktop resources across the Internet. The XtremLab application cur-
rently gathers CPU availability information by continuously computing floating
point and integer operations, and every 10 seconds, the application will write
the number of operations completed to file. Every 10 minutes, the output file is
uploaded to the XtremLab server.

In this study, we analyze the outputs of the XtremLab application to charac-
terize the rate at which errors can occur in Internet-wide distributed computa-
tions. In particular, we collected traces between April 20, 2006 to July 20, 2006
from about 4400 hosts. From these hosts, we obtained over 1.3 x 10® measure-
ments of CPU availability from 2.2 x 105 output files. We focused our analysis
on about 600 hosts with more then 1 week worth of CPU time in order to ensure
the statistic significance of our conclusions .

Errors in the application output are determined as follows. Output files up-
loaded by the workers are processed by a validator. The validator conducts both
syntactical and semantics checks of the output files returned by each worker.
The syntactical checks verify the format of the output file (for example, that
the time stamps recorded were floating numbers, the correct number of mea-
surements were made, and each line contains the correct number of data). The
semantic checks verify the correctness of the data to ensure that the values re-
ported fall in the range of feasible CPU availability values. Any output files that
failed these checks were marked as erroneous. After careful inspection of output
files that failed synatatic or semantic checks, we found that most of these output
files were truncated prematurely or had scrambled output (perhaps due to an
out-of-order flush of in-memory blocks [3], for example). As such, we assume
that any output file that fails a syntactic or semantic check would have corre-
sponded to an I/O error of an application (for example, an erroneous checkpoint)
that would lead to an erroneous result ®°. To date, there has been little specific

® We do not believe the errors are due to network failures during transfers of output
files. This is because BOINC has a protocol to recover from failures (of either the

data about error rates in Internet desktop environments, and we believe that
the above detection method gives a first-order approximation of the I/O error
rates for a real Internet desktop grid project.

5 Error Characterization

5.1 Frequency of Errors

The effectiveness of different methods by which errors are detected is heavily
dependent on the frequency of errors among hosts. We measured the fraction of
workunits with errors per host, and show the cumulative distribution function
(CDF) of these fractions in Figure 1.

1 1
0.9r 0.9r 5
a
£
» 08 mean: 0.00221 0 08f . %’
8 : £
207t 507 107
‘s max: 0.09813 s 2
£ 0.6 c 0.6r = error 106 %
£ 2 - = =throughput Z
805 805 {052
o o %
204 2 0.4r L7104 3
~ K] e w
£o03 Boatf o paae® 038
=1 =1 P e =
o o e =
0.2 0.2 w? 0.2 g
- - 3
0.1 0.1 Laet 0.19
0 L L L L 0 -==” L 0
0 1 2 3 4 5 0 0. 0.4 0.6 0.8 1
Fraction of workunits with errors -3 Fraction of sorted erroneous hosts

x 10

Fig. 1. Error Rates of Hosts in EntireFig. 2. Cumulative Error Rates and Effect
Platform on Throughput

We find that a remarkably high percentage of hosts (about 35%) returned
at least one corrupt result in the 3 month time frame. Given that the overall
error rate is low and a significant fraction of hosts result in at least one error,
blacklisting all erroneous hosts may not be an efficient way of preventing errors.

An error rate of 0.002 may seem so low that error correction, detection and
prevention are moot, but consider the scenario in Section 2 again where the
desired overall error rate is 0.01. In that case, the probability of a result being
erroneous must be no greater than 1 x 1072, If ¢ = 0.002 as shown in Figure 1,
we can simply conduct a majority vote where m = 2 to achieve an error rate of
about 1 x 107 and with a redundancy of about 2.0.

While spot-checking can achieve a similar error rate of about 1 x 1075, spot-
checking requires a large number of workunits to be processed before achieving
it. For example, to achieve a similar error rate of 1 x 107° via spot-checking
where ¢ = 0.10, f = 0.35 (from Figure 1), s = 0.003 (as shown in Table 1),

worker of server) during file transmission that ensures the integrity of files trans-
fers [4].

