Locality Optimized Shared-Memory
Implementations of Iterated Runge-Kutta
Methods

Matthias Korch and Thomas Rauber

University of Bayreuth, Department of Computer Science
{matthias.korch, rauber}@uni-bayreuth.de

Abstract. Iterated Runge-Kutta (IRK) methods are a class of explicit
solution methods for initial value problems of ordinary differential equa-
tions (ODEs) which possess a considerable potential for parallelism
across the method and the ODE system. In this paper, we consider the
sequential and parallel implementation of IRK methods with the main
focus on the optimization of the locality behavior. We introduce differ-
ent implementation variants for sequential and shared-memory computer
systems and analyze their runtime and cache performance on two modern
supercomputer systems.

1 Introduction

Owing to their large computational requirements, parallel solution methods for
initial value problems (IVPs) of ordinary differential equations (ODEs), defined
by

Y1) = £t y(0), ylto)=ye, y:R—-R', f:RxR'—R" (1)

have been addressed by many authors during the last decades. Among the meth-
ods considered are extrapolation methods [1], waveform relaxation techniques
[2], and iterated Runge-Kutta (IRK) methods [3,4]. An overview can be found
in [2]. Most of these approaches are based on the development of new numerical
algorithms with a larger potential for a parallel execution, but with different
numerical properties than the classical Runge-Kutta (RK) methods.

In this paper, we consider the parallel and sequential implementation of IRK
methods, paying particular attention to the locality of memory references. Based
on the classical implicit RK methods

Yl ZYR+hRZaliFi7 lzlv---75; Ye+1 ZyH‘Fh»@Zbth (2)
i=1 =1

with the coefficient matrix A = (a;;) € IR®*, the weight vector b = (b;) € R,
the node vector ¢ = (¢;) € R?, and F; = f(tx + ¢;hy, Y;), explicit IRK methods
suitable for non-stiff equations introduce the iteration process

Y =yt he Y BTV, I=1s k=1,....m. (3)

i=1

We choose the ‘trivial’ predictor

Yl(o):y,.i, l=1,...,s, (4)

to start the iteration process and execute a fixed number of m = p — 1 corrector
steps (3), where p is the order of the underlying implicit RK method (cf. [5]). Two
approximations to y(¢x+1) of different order, y.11 and y.11, are then computed
by

Yet+1 =Yk + hy Z blFl(m) and yn—&-l =yi + he Z blFl(m_l)- (5)
=1 =1

In comparison to classical RK methods, IRK methods possess a larger poten-
tial for parallelism. While, in general, classical explicit RK methods are only suit-
able for a data-parallel execution exploiting parallelism across the ODE system,
IRK methods exhibit an additional degree of method parallelism by enabling an
independent computation of the s argument vectors Yl(k), k=1,...,s, within
each corrector step.

On modern computer systems, which possess deep memory hierarchies, per-
formance and scalability of applications often strongly depend on their locality
of memory references. Moreover, large shared-memory systems are often built of
physically distributed memory modules, which results in non-uniform memory
access times. On such so-called NUMA architectures a good locality behavior is
vitally important. Optimizations to increase the locality of memory references
have been applied by other authors to many methods from numerical linear al-
gebra (e.g., [6]), but not to ODE solvers. Many popular scientific libraries like
LAPACK [7], PHiPAC [8] and ATLAS [9] pay regard to locality and thus can
obtain a high efficiency. Modern optimizing compilers [10] try to reorder the
instructions of the source program, e.g., of computationally intensive loops [11],
to achieve an efficient exploitation of the memory hierarchy. Loop tiling [12] is
considered to be one of the most successful techniques. An important analytical
model for the effects of loop transformations is described in [13]. Locality op-
timizations for embedded Runge-Kutta (ERK) methods have been investigated
in [14]. [15,16] extend this work by considering parallel implementations and
by introducing a pipelining computation scheme which exploits the special ac-
cess structure of a large class of ODE systems. An investigation of the practical
performance of parallel IRK methods for distributed-memory architectures has
been presented in [17].

