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Abstract. This work introduces a set of important improvements in the
resolution of the Two Dimensional Cutting Stock Problem. It presents
a new heuristic enhancing existing ones, an original upper bound that
lowers the upper bounds in the literature, and a parallel algorithm for
distributed memory machines that achieves linear speedup. Many com-
ponents of the algorithm are generic and can be ported to parallel branch
and bound and A* skeletons. Among the new components there is a com-
prehensive mpi-compatible synchronization service which facilitates the
writing of time-based balancing schemes.

1 Introduction

The Constrained Two Dimensional Cutting Stock Problem (2DCSP) targets the
cutting of a large rectangle S of dimensions L×W in a set of smaller rectangles
using orthogonal guillotine cuts: any cut must run from one side of the rectangle
to the other end and be parallel to one of the other two edges. The produced
rectangles must belong to one of a given set of rectangle types D = {T1 . . . Tn}
where the i-th type Ti has dimensions li×wi. Associated with each type Ti there
is a profit ci and a demand constraint bi. The goal is to find a feasible cutting
pattern with xi pieces of type Ti maximizing the total profit:

g(x) =
nX

i=1

cixi subject to xi ≤ bi and xi ∈ �

Wang [1] was the first to make the observation that all guillotine cutting
patterns can be obtained by means of horizontal and vertical builds of meta-
rectangles, Figure 1. Her idea was exploited by Viswanathan and Bagchi [2] to
propose a brilliant best first search A* algorithm (VB) which uses Gilmore and
Gomory [3] dynamic programming solution to build an upper bound. The VB
algorithm uses two lists and, at each step, the best build of pieces (or meta-
rectangles) is combined with the already found best meta-rectangles to produce
horizontal and vertical builds. Hifi in [4] and later Cung et al. in [5] proposed
a modified version of VB algorithm. Niklas et al. in [6] proposed a parallel
version of Wang’s algorithm. Unfortunately, Wang’s method does not always



Fig. 1. Examples of Vertical and Horizontal Meta-Rectangles. Postfix notation is used:
α β | and α β − denote the vertical and horizontal constructions of rectangles α and
β. Shaded areas represent waste.

yield optimal solutions in a single invocation and is slower than VB algorithm.
Tschöeke and Holthöfer parallel version [7] starts from the original VB algorithm
and uses the Paderborn Parallel Branch and Bound Library, ppbb-lib [8]. Garćıa
et al. in [9] presented new data structures and a synchronous parallel algorithm
for shared memory architectures. All the approaches to parallelize VB strive
against the highly irregular computation structure of the algorithm. Attempts to
deal with its intrinsically sequential nature inevitably appears either transformed
on an excessively fine granularity or any other source of inefficiency.

This work introduces a set of important improvements when compared with
previous work [9]. A new upper bound that lowers the upper bounds in the lite-
rature and a new heuristic enhancing existing ones are presented in sections 2.1
and 2.2. Section 3 exposes a parallel algorithm for distributed memory machines
achieving linear speedup and good load balancing through the use of a provided
timing service. The timing service described in section 4 is portable through
platforms and mpi libraries. Section 5 shows the obtained computational results.
The conclusions and some lines of future work are given in section 6.

2 Improvements to the Sequential Algorithm

2.1 A New Upper Bound

The new upper bound improves existing upper bounds. It is trivial to prove that
is lower than the upper bounds proposed in [2, 4, 5, 7, 9]. The calculus of the new
upper bound is made in three steps:



1. During the first step, the following bounded knapsack problem is solved using
dynamic programming [5, 7]:

V (α) =

8<
:

max
Pn

i=1 cixi

subject to
Pn

i=1(liwi)xi ≤ α
and xi ≤ min{bi, �L

li
� × �W

wi
�}, xi ∈ �

for all 0 ≤ α ≤ L × W .
2. Then, FV (x, y) is computed for each rectangle using the equations:

F (x, y) = max

8<
:

max{FV (x, y1) + FV (x, y − y1) such that 0 < y1 ≤ � y
2
�}

max{FV (x1, y) + FV (x − x1, y) such that 0 < x1 ≤ �x
2
�}

max{ci such that li ≤ x and wi ≤ y}

where
FV (x, y) = min{F (x, y), V (x × y)}

3. Finally, substituting the bound of Gilmore and Gomory [3] by FV in
Viswanathan and Bagchi upper bound [2] the new proposed upper bound is
obtained:

UV (x, y) = max

j
max{UV (x + u, y) + FV (u, y) such that 0 < u ≤ L − x}
max{UV (x, y + v) + FV (x, v) such that 0 < v ≤ W − y}

2.2 A New Lower Bound

The proposed heuristic mimics Gilmore and Gomory dynamic programming al-
gorithm [3] but substituting unbounded vertical and horizontal combinations by
feasible suboptimal ones.

Let be R = (ri)i=1...n and S = (si)i=1...n sets of feasible solutions using
ri ≤ bi and si ≤ bi rectangles of type Ti. The cross product R⊗ S of R and S is
defined as the set of feasible solutions built from R and S without violating the
bounding requirements: i.e. R⊗S uses (min{ri +si, bi})i=1...n rectangles of type
Ti. The lower bound is given by the value H(L, W ) computed by the following
equations:

H(x, y) = max

8<
:

max{g(S(x, y1) ⊗ S(x, y − y1)) such that 0 < y1 ≤ � y
2
�}

max{g(S(x1, y) ⊗ S(x − x1, y)) such that 0 < x1 ≤ �x
2
�}

max{ci such that li ≤ x and wi ≤ y}

being S(x, y) = S(α, β) ⊗ S(γ, δ) one of the cross sets, - either a vertical cons-
truction S(x, y0) ⊗ S(x, y − y0) or a horizontal building S(x0, y) ⊗ S(x − x0, y)
- where the former maximum is achieved, i.e. H(x, y) = g(S(α, β) ⊗ S(γ, δ)).



3 Parallel Algorithm

The general operation mode of the parallel scheme follows the structure of the VB
algorithm [2]. This exact algorithm uses two lists, open and clist. open stores
the generated meta-rectangles. At each step, the most promising meta-rectangle
from open is moved to clist. The main difference between the sequential and
parallel scheme lies in the lists management. The parallel scheme replicates clist
and distributes open among the available processors, p. Figure 2 shows the code
for processor k. Initially, the heuristic and the upper bounds are calculated
(lines 2-3). clist begins empty and the initial builds, D, are distributed among
the processors (lines 4-5). At each search step, the meta-rectangle in open with
the highest upper bound is chosen (line 9). This build is inserted into clist
and into the Pending Combinations set, pc (lines 10-11). The pc set holds the
analyzed meta-rectangles that have not been transferred to other processors. The
selected build must be combined with the already found best meta-rectangles to
produce new horizontal and vertical builds (lines 12-23). Only the new elements
with expectations of success will be inserted into open (lines 16 and 22). Also,
open is cleared if necessary (lines 15 and 21).

In order to generate the complete set of feasible solutions, it is necessary
to incorporate a synchronization at certain periods of time. That has been im-
plemented using the synchronization service explained in section 4. The syn-
chronization subroutine (lines 28-39) is called when a processor has no pending
work (line 7) or when an active alarm of the synchronization service goes off.
The expiration time of the alarms is fixed by the user, using the SyncroTime
parameter (line 38). The information given by each processor consists of: its
best solution value, the size of its open list and the set of builds that has ana-
lyzed since the last synchronization step (line 29). The elements computed by
each processor must be inserted into the clists of the other processors (line 32)
and also combined among them. Such combinations are uniformly distributed
among processors (lines 34 and 35). The current best solution is updated with
the best solution found by any of the processors, pruning nodes in open if nece-
ssary (line 31). The stop condition is reached when all the open lists are empty
(line 6).