Equation 2 requires that the number of workunits (n) processed by each worker
be greater than 5300. While redundancy is lower at 1.11 compared to majority
voting, if each workunit requires 1 day of CPU time (which is a conservative
estimate as shown in [1]), it would require at least 14.5 years of CPU time per
worker before the desired rate could be achieved. Even if we increase g to 0.25
(and redundancy is 1.33), spot-checking requires n = 3500 (or at least 9.5 years
of CPU time per worker assuming a workunit is 1 day of CPU time in length).

Figure 2 shows the skew of the frequency of errors among those erroneous
hosts. In particular, we sort the hosts by the total number of errors they com-
mitted, and the blue, solid plot in Figure 2, shows the cumulative fraction of
errors. For example, the point (0.10, 0.70) shows that the top 0.10 of erroneous
hosts commit 0.70 of the errors. Moreover, the remaining 0.90 of the hosts cause
only 0.30 of the errors. We refer to the former and latter groups as frequent
and infrequent offenders, respectively.

Figure 2 also shows the effect on throughput if the top fraction of hosts are
blacklisted, assuming than an error is detected immediately and that after the er-
ror is detected, all workunits that had been completed previously by the host are
discarded. If all hosts that commit errors are blacklisted, then clearly throughput
is negatively affected and reduced by about 0.40. Nevertheless, blacklisting could
be a useful technique if it is applied to the top offending hosts. In particular,
if the top 0.10 of hosts are blacklisted, this would cause less than a 0.05 reduc-
tion on the valid throughput of the system while reducing errors by 0.70. One
implication of these results is that an effective strategy to reduce errors could
focus on eliminating the small fraction of frequent offenders in order to reduce
the majority of errors without having a negative effect on overall throughput.

So we also evaluated majority voting and spot-checking in light of the pre-
vious result, by dividing the hosts into two groups, frequent and infrequent
offenders based on the knee of the curve shown in Figure 2, but a similar prob-
lem described earlier occurs. The error rate for majority voting €450 is given by
Equation 1, where ¥ = fall X S frequent X ffrequent +fall X Sinfrequent X finf'r‘equent-
Note that f,;; is simply the fraction of workers that could result in at least one
error (0.35). Sfrequent (0.0335) and Sinfrequent (0.001) (see Table 1) are the er-
ror rates for frequent and infrequent offenders respectively. ffrequent (0.10) and
finfrequent (0.90) are the fraction of erroneous workers in the frequent and in-
frequent groups respectively.

We plot pmqjv as a function of m in Figure 3(a). We find that the error rate
Emajo decreases exponentially with m, beginning at about 1 x 1075 for m = 2.

We also compute the error rate for spot-checking with blacklisting when
dividing the hosts in terms of frequent and infrequent offenders. The error rate
Escok 18 given by the sum of the error rates for each grouping, escok, frequent and
Escbk,infrequent- Note that Escbk,in frequent is given by substituting fa; x ffrequent
for f and sfrequent for s in Equation 2. €5cpk,in frequent can be calculated similarly.

Then we plOt in Figlﬂ"e 3(b) Escbk, frequents Escbk,infrequent; and Escbk AS a
function of n (the number of workunits that must be computed by each worker)
where ¢ = 0.10. The plot for the frequent offenders decreases exponentially; this

Error rate

6

= = =Frequent offenders RS
== Infrequent offenders
Both

N
~~
107 e
.
‘s
N
.
‘s
10
o 10 B3
s .
P .s
2 AN
w 1045 &\
.
“
~~
-20 ~~
107
-25
10 : : : :
0 2 4 6 8

Number of identical results required (m)

(a) With Majority Voting

10°

0

500 1000 1500
Number of workunits per worker required (n)

2000

(b) With Spot-Checking and Blacklisting

Fig. 3. Error Rate Bounds

is because the error rate for the hosts is relatively high, and so after a series
of workunit computations, the erroneous hosts are rapidly detected. The plot
for the infrequent offenders decreases very little even as n increases significantly.
This is because the error rates for the infrequent offenders are relatively low, and
thus, increasing n does not improve detection nor reduce errors significantly. The
effect of the net error rate € is that it initially decreases rapidly for n in the range
[0, 1000]. Thereafter, the error rate decreases little.