In this paper, we consider parallel IRK implementations for shared-memory
architectures. We focus on the optimization of the locality behavior, incorpo-
rating our experiences with ERK methods. We present several implementa-
tion variants with different loop structures resulting in different memory ac-
cess patterns. Our focus lies on data-parallel implementations, because they can
achieve a higher locality than task-parallel implementations. Moreover, purely
task-parallel implementations are only scalable to at most s processors and are
therefore not suitable for an execution on large parallel computer systems.

2 Access Distance of a Right-Hand-Side Function

While, in general, the evaluation of one component of the right hand-side-
function f, f;(t,y), may access all components of the argument vector y, many
ODE problems only require the use of a limited number of components. In many
cases, the components accessed are located nearby the index j. To measure this
property of a function f, we make use of the following definitions:

Definition 1. The access distance of a component function f;(t,y), de-
noted as d(f;), is the smallest value b, such that f; accesses only the subset
{yj,b, e ,yjH,} of the components of the argument vectory.

Definition 2. The access distance of a vector function f, denoted as d(f),
is the largest access distance of all component functions f; of f, i.e., d(f) =
maxi<j<n d(f;)-

Definition 3. We say the access distance of T is limited if d(f) < n.

Remark. A function f with limited access distance d(f) has a banded Jacobian
ILY) with bandwidth 2d(f) + 1.

3 Equations with Arbitrary Access Structures

The implementation of an IRK method given by Egs. (3), (4) and (5) leads to
a program structure consisting of nested loops. The most time consuming part
is the iteration of the corrector steps. Therefore, we will focus our discussion on
the loop structure realizing Eq. (3) within one time step. The iteration space of
Eq. (3) consists of 4 dimensions:

—k=1,...,m: Iteration over the corrector steps.

—-1l=1,...,s: Iteration over the vectors Yl(k).

—i=1,...,s: Iteration over the summands of) ;_, aliFl(-kfl).
—7=1,...,n: Iteration over the system dimension, i.e., the elements of a

vector of dimension n.

Since, in general, each corrector step k depends on the previous corrector
step k — 1, the corrector steps must be computed sequentially, and the k-loop
must be the outermost loop. But all other loops are independent. Hence, we are
free to choose the loop structure inside the k-loop as it is desirable to obtain a
high locality. That means we can interchange, merge and split the I-, i- and j-
loops, and loop tiling is also possible. One particular consequence of this is that
a computation scheme similar to the pipelining technique presented in [15,16],
which uses the j-loop as an outer loop surrounding the [- and the i-loops, can be
realized for general problems with arbitrary access structures. Moreover, since
the iterations of the I-loop are independent, a pipelining of the stages resulting
in a diagonal iteration is not necessary.

The realization of the loop structure affects and is affected by the choice
of data structures. In general, at each step k of the iteration process (3), only
data from the current iteration k£ and the preceding iteration k& — 1 is required.
Hence, the vectors Yl(l)7 e ,Yl(kfz) and Fgl), ey ng&) do not have to be kept

in memory. Instead, it is sufficient to use the 4s vectors Yl(cur)7 Yl(pmv), Fgcur)

and ngmv) if we swap the pointers to the respective (prev) and (cur) vectors

)

between the iterations of the k-loop. Further, if we keep the vectors Fgcur and

ngrev) in memory, only one additional temporary argument vector Y € IR"

is required to compute all Fgcur) based on the values of ngrev) if the [-loop
is processed sequentially (see implementations (A) and (E) below). However, a
task-parallel implementation which processes the iterations of the I-loop simul-
taneously requires s temporary argument vectors Yi,...,Y, € IR". Another
possibility is to store the vectors Yl(cur) and Yl(prev) instead of the vectors Fgcur)

and ngrev). Then, a loop structure can be realized which requires only one single
scalar variable to handle all results of function evaluations (see implementation

(D) and derived implementations below). In addition to the vectors Yl(cur) and

Yl(pmv) or Fgcur) and ngrcv), usually three further vectors of dimension n are
required: the two approximation vectors, y.+1 and y.41, and a backup copy of
y« for the case that the current time step is rejected by the step control.