The search path followed by the parallel algorithm can be different from the
sequential one. In cases where the initial heuristic finds the exact solution, the
number of computed nodes is the same. However, in cases where the heuris-
tic does not find the exact solution, changes in the search path may produce
modifications on the number of explored nodes.

To have open lists fairly balanced, a parametric method has been de-
signed. This method requires three configuration parameters: MinBalThreshold,
MaxBalThreshold and MaxBalanceLength. The method is executed (lines 36-37)
after the computation of the pending combinations. It is necessary to sort the set
of processors attending to their open size. Processor in position i is associated
with a partner located in position p− i− 1. That will match the processor with
largest open list with the processor with the smallest one, the second largest
one with the second smallest and so on. Partners will make an exchange if the



1 search() {
2 BestSol := H(L, W ); B: = g(BestSol);
3 h′ := UV ;
4 CLIST := ∅;
5 OPENk := {Tk+j∗p / k + j ∗ p < n};
6 while (∃i / OPENi 
= ∅) {
7 if (OPENk == ∅) { synchronize(); }
8 else {
9 choose α meta-rectangle from OPENk with higher f ′ = g + h′ value;
10 insert α in CLIST;
11 insert α in PC;
12 forall (β ∈ CLIST / xα + xβ ≤ b, lβ + lα ≤ L) do {
13 γ = αβ−; lγ = lα + lβ; wγ = max(wα, wβ); /* horizontal build */
14 g(γ) = g(α) + g(β); xγ = xα + xβ;
15 if (g(γ) > B) { clear OPENk from B to g(γ); B = g(γ); BestSol = γ; }
16 if (f ′(γ) > B) { insert γ in OPENk at entry f ′(γ); }
17 }
18 forall (β ∈ CLIST / xα + xβ ≤ b, wβ + wα ≤ W ) do {
19 γ = αβ|; lγ = max(lα, lβ); wγ = wα + wβ ; /* vertical build */
20 g(γ) = g(α) + g(β); xγ = xα + xβ;
21 if (g(γ) > B) { clear OPENk from B to g(γ); B = g(γ); BestSol = γ; }
22 if (f ′(γ) > B) { insert γ in OPENk at entry f ′(γ); }
23 }
24 }
25 }
26 return(BestSol);
27 }
28 synchronize() {
29 (λ,C, R) = all to all (B, |OPENk|, PC);
30 if (max(λ) > B)
31 { clear OPENk from B to max(λ); B = max(λ); }
32 CLIST = CLIST ∪ (R - PC);
33 PC = ∅;
34 Let be π = {π0, . . . , πp−1} a partition of {Ri ⊗ R′

j / i 
= j}
35 compute vertical and horizontal combinations of πk

36 if (balanceRequired(C, minBalThreshold, maxBalThreshold))
37 loadBalance(C, MaxBalanceLength);
38 fixAlarm(SyncroTime);
39 }

Fig. 2. Parallel Algorithm Pseudocode for Processor k

one with larger open has more than MaxBalThreshold elements and the other
has less than MinBalThreshold. The number of elements to be exchanged is pro-
portional to the difference of the two open sizes, but it can never be greater
than MaxBalanceLength.



4 The Synchronization Service

All synchronizations in the model are done through time alarms (alarm clocks).
That makes the service independent of the particular algorithm and the mpi
implementation. Every process participating in the parallel algorithm fixes the
alarm to a certain time value. When the alarm goes off, the corresponding process
is informed. If the alarm is fixed with the same time value and then an all-to-all
exchange is done when the alarm expires, a synchronous scheme is obtained. The
service is initiated on each node by starting a daemon. An alarm clock manager
is created on each node. This process is in charge of attending all the alarm clocks
requests coming from the algorithmic processes. For each received request, the
service manager creates a new alarm clock process that will communicate to the
corresponding requester. Once the communication between the requester and its
alarm clock is initiated, their interaction proceeds without any intervention of
the manager.

