
Delayed Side-effects Ease
Multi-core Programming

Anton Lokhmotov1�, Alan Mycroft1, and Andrew Richards2

1 Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK
{anton.lokhmotov,alan.mycroft}@cl.cam.ac.uk

2 Codeplay Software Ltd, 45 York Place, Edinburgh, EH1 3HP, UK
andrew@codeplay.com

Abstract. Computer systems are increasingly parallel and heteroge-
neous, while programs are still largely written in sequential languages.
The obvious suggestion that the compiler should automatically distribute
a sequential program across the system usually fails in practice because
of the complexity of dependence analysis in the presence of aliasing.
We introduce the sieve language construct which facilitates dependence
analysis by using the programmer’s knowledge about data dependences
and makes code more amenable to automatic parallelisation.
The behaviour of sieve programs is deterministic, hence predictable and
repeatable. Commercial implementations by Codeplay shows that sieve
programs can be efficiently mapped onto a range of systems. This sug-
gests that the sieve construct can be used for building reliable, portable
and efficient software for multi-core systems.

1 Introduction

The evolution of high-performance single-core processors via increasing archi-
tectural complexity and clock frequency has apparently come to an end, as
multi-core processors are becoming mainstream in the market. For example, Intel
expects [1] that by the end of 2007 most processors it ships will be multi-core.

Homogeneous, shared memory multi-core processors, however, are but a part
of the multi-core advent. Another growing trend is to supplement a general-
purpose “host” processor with a special-purpose co-processor, which is typically
located on a separate plug-in board and connected to large on-board memory.
Graphics accelerators have been available since the 1990s and are increasingly
used as co-processors for general-purpose computation. AGEIA’s PhysX proces-
sor [2] is an accelerator for the highly specialized simulation of physical environ-
ment. Yet another example is ClearSpeed’s SIMD array processor [3] targeted at
intensive double-precision floating-point computations. These accelerators con-
taining tens to hundreds of cores can be dubbed deca- and hecto-core to dis-
tinguish them from the currently offered dual- and quad-core general-purpose
processors.
� This author gratefully acknowledges the financial support by the TNK-BP Cam-

bridge Kapitza Scholarship Scheme and Overseas Research Students Awards Scheme.



Computer systems composed of multi-core processors can be fast and efficient
in theory but are hard to program in practice. The programmer is confronted
with low-level parallel programming, architectural differences between system
components, and managing data movement across non-uniform memory spaces—
sometimes all at once. Writing parallel programs is hard (as people tend to
think sequentially) but testing is even harder (as non-deterministic execution
can manifest itself in evasive software errors).

Ideally, the programmer wants to write a high-level program in a familiar
sequential language and leave the compiler to manage the complexity of the
target hardware. However, modern mainstream programming languages, partic-
ularly object-oriented ones, derive from the C/C++ model in which objects are
manipulated by reference, e.g. by using pointers. While such languages allow for
efficient implementation on traditional single-core computers, aliasing compli-
cates dependence analysis necessary for sophisticated program transformations
including parallelisation.

In this paper we consider an original approach to automatic parallelisation
employed in Codeplay’s Sieve C++ system [4]. In C99, the programmer can de-
clare a pointer with a restrict qualifier to specify that the data pointed to by
the pointer cannot be pointed to by any other pointer. In Sieve C++, the pro-
grammer makes a stronger statement about code enclosed inside a special block:
no memory location defined outside of the block is written to and then read
from within the block (we will also say that the block generates no true depen-
dences on such memory locations). This guarantee makes code more amenable
to auto-parallelisation. Also, the block-based structure maps well to a natural
programming style for emerging heterogeneous hierarchical systems.

We describe the basic sieve concept in Section 2 and emphasise its importance
in Section 3. Section 4 provides experimental evidence. We briefly mention a few
recent approaches to parallel programming that are similar to the sieve system
in Section 5 and conclude in Section 6.