The choice of data structures is particularly important in parallel implemen-
tations. Taking the NUMA character of many modern shared-memory systems
into account, distributed data structures corresponding to the physically dis-
tributed structure of the memory subsystem are often favorable. Since function
evaluations f(¢,Y) may access all components of Y, storing the s argument vec-
tors Yq,...,Y, separately may increase the working space of a data-parallel
implementation and thus lead to a worse locality compared to storing Fgcur),
ngrev) and only one temporary argument vector Y. But, on the other hand,
storing Y1, ..., Y, separately enables alternative loop structures, which can be
more efficient for particular problems.

Data-parallel implementations distributing the iterations of the j-loop to dif-
ferent processors can achieve a smaller working space than task-parallel imple-
mentations. The reason is that, if we parallelize across the I-loop, the i- and the
j-loop of a task-parallel implementation touch all n components of the vectors
Fgcur) and ngrev). If we parallelize across the i-loop, then the I- and the j-loop
access all n components of the vectors Yl(cur) and Yl(prev). In a data-parallel

implementation, on the other hand, which stores the vectors Fl(-cur) and ngrev),

a thread uses only n/p components of each vector, where p is the number of pro-
cessors. But if the argument vectors Yl(cur) and Yl(prev) are stored, n/p+2d(f)—1
components are accessed. Thus, in the latter case, the working space has a simi-
lar size as in the task-parallel implementation if the access distance d(f) is large,
but it is significantly smaller if the access distance is limited.

Table 1 shows a summary of the implementations we have realized that sup-
port equations with arbitrary access structures. All implementation variants have

Table 1. Implementations suitable for problems with arbitrary access structures.

Implement. |Data structures Loop struct.|Remarks

(A) p X F(lc"r)7 AU Fg““r) e RY?, |k-l—i—j vector oriented: inner loops iterate
p X F(llorm')7 o ,Fiprev) c]Rn/p7 over syst'em dimension; high spa-
Y € R® tial locality

(E) p X Fgcur>’ RN Fgc'”) e RY?, |k-l—j—i exploits temporal locality of the i-
P x F(lprev)) L)Féprcv) c]Rn/p’ loop, i.e., writes to argument vec-
Y e R™ tor components

(D) Yﬁcur), oYl e R k—i—j-1 exploits temporal locality of the
Yﬁprev)7 o 7ngrev) cR" l—loop, ie., read.s from results of

‘ function evaluations

(Dblock) Y%C"r)7 .. .,Yéc‘") e R", k—i—j-l-jj |similar to (D), but loop tiling of
ngrev)7 o 7Y§prcv) € R", the j-loop with the [-loop
px FeR?E

(PipeDe2m) Y%C"r), .. .,Yécur) eR", k—j—i—1 based on (D); j-loop surrounds I-
Ygrwew7 o 7Y§prcv) e R anc} i-loop; exploits temporal lo-

cality of both loops

(PipeDb2m) Y;C“r), R chu") e R", k—j—i—jj—l |similar to (PipeDe2m), but loop
Y;prev)7 o ’ngrev) c R"™ tiling of the j-loop with the i-loop

(PipeDb2mt) Yicur), co Yo e je k—j—i—(j7)— |similar to (PipeDb2m), but loop
Yim@V)y o 7ngrev) € R", —j3 tiling expanded to the [-loop
px FeRP

been realized in a sequential version and a data-parallel version. Additionally,
a task-parallel version of implementation (A) has been realized to compare the
locality behavior of task- and data-parallel implementations.