Figure 3 shows the state of one computation node running two mpi processes
and the synchronization service. The process at the bottom and its corresponding
alarm process have already been initiated. The initialization for the process at the
top is presented. First of all, each process in the parallel algorithm must ask for
the alarm clock service. The manager process attends each alarm service request
creating a new alarm clock process and assigning it to the requester. Then, the
algorithmic process can activate the alarm clock specifying a certain amount of
time. Once the specified time has passed, the alarm clock will notify the process.
In this particular case, after each alarm clock notification, the mpi processes can
synchronize their information. If a process finishes its work before the alarm time
has expired, it can cancel its alarm and go directly to the synchronization point.
If each process cancels the alarm, the synchronization will be reached earlier.

NODE

AlarmClock
 Manager

MPI Process

MPI Process

AlarmClock

AlarmClock

AlarmClock Request

AlarmClock Assignment

Fig. 3. Synchronization Service Operation



This allows the user to better adapt the alarm service behaviour since the alarm
can be activated or cancelled at any moment.

The communication between the algorithmic processes and the alarm mana-
ger is done through system message queues. The user activation and cancellation
of alarms is done through the message queue that was assigned to it. Alarm ex-
pirations are notified by using a variable allocated in the system shared memory.
System signals can be used although it may produce conflicts when combined
with some available libraries.

The implemented service can scale to any number of sequential or parallel
processes. Users can implement their own time alarms through the system time
functions or signals, but then they would have to deal with every implementation
detail. Managing multiple alarms inside the same process can be quite complex
but doing it with the synchronization service is as easy as for the single alarm
case.

5 Computational Results

The instances used in [2, 4, 5, 7, 9] are solved by the sequential algorithm in a
negligible time. For that reason, the computational study here presented has
been performed on some selected instances from the ones available at [10]. Tests
have been run on a cluster of 8 HP nodes, each one consisting of two Intel(R)
Xeon(TM) at 3.20GHz. The interconnection network is an Infiniband 4X SDR.
The compiler and mpi implementation used were gcc 3.3 and mvapich 0.9.7 [11].

Table 1 presents the results for the sequential runs. The first column shows
the exact solution value for each problem instance. The next two columns show
the solution value given by the initial lower bound and the time invested in
its calculation (all times are in seconds). Note that the designed lower bound
highly approximates the final exact solution value. In fact, the exact solution
is directly reached in many cases. Last column compares two different upper
bounds: the one proposed in [4] and the new upper bound. For each upper
bound, the time needed for its initialization, the search time, that is, the time
invested in finding the exact solution without including bounds calculations, and
the number of computed nodes are presented. Computed nodes are the nodes
that have been transferred from open to clist and combined with all previous
clist elements. The new upper bound highly improves the previous bound: the
number of computed nodes decreases, yielding a decrease in the execution time.

Table 2 presents the results obtained for the parallel algorithm. The search
time and the number of computed nodes are shown. For 16-processors, the
speedup in relation to the sequential algorithm is also presented. Both algo-
rithms make use of the improved bounds. Figure 4 represents the speedups for
the three problems with best, worst and intermediate parallel behaviours. Note
that the sequential algorithm and the 1-processor parallel algorithm compute
exactly the same number of nodes, but the parallel implementation introduces
an overhead over the sequential algorithm. When the number of processors in-
creases the parallel algorithm improves its behaviour. In those cases where the