Thus, spot-checking acts as a low-pass filter in the sense that hosts with high
error rates can be easily detected (and can then be blacklisted); however, hosts
with low error rates remain in the system. If all frequent offenders are detected
by spot-checking and blacklisted, then by Figure 2, this will reduce error rates by
0.70 (or equivalently, an error rate of 63 x 10~°) and cause only a 0.05 reduction
in throughput due to blacklisting. However, to reduce the error rate down to
1 x 107®, spot-checking must detect errors from both frequent and infrequent
offenders. As shown by Figure 3(b), spot-checking will not efficiently detect errors
from infrequent offenders because it requires a huge number workunits to be
processed by each worker. From Figure 3(b), we conclude that spot-checking
can reduce error rates down to about 2 x 10~* quickly and efficiently. To achieve
lower error rates, one should consider using majority voting. In the next section,
we show that spot-checking may have other difficulties in real-world systems.

5.2 Stationarity of Error Rates

Intuitively, a process is stationary if its statistical properties do not change with
time. In this section, we investigate how stationary the mean of the host error
rate s is over time, and describe the implications for error detection mechanisms
given our findings.

We measured the stationarity of error rates by determining the change in
mean error rates over 96 hour periods for each host. That is, for every 96 hours
of wall-clock time during which the worker had been active, we determined the

1 week mean: 0.511 — 1 week

c
S
0.9 5 0.5/ 2 Week mean: 0.490 == 2 weeks
= °| 4 week mean: 0.500 4 weeks
$ 08 mean: 0.00507 °
= 3
< c
s07 , E
S median: 0.00347 =
5 0.6- 3
g I
'§ 0.5 max:-0.06597]
i o
o 2 0.2
204t 5
k<t 03 i
S a3l
€ Q
3 S EELF L ELE S E
0.2 T IE T T T TV Y
& @ro‘\@* @@‘\@* O N S P
0.1 AT N N N G A
PN P TP P SN

o

0.01 0.02 0.03 0.04 0.05 0.06

Change in mean error rate

o

Fig.5. Turnover Rate of Erroneous

Fig. 4. Error Rate Stationarity Hosts

mean error rate on each host, and measured the change in error rates from one
period to the next. After close inspection of the results, we found that hosts often
have long periods with no errors, and that when errors occurred, they occurred
sporadically. Figure 4 shows the cumulative distribution function of error rate
changes over all hosts. This results in Figure 4 show that workunit errors are
not very stationary, and in fact, the error rate fluctuates significantly over time.

We also computed statistics for

Statistic host ; 96 b
Host Gro ost error rates over our pe-
roup & 4|U |U/4M riods. This characterizes s as de-
All erroneous 0.0034]0.018)3.48 fined in Section 3. Table 1 shows the
Top 10% erroneous 0.0335]0.030{0.89 mean. standard deviation. and co-
Bottom 90% erroneous|{0.001 [0.002|2.01 efficient of variation (which is the

standard deviation divided by the
mean) for all hosts , the top 10%
of erroneous hosts, and the bottom
90% of erroneous hosts. We find that even for relatively long 96 hour periods,
the host error rate is quite variable. In particular, the coefficients of variation for
all hosts, the top 10%, and the bottom 90% are 3.48, 0.89, and 2.01 respectively.