4 Exploiting a Limited Access Distance

Similar to ERK methods [15,16], IRK methods can take advantage of a limited
access distance of the function f. While the stages of each corrector step are
already decoupled, a limited access distance furthermore allows a reduction of
the storage space, a pipelining of the corrector steps and a distributed storage
of the argument vectors.

A reduction of the storage space can be achieved by using a loop structure
in which the [- and the i-loop are inner loops of the j-loop. Then, a limited

access distance allows an overlapping of the matrices Y(*) = (yl(];)) e R*",

T
for kK = 1,...,m, where Y*) = (ng),...,ngv . This can be realized by

choosing a blocksize B > d(f) and embedding YV,..., V(™ into a matrix
Y = (51;) € R>(M~D2B+n quch that yl(];) = U1 j+(m—k)-2B and, hence, yl(f;),

k= 2,...,m, points to the same memory location as yl(];jr;)B Implementations

(PipeDblm) and (PipeDblmt) are based on this strategy (see Table 2).

This optimization reduces the working space of one iteration of the outermost
loop (the k-loop) nearly by a factor of 2. But this working space still has a size
of ©(sn) since the j-, the I- and the i-loop are inner loops of the k-loop. In
order to obtain an asymptotically smaller working space of the outermost loop,

Table 2. Implementations specialized in problems with a limited access distance.

Implement. |Data structures Loop struct. |Remarks

(PipeDblm) |p x Y € RS ™ 2B+n/p k—j—i—jj—l |similar to (PipeDb2m), but the vectors

Y™ are overla d d 3 -
h pped to reduce space re

quirements

(PipeDblmt)|p x ¥ € R®"™2B+7/P |}_j i (jj)— |similar to (PipeDblm), but loop tiling ex-

p x F e RP l—j7 panded to the [-loop

(ppDblm) pxY e R&™2B+t7/P i ki i1 |based on (PipeDblm); j- and k-loop are

interchanged using a pipelining approach

(ppDblmt) |[px Y € R ™ 2B+n/p j—k—i—(jj)— |similar to (ppDblm), but loop tiling ex-

px FeRP l-j7 panded to the l-loop

we need to restructure the loops such that the loop with the largest dimension,
i.e., the j-loop running from 1,...,n, becomes the outermost loop. However,
if the problem to be integrated has a limited access distance, a pipelining of
the corrector steps is possible, which allows an interchange of the k- and the
j-loop. This approach is a straight-forward adoption of the pipelining of the
stages in ERK methods suggested in [15,16]. It leads to a significant reduction
of the working space of the iterations of the outer loop, which now access only
O(sm - 2B) distinct vector components. The pipelining of corrector steps has
been realized in implementations (ppDblm) and (ppDblmt) (see Table 2).
Since many modern shared-memory systems are NUMA systems with a phys-
ically distributed memory architecture, a distributed storage of the argument
vectors, where each thread keeps a part of each argument vector in its local
memory, seems desirable. But in the general case, where the function evalu-
ations f;(¢,'Y) may access all components of the argument vector Y, a dis-
tributed storage of the argument vectors might not be profitable as it would
require an additional level of indirection which maps the indices j = 1,...,n
to the associated addresses inside the distributed parts of the vectors. The only
alternative would be the replication of the whole argument vector. A limited
access distance, however, enables a cost-efficient distributed storage of the ar-
gument vectors. Since the function evaluations performed by a processor P on

its range of components J(F) = {jéfs)t, e ,jl(;:t)} may only access the compo-

nents {jéfs)t —d(f),... 7j1(£2 + d(f)} of the argument vector, the processors can

store their own range of components in local vectors, and only d(f) compo-
nents need to be copied from a processor’s predecessor and its successor before a
function evaluation can be performed. All of the implementations (PipeDblm),
(PipeDblmt), (ppDblm) and (ppDblmt) make use of a distributed organization
of the argument vectors.

5 Experimental Results

Experiments to analyze the scalability and the locality behavior of the imple-
mentations have been performed on two of the largest German supercomputer
systems, the Jiilich Multiprocessor (JUMP) at the NIC Jiilich and the High End

Table 3. Execution times (in s) of task- and data-parallel versions of (A).