2 Sieve concept

We describe the basic sieve concept as an extension to a C-like language. The
extension is both syntactic and semantic. Essentially, the programmer encloses
a code fragment inside a sieve block—by placing it inside a new lexical scope
prefixed with the sieve keyword. As a semantic consequence, all side-effects on
data defined outside the sieve block, are delayed until the end of the block.

The name “sieve” has been proposed by Codeplay [4]. We can draw an anal-
ogy with a French press, or cafetière. A code fragment inside a sieve block (cf.
a cylindrical jug with a plunger) is a mix of operations that either have de-
layed side-effects (cf. coffee grounds) or not (cf. boiling water). By depressing
the plunger, equipped with a sieve or mesh, we collect the side-effects (grounds)
at the bottom of the block (jug), leaving operations without side-effects (cf.
drinkable coffee) that can be freely re-ordered (cf. thoroughly enjoyed).



2.1 Preliminaries

We say that a variable is bound in a given lexical scope if it is defined within
this scope; a variable is free in a given lexical scope if it occurs in this scope but
is defined outside of this scope.

2.2 Syntax

The programmer opens a new lexical scope and prefixes it with the sieve keyword
denoting a sieve block:

sieve { int b; ... } // sieve block

We will call code enclosed in a sieve block as sieve code.

2.3 Semantics

Lindley presented the formal semantics of a core imperative language extended
with sieves in [5]. We illustrate the sieve semantics by drawing an analogy with
calling a function having call-by-value-delay-result parameter passing mecha-
nism, which we detail below.

In C-like languages, entrance to a new lexical scope can be seen as equivalent
to calling a function (whose body is the scope), arranging that the parameters to
this function are the free variables of the scope and passing these by reference.
For example, in the following

int main() {

int a; ...

{ ... = a ... a = ... } ...

}

the enclosed code fragment accessing the variable a can be abstracted as a func-
tion call

void f(int *ap) { ... = *ap ... *ap = ... }

int main() {

int a; ...

f(&a); ...

}

By passing a by reference we ensure that all modifications to a are immediately
visible in the program. Note that reads and writes to a are treated equally by
replacing occurrences of a with *ap.

The sieve keyword changes the semantics of a lexical scope to mean that all
modifications to free variables are delayed until the end of the scope, whereas
all modifications to bound variables remain immediate. In accordance with this
semantics, we will also refer to free and bound variables as, respectively, delayed
and immediate.

Using the function call analogy, we say that



int main() {

int a; ...

sieve { ... = a ... a = ... } ...

}

is equivalent to
void f(int *ap) {

const int ar = *ap;

int aw = *ap;

{ // sieve block entry

... = ar ... aw = ...

} // sieve block exit

*ap = aw;

}

int main() {

int a; ...

f(&a); ...

}

Note the different treatment of reads and writes. On entry to the function the
parameter (passed by reference) is copied into local variables ar and aw. All reads
of the parameter are replaced with reads of ar, and all writes to the parameter
are replaced with writes to aw. On exit from the function, aw is copied out to the
parameter.

We coin the term call-by-value-delay-result (CBVDR) for this, as the trans-
lation is similar to traditional call-by-value-result (used, for example, for in-out

parameters in Ada), where ar and aw are coalesced into a single variable.

2.4 Understanding the change in semantics

The theory of data dependence [6] helps in understanding how the sieve block
semantics departs from that of a standard lexical scope. In the presence of data
dependences, the behaviour of sieve code is affected as follows:

1. If a write to a free variable is followed by a read of it (true dependence),
delaying the write violates the dependence.

2. If a read of a free variable is followed by a write to it (anti-dependence),
delaying the write preserves the dependence.

3. If a write to a free variable is followed by another write to it (output depen-
dence), delaying the writes preserves the dependence if the order of writes
is preserved.