To investigate the seasonality of errorless periods, we determined whether
the set of hosts that err from time period to time period are usually the same
hosts or different. In particular, we determined the erroneous host turnover rate
as follows. For a specific time period, we determine which set of hosts erred,
and then compared this set with the set of the hosts that erred in the following
time period. The erroneous host turnover fraction is then the fraction of hosts
in the first set that do not appear in the second set. We computed the erroneous
host turnover fraction for time periods of 1 week, 2 weeks, and 4 weeks (see
Figure 5). For example, the first segment at about 0.62 corresponding to the 1
week period between April 27 and May 4 means that only 0.62 of the hosts that
erred between April 20 and April 27 also erred between April 27 and May 4 . On

Table 1. Statistics for Host Error Rates
over 96 hour Periods.

average, the turnover rate is about 0.50 for all periods, meaning that from time
period to time period, 0.50 of the erred hosts will be newly erred hosts. That is,
the 0.50 of erred hosts had not erred in the previous period.

One explanation for the lack of stationarity is that desktop grids exhibit
much host churn, as users (and their hosts) often participate in a project for a
while and then leave. In [10], the authors computed host lifetime by considering
the time interval between entry and its last communication to the project. The
host was considered “dead” if it had not communicated to the project for at
least 1 month. They found that a host lifetime in Internet desktop grids was on
average 91 days.

One implication is that mechanisms that depend on the consistency of error
rates, such as spot-checking and credibility-based methods, may not be as ef-
fective as majority voting. Spot-checking depends partly on the consistency of
error rates over time. Given the high variability in error rates and the intermit-
tent periods without any errors, a host could pass a series of spot-checks, and
thereafter or in between spot-checks, the host could produce a high rate of error.
Conversely, an infrequent offender could have a burst of errors, be identified as an
erroneous host via spot-checking, and then blacklisted. If this occurs with many
infrequent offenders, this could potentially have a negative impact on through-
put as shown in Figure 2. The same is true for credibility-based systems as a
host with variable error rates could build a high credibility, and then suddenly,
cause high error rates. Thus, the estimated bounds resulting from spot-checking
or credibility-based methods may not be accurate in real-world systems. By con-
trast, majority voting is not as susceptible to fluctuations in error rates, as the
error rate (and confidence bounds on the error rate) decrease exponentially with
the number of votes. Nevertheless, the effectiveness of majority voting could be
hampered by correlated errors, which we investigate in the next section.

5.3 Correlation of Error Rates

Using the trace of valid and erroneous workunit completion times, we computed
the empirical probability that any two hosts had an error at the same time. That
is, for each 10 minute period between April 20 to July 20, 2006, and for each pair
of hosts, we counted the number of periods in which both hosts computed an
erroneous workunit, and the total number of periods in which both hosts com-
puted a workunit (erroneous or correct). Using those counts, we then determined
the empirical probability that any two hosts would give an error simultaneously,
i.e., within the same 10 minute period. In this way, we determined the empirical
joint probability of two hosts having an error simultaneously.

We then determined the “theoretical” probability of two hosts having an
error simultaneously by taking the product of their individual host error rates.
The individual host error rates are given by dividing the number of erroneous
workunits per host by the total number of workunits computed per host (as
described in Section 5.1). After determining the “theoretical” probabilities for
each host pair, we then determined the difference between the theoretical and
empirical probabilities for each host pair. If the error rates for each pair of hosts

are not positively correlated, then the theoretical probability should be greater
than or equal to the empirical, and the difference should be nonnegative.
Figure 6 shows the cu- 1
mulative distribution for the ool
differences between theoreti-
cal
and empirical pairwise error
rates. We find most (0.986)
of the theoretical pairwise er-
ror rates were greater than
the empirical. This suggests
that the error rates between
hosts are not positively corre-

o
=)

Fraction < 0: 0.01443

o
3

Fraction > 0: 0.98557

o
)
T

Cumulative fraction
o o o o
N w » o
T —

o

0 ; i
lated. 1\/[OI'€OVGI'7 Only 0.01443 - Difﬁ)f theoreagal and em?)irical pairlvise error eatesx 10733
of the pairings had differ-

ences less than 0. After care- Fig. 6. Pairwise Host Error Rates

fully inspecting the number

of workunits computed by these host pairs, we believe these data points are
in fact outliers due a few common errors made by both hosts over a relatively
low number of workunits.