JUMP HLRB II
Radau I A(5) Lobatto III C(8) Radau I A(5) Lobatto III C(8)
3 Threads 5 Threads 3 Threads 5 Threads
N |Data-Par.|Task-Par.|Data-Par.| Task-Par.| Data-Par. | Task-Par.| Data-Par.| Task-Par.
500 8.5 8.9 11.7 12.9 16.4 33.5 23.2 56.6
750 45.4 47.3 62.7 66.0 103.3 184.2 135.5 299.4
1000| 142.2 151.0 200.3 210.9 347.8 591.1 474.9 941.7

Table 4. Comparison of the L2 performance of task- and data-parallel versions of (A)
on JUMP. The table shows the number of times a cache line in the L1 data cache was
reloaded from the local L2 cache, an L2 cache of another chip on the same MCM or
from an L2 cache of another chip on a remote MCM.

Radau I A(5), 3 Threads Lobatto IIIC(8), 5 Threads
Implementation| Local [Same MCM|Other MCM| Local |Same MCM|Other MCM
Data-Parallel |1.4-10°|6.7-10% 1.3-10° 2.3-10%(1.6 - 10° 3.3-10°
Task-Parallel |1.4-10°|1.0-107 2.3-107 2.3-10°(3.0- 107 7.2-107

System in Bavaria II (HLRB II) at the LRZ Munich. JUMP is a SMP cluster
system consisting of 41 IBM eServer pSeries 690 nodes, each equipped with 32
Powerd+ cores running at 1.7 GHz. The nodes are built up of 4 multi-chip mod-
ules (MCM), where each MCM carries 4 Powerd+ chips, and 2 CPU cores are
housed in one chip. The HLRB II is an SGI Altix 4700 system. Currently, the
system is equipped with 4096 Intel Itanium 2 Madison 9M processors at a clock
rate of 1.6 GHz. As an example problem we use BRUSS2D [2], a typical example
of a partial differential equation (PDE) discretized by the method of lines. Using
an interleaving of the two dependent variables resulting in a mixed-row oriented
ordering of the components (BRUSS2D-MIX, cf. [15,16]), this problem has a
limited access distance of d(f) = 2N, where the system size is n = 2N2. Most
experiments presented in the following have been performed using the 3-stage
method Radau I A(5) as the corrector method.

5.1 Task vs. Data Parallelism

Table 3 shows a comparison of the execution times of a data-parallel and a task-
parallel version of implementation (A) using the 3-stage method Radau I A(5)
and the 5-stage method Lobatto IIIC(8). In most experiments performed on
JUMP, the data-parallel version is slightly faster than the task-parallel version.
On HLRB II, where remote memory accesses are more expensive, the higher
locality of the data-parallel version evidently outperforms the task-parallel ver-
sion. An analysis of the cache performance using performance counter data on
JUMP points out that the lower performance of the task-parallel version on this
machine can be attributed to an exceedingly higher number of loads from L2
caches of other chips (cf. Table 4).

r 10
9.5
']
£ E°
S 85
o o
& " ¢ 8 :
S 5 L B
g g —©— PipeDb1m [] g ——— Dblock
5 —%— PipeDb1mt 5 —©6— PipeDb1m []
z =z —#— PipeDbimt| |

—+— PipeDb2m ||
—H— PipeDb2mt

35 —<— ppDbim
—4A— ppDb1mt

—+— PipeDb2m
—&— PipeDb2mt | |
—<— ppDbimt

0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
(a) Blocksize x10° (b) Blocksize x10°

Fig. 1. Normalized sequential runtime as a function of the blocksize measured on
(a) JUMP and (b) HLRB II using BRUSS2D-MIX with Radau I A(5) and N = 1000.