Upper Bound
Solution Lower Bound V UV

Problem Value Value Time Init Search Nodes Init Search Nodes

07 25 03 21693 21662 0.442 0.0309 2835.07 179360 0.0312 2308.78 157277
07 25 05 21693 21662 0.436 0.0311 2892.23 183890 0.0301 2304.78 160932
07 25 06 21915 21915 0.449 0.0316 35.55 13713 0.0325 20.83 10310
07 25 08 21915 21915 0.445 0.0318 205.64 33727 0.0284 129.03 25764
07 25 09 21672 21548 0.499 0.0310 37.31 17074 0.0295 25.49 13882
07 25 10 21915 21915 0.510 0.0318 1353.89 86920 0.0327 1107.18 73039
07 50 01 22154 22092 0.725 0.1056 2132.23 126854 0.0454 1551.23 102662
07 50 03 22102 22089 0.793 0.0428 4583.44 189277 0.0450 3046.63 148964
07 50 05 22102 22089 0.782 0.0454 4637.68 189920 0.0451 3027.79 149449
07 50 09 22088 22088 0.795 0.0457 234.42 38777 0.0428 155.35 29124
07 100 08 22443 22443 1.218 0.0769 110.17 25691 0.0760 92.91 22644
07 100 09 22397 22377 1.278 0.0756 75.59 20086 0.0755 61.84 17708

Table 1. Lower and Upper Bounds Results

processors
1 2 4 8 16

Problem Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Sp.

07 25 03 2922.94 157277 1665.26 161200 770.47 157281 384.05 159424 197.82 157603 11.67
07 25 05 3068.19 160932 1738.02 168941 863.23 168867 408.39 165323 206.10 162029 11.18
07 25 06 23.82 10310 11.51 10310 6.36 10310 3.01 10310 1.57 10310 13.26
07 25 08 129.02 25764 61.38 25764 29.98 25764 15.52 25764 8.33 25764 15.48
07 25 09 29.44 13882 13.69 14257 7.02 13916 3.57 13916 2.09 14150 12.44
07 25 10 1140.41 73039 539.89 73039 266.96 73039 132.32 73039 67.94 73039 16.16
07 50 01 1651.51 102662 963.07 102662 598.67 116575 240.93 103545 123.72 102965 12.53
07 50 03 4214.54 148964 2084.77 148964 1057.70 151362 512.12 150644 258.51 149039 11.78
07 50 05 4235.27 149449 2141.41 149449 1077.47 153813 512.43 150937 260.03 149450 11.64
07 50 09 161.38 29124 77.65 29124 40.34 29124 19.45 29124 10.34 29124 14.94
07 100 08 98.96 22644 48.74 22644 25.83 22644 12.60 22644 6.98 22644 13.31
07 100 09 60.05 17708 38.29 19987 18.74 18509 10.59 20584 4.77 18100 12.58

Table 2. Parallel Algorithm Results

heuristic reaches the exact solution, the parallel and the sequential versions al-
ways compute the same number of nodes and consequently better speedups are
achieved. A few superlinear speedups appear due to cache effects.

The number of computed nodes per processor is shown in Figure 5. The
chosen problems were those with the best and worst speedups. It clearly indicates
that work load is fairly balanced even though the configuration parameters were
not tuned in a per-problem basis.

6 Conclusions

This work presents a new lower bound and a new upper bound for the 2DCSP.
Computational results prove the quality of such new bounds. A new parallel dis-
tributed and synchronous algorithm has been designed from the basis of the in-
herently sequential VB algorithm. Parallel results demonstrate the almost linear
speedups and verify the high scalability of the implementation. Furthermore, a
totally application-independent synchronization service has been developed. The
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Fig. 5. Parallel 2DCSP: Load Balancing

service provides an easy way of introducing periodic synchronizations in the user
programs. The synchronization service has been decisive for the well operation
of the parallel scheme and for the right behaviour of the load balancing model
in the presented application.

Some improvements can be added to the current implementation. The first
one refers to the load balancing scheme and lies in introducing some method
to approximately calculate the work associated to each of the meta-rectangles
in open. Instead of considering only the size of the lists, it would be better to
consider the work load that they will generate. The other concern is related to
the synchronization scheme. At the initial and latest stages of the search, many
of the alarms are cancelled because processors do not have enough work. It would



be interesting to have an automatic and dynamic way of fixing the time between
synchronizations while the search process is progressing.
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