Since true dependences are violated, it is up to the programmer to ensure
that sieve code generates no true dependences on delayed data (this gives the
desired equivalence with the conventional semantics). This is hardly restrictive,
however, as instead of writing into and subsequently reading from a delayed
variable, the programmer can write into and read from a temporary immediate
variable, updating the delayed variable on exit from the block.

Anti-dependences present no problem.



Preserving output dependences can be achieved by replacing every write to
a delayed variable with a push of address-value pair onto a FIFO queue, and
applying all queued writes in order on exit from the sieve block. We will refer to
such a queue as side-effect queue.

Note that the programmer’s implicit claim that sieve code generates no true
dependences on delayed data, can be easily verified at run-time (and used for
debugging) by additionally recording executed reads in the queue and checking
that no read from a memory address is followed by a write to the same address.

2.5 Illustrative example

Consider the following example:
int main() {

int a = 0;

sieve {

int b = 0;

a = a + 1; b = b + 1; print(a, b); // prints 0,1

a = a + 1; b = b + 1; print(a, b); // prints 0,2

}

print(a); // prints 1

}

The first two print statements behave as expected as writes to the free vari-
able a are delayed until the end of the sieve block, but the result of the third may
come as a surprise. This result, however, is easy to explain using the CBVDR
analogy, since the sieve block is equivalent to

void f(int *ap) {

const int ar = *ap;

int aw = *ap;

{

int b = 0;

aw = ar + 1; b = b + 1; print(ar , b); // prints 0,1

aw = ar + 1; b = b + 1; print(ar , b); // prints 0,2

}

*ap = aw; // *ap = 1, since aw == 1

}

int main() {

int a = 0;

f(&a); // passing ap , where *ap == 0

print(a); // prints 1

}

The immediate variable ar is never modified (by construction), hence both as-
signments to aw inside the sieve block write 1. After the sieve block, the imme-
diate variable aw is copied into the delayed variable a.

This behaviour seems counter-intuitive because the sieve code violates the
requirement of the previous section by generating a true dependence on the
delayed variable a (the compiler can reasonably warn the programmer).

If the programmer wants to use the updated value of a, he needs to write



int main() {

int a = 0;

sieve {

int b = 0, c = a;

c = c + 1; b = b + 1; print(c, b); // prints 1,1

c = c + 1; b = b + 1; print(c, b); // prints 2,2

a = c;

}

print(a); // prints 2

}

As this code generates no true dependences on delayed variables, the con-
ventional semantics is preserved.

2.6 Function calls

A common imperative programming style is to use functions for their side-effects.
When calling a function inside a sieve block, the programmer can specify whether
to execute the function call immediately and have its side-effects delayed (this
is natural for functions returning a result) or delay the call itself until the end
of the block (this can be useful for I/O).

3 Importance of the sieve construct

3.1 Delayed side-effects facilitate dependence analysis

Effectively exploiting parallel hardware (whether executing synchronously or
asynchronously, in shared or distributed memory environment) often requires
the compiler to re-order computations from the order specified by the program-
mer. However, indirect reads and writes, which are endemic in languages like
C/C++, are difficult to re-order, as alias analysis is undecidable in theory, and
even state-of-the-art implementations often give insufficient information for pro-
grams written in mainstream programming languages.

Consider a typical multi-channnel audio processing example
for (int i = 0; i < NCHANNELS; i++) process_channel(i);

Often, the programmer “knows” that each channel is independent of the others
and hence hopes that the code will be parallelised. In practice, this hope is usually
misplaced, as somewhere in process_channel() there will be indirect memory
accesses causing the compiler to preserve the specified (sequential) execution
order.

The kernel of the problem is that the programmer writes clear and concise
sequential code but has no language-oriented mechanism to express the deep
knowledge that sequenced commands can actually be re-ordered.

The sieve construct provides the programmer a way to conclude a treaty with
the compiler:



“I solemnly swear that sieve code generates no true dependences on de-
layed data. Please preserve false dependences on delayed data by main-
taining the side-effect queue.”

As a result of this treaty, the