5.2 Choosing a Suitable Blocksize

All implementations which employ loop tiling and all implementations special-
ized in a limited access distance require the selection of a suitable blocksize B.
In case of the specialized implementations, B must at least be as large as the ac-
cess distance d(f). We choose the blocksize based on an experimental evaluation
of the normalized sequential runtime, which is the runtime per time step and
per ODE component. A blocksize which leads to a minimum of the normalized
runtime would be the optimal choice. Figure 1 shows the normalized runtime as
a function of the blocksize measured on JUMP and HLRB II using our example
problem. On both systems the optimal blocksize is below 10000 for all imple-
mentations. We choose B = d(f) = 2N, i.e., B = 2000 for N = 1000, since it
is the smallest possible value to be used with the specialized implementations.
This value is close enough to the optimal value of all implementations that it
enables an accurate comparison.

5.3 Performance Analysis and Comparison of the Implementations

As a first step of the performance analysis, we compare the sequential runtimes of
the implementations (Table 5). On both machines we observe that the various
implementations obtain significantly differing runtimes. Since all implementa-
tions are realizations of Egs. (3), (4) and (5) only differing in the loop structures
and the data structures used, the different runtimes mainly result from the differ-
ent locality behavior of the implementations. On both systems the best general
implementation is (PipeDb2mt), which combines a loop structure where the i-
and the [-loop run inside the j-loop with loop tiling of both the i- and the I-
loop. The specialization in a limited access distance improves the locality and
enables a better runtime. Thus, implementation (PipeDblmt) runs faster than
(PipeDb2mt). The best sequential runtime is obtained by the implementation
with the smallest working space, (ppDblmt).

Table 5. Sequential runtimes measured using BRUSS2D-MIX and Radau I A(5).

JUMP HLRB II
Implementation| N = 500| N = 750| N = 1000| N = 500|N = 750| N = 1000
(A) 26.9| 153.6 481.6 61.1| 330.9| 1071.2
(D) 25.8| 142.7 465.2 60.5| 322.8| 1032.1
(Dblock) 24.8| 137.2 454.5 54.0| 286.8 907.1
(E) 25.2| 140.9 459.8 55.4| 294.6 950.9
(PipeDb1m) 25.7| 139.9 4411 53.7| 286.5 913.4
(PipeDb1mt) 23.1| 126.2 413.0 40.9| 218.2 698.5
(PipeDb2m) 25.6| 138.0 439.4 54.8| 291.9 930.6
(PipeDb2mt) 24.0 135.9 436.5 44.0| 2349 750.3
(PipeDe2m) 31.6| 182.6 580.1 55.3| 294.2 924.3
(ppDb1m) 25.5| 136.1 430.0] n/al n/al n/al
(ppDb1mt) 23.0/ 123.5 395.2 37.7| 201.9 644.5

1. Not available due to an incorrect translation by the compiler.

30 60
A ?
—o—D
% —#— Dblock H %0
—+—E | —x—A
20| —=— PipeDbim 40 —6—D
o —<&— PipeDb1mt o —— Dblock
38 15 —4A—— PipeDb2m 3 30 —+—E]
2 —— PipeDb2mt g —&— PipeDb1m
«n —P— PipeDe2m «n —<— PipeDb1mt
10| —<— ppDbim 1 20 —+4A— PipeDb2m 4
—%— ppDb1imt —— PipeDb2mt
——H— PipeDe2m
5 10 —<+— ppDbim]
—%— ppDb1mt
0O 5 10 15 20 25 30 0O 50 100 150 200
(a) Number of threads (b) Number of threads

Fig. 2. Speedups measured on (a) JUMP and (b) HLRB II using BRUSS2D-MIX with
Radau I A(5) and N = 1000.