6 Summary

We characterized quantitatively the I/O error rates in a real Internet desktop
grid system with respect to the distribution of errors among hosts, the station-
arity of error rates over time, and correlation among hosts. In summary, the
characterization findings were as follows. First, a significant fraction of hosts
(about 35%) will commit at least a single error over time. Second, the mean
error rate over all hosts (0.0022) is low. Third, a large fraction (e.g. about 70%)
of errors result from a small fraction (e.g. 10%) of hosts. Fourth, error rates over
time vary greatly and do not seem stationary. Error rates can vary as much as
3.48 over time. The turnover rate for erroneous hosts can be as high as 50%.
Fifth, error rates between two hosts often seem uncorrelated. While correlated
errors could occur during a coordinated attack or after worm propagation, we
do not believe it is the most common source of errors in practice.

In light of these characterization findings, we showed the effectiveness of sev-
eral error prevention and detection mechanisms namely blacklisting, majority
voting, spot-checking, and credibility-based methods. We concluded the follow-
ing. First, if one can afford redundancy or one needs an error rate to be less
then 2 x 104, then majority voting should be strongly considered. Second, if
one can afford an error rate greater than 2 x 10”4 and can make batches rela-
tively long (ideally with at least 1000 work units and at least 1 week of CPU
time per worker), then spot-checking with blacklisting should be strongly con-
sidered. Third, fluctuations in error rates over time may limit the effectiveness
of credibility-based systems.

For future work, we plan to address a limitation of this study. Our method
measures the I/O error rates of only a single, compute-intensive application.
While we believe this application is representative of most Internet desktop grid
applications in terms of its high ratio of computation compared to communica-
tion, applications with different I/O or computation patterns could potentially
differ in error rates. Thus, to study I/O and computational errors of another
application, we will deploy a real scientific application that has easily verifiable
results . Nonetheless, we believe this is the first study of a real project to give
quantitative estimates of I/O error rates.

References

1. : Catalog of boinc projects. http://boinc-wiki.ath.cx/index.php?title=
Catalog_of _BOINC_Powered_Projelcts

2. Taufer, M., Anderson, D., Cicotti, P., III, C.L.B.: Homogeneous redundancy: a
technique to ensure integrity of molecular simulation results using public comput-
ing. In: Proceedings of the International Heterogeneity in Computing Workshop.
(2005)

3. Oltean, A.: How to do atomic writes in a file. http://blogs.msdn.com/adioltean/
archive/2005/12/28/507866.aspx (December 2005)

4. Anderson, D.: Boinc: A system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
Pittsburgh, USA (2004)

5. Fedak, G., Germain, C., N’eri, V., Cappello, F.: XtremWeb: A Generic Global
Computing System. In: Proceedings of the IEEE International Symposium on
Cluster Computing and the Grid (CCGRID’01). (May 2001)

6. Chien, A., Calder, B., Elbert, S., Bhatia, K.: Entropia: Architecture and Perfor-
mance of an Enterprise Desktop Grid System. Journal of Parallel and Distributed
Computing 63 (2003) 597610

7. Sarmenta, L.: Sabotage-tolerance mechanisms for volunteer computing systems.
In: Proceedings of IEEE International Symposium on Cluster Computing and the
Grid. (May. 2001)

8. Zhao, S., Lo, V.: Result Verification and Trust-based Scheduling in Open Peer-to-
Peer Cycle Sharing Systems. In: Proceedings of IEEE Fifth International Confer-
ence on Peer-to-Peer Systems. (May 2001)

9. Malecot, P., Kondo, D., Fedak, G.: Xtremlab: A system for characterizing internet
desktop grids (abstract). In: in Proceedings of the 6th IEEE Symposium on High-
Performance Distributed Computing. (2006)

10. Anderson, D., Fedak, G.: The Computational and Storage Potential of Volunteer
Computing. In: Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06). (2006)