To analyze the scalability of the implementations, we measured their
speedups on JUMP and HLRB II (Fig. 2). On JUMP all implementations show
a good scalability. Even the slowest implementation, (A), obtains a speedup of
20.0 on 32 processors. The best implementations are those with the best lo-
cality behavior, i.e., (PipeDb2mt), (PipeDblmt) and (ppDblmt). They obtain
speedups between 28.9 and 29.6. The speedups on HLRB II are satisfactory for
small numbers of processors up to 32, because the data-parallel execution leads
to a reduction of the working space of each thread and, hence, to a reduction
of the number of cache misses. But for larger numbers of processors all data
accessed during one time step fits in the cache, and, as a consequence, the scal-
ability no longer profits from these cache effects. Moreover, the communication
of more than 32 processors requires the use of one additional level of the hi-
erarchically organized interconnection network. Therefore, the efficiency of the
implementations severely degrades if the number of processors is increased fur-

Table 6. Cache access statistics for 32 threads on JUMP measured using BRUSS2D-
MIX with Radau I A(5) and N = 1000.

Implemen- Execution|L1 Prefetch| L1 Data Misses [L2 Store| Data Data |Data from

tation Time (s) | Requests Load Store | Misses |[from L2|from L3| Memory
(A) 19.83 [1.3-10% 9.3-107|7.4-10%[4.4-107 |1.3-10%|1.1-107|1.9-10°
(D) 14.78 |7.8-107 2.4-107|2.5-10%[1.5-107 |8.8-107 |4.7-10°|4.0- 10°
oc . 1.1 5 e .5 2 4-1 2
(Dblock) 14.71 [1.1-10% 4.5-107(3.7-10%]1.5-107 [1.2-10% |4.4-10°%|8.2- 10°
(E) 18.96 [9.8-107 4.1-10%(8.5-10%(3.6-107 [1.0-10%|7.6-10°%|2.8 - 10°
ipeDblm . .0-1 4 - .6 2 9. 1.1 9.
(PipeDblm) 16.66 [8.0-107 3.4-107|2.6-10%(6.2-10% |9.9-107 |2.1-10%|7.9-10*
(PipeDblmt)| 13.66 |1.1-108 3.4-107(3.8-10%(6.3-10° |1.3-10%(2.0-10°|1.4-10°
ipe m . 9-1 3 5 5 4. .0-1 5.1-
(PipeDb2m) 14.62 |7.9-107 1.3-10%(3.5-10%|1.5-107 [9.4-107|2.0-10° |5.1 - 10*
(PipeDb2mt)| 13.28 [1.1-10% 3.6-107|3.7-10%(1.5-107 |1.3-10%|2.0-10%|1.7 - 10°
ipeDe2m .95 51 T 1.4- .6 - 4. 7.1 .1-
PipeDe2 16.95 |3.5-107 4.7-107(1.4-107|7.6-10° |6.4-107|9.7-10%|1.1 - 10°
(ppDb1lm) 16.65 |[8.2-107 3.1-107|2.6-10%[9.8-10% |1.1-10%|1.8-10%|2.7-10*
(ppDblmt) 13.33 [1.2-108% 4.7-107|4.2-10%(1.0-107 |1.4-10%|1.8-10°|6.8 - 10*

ther. The highest speedup of 59.5 has been obtained by (ppDblmt) using 144
Processors.

5.4 Correlation between Speedup and Locality

Table 6 shows the counts of selected cache events measured using hardware
performance counters on JUMP. These statistics confirm our argument that the
scalability of the implementations is strongly related to their locality behavior.
Thus, the slowest implementations, (A) and (E), generate the highest number
of cache misses. The fastest implementations, (PipeDblmt), (PipeDb2mt) and
(ppDblmt), which all apply some form of loop tiling, have a high temporal
locality but take also profit of spatial locality and the prefetching of cache lines.
This leads to a smaller number of cache misses and lower waiting times.

6 Conclusions

In this paper, we have presented several different implementations of iterated
Runge-Kutta methods which are suitable for parallel computers with a shared
address space. The implementations employ different strategies, i.e., different
loop structures and different data structures, to achieve a beneficial utilization
of the memory hierarchy. In general, the iteration of the corrector steps must be
executed sequentially. But if the problem to be solved has a limited access dis-
tance, it can be exploited to reduce the storage space and to reduce the working
space of the outer loop by the implementation of a pipelining of the corrector
steps. Our runtime experiments performed on two modern supercomputer sys-
tems confirm that the locality behavior has a major influence on the scalability
of IRK methods. Therefore, data-parallel implementations often obtain a better
performance than task-parallel implementations. Loop tiling is one important
technique to adjust the size of the working sets to the size of the cache hierar-
chy. The best scalability, particularly for large numbers of processors up to 144,

has been achieved using an implementation which combines loop tiling with a
pipelining of the corrector steps.

Acknowledgments. We thank the NIC Jiilich and the LRZ Munich for pro-
viding access to their supercomputer systems JUMP and HLRB II.

References

1.

10.

11.

12.

13.

14.

15.

16.

Ehrig, R., Nowak, U., Deuflhard, P.: Massively parallel linearly-implicit extrapo-
lation algorithms as a powerful tool in process simulation. In: Parallel Computing;:
Fundamentals, Applications and New Directions. Elsevier (1998) 517-524

. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations.

Oxford Science Publications (1995)

Ngrsett, S.P., Simonsen, H.H.: Aspects of parallel Runge-Kutta methods. In:
Numerical Methods for Ordinary Differential Equations. Volume 1386 of LNM.
(1989) 103-117

van der Houwen, P.J., Sommeijer, B.P.: Parallel iteration of high-order Runge-
Kutta methods with stepsize control. J. Comput. Appl. Math. 29 (1990) 111-127
Jackson, K.R., Ngrsett, S.P.: The potential for parallelism in Runge-Kutta meth-
ods. Part 1: RK formulas in standard form. STAM J. Numer. Anal. 32(1) (February
1995) 49-82

Choi, J., Dongarra, J.J., Ostrouchov, L.S., Petitet, A.P., Walker, D.W., Whaley,
R.C.: Design and implementation of the ScaLAPACK LU, QR and Cholesky fac-
torization routines. Sci. Prog. 5 (1996) 173-184

Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J., Croz,
J.D., Greenbaum, A., Hammarlin, S., McKenney, A., Sorensen, D.: LAPACK
Users’ Guide, Third Edition. STAM (1999)

Bilmes, J., Asanovic, K., Chin, C.W., Demmel, J.: Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In:
11th ACM Int. Conf. on Supercomputing. (1997)

Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the ATLAS project. Par. Comp. 27(1-2) (2001) 3-35

Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A De-
pendence Based Approach. Morgan Kaufmann (2002)

McKinley, K.S.: A compiler optimization algorithm for shared-memory multipro-
cessors. IEEE Trans. Par. Dist. Syst. 9(8) (August 1998) 769-787

Irigoin, F., Triolet, R.: Supernode partitioning. In: ACM Symposium on Principles
of Programming Languages, San Diego, Calif. (January 1988) 319-329

Ghosh, S., Martonosi, M., Malik, S.: Cache miss equations: A compiler frame-
work for analyzing and tuning memory behavior. ACM Trans. Prog. Lang. Syst.
(TOPLAS) 21(4) (1999) 703-746

Rauber, T., Riinger, G.: Improving locality for ODE solvers by program transfor-
mations. Sci. Prog. 12(3) (2004) 133-154

Korch, M.: Effiziente Implementierung eingebetteter Runge-Kutta-Verfahren durch
Ausnutzung der Speicherzugriffslokalitdt. Doctoral thesis, University of Bayreuth,
Bayreuth, Germany (December 2006)

Korch, M., Rauber, T.: Optimizing locality and scalability of embedded Runge-
Kutta solvers using block-based pipelining. J. Par. Distr. Comp. 66(3) (March
2006) 444-468

17. Rauber, T., Riinger, G.: Parallel implementations of iterated Runge-Kutta meth-
ods. Int. J. Supercomp. App. 10(1) (1996) 62-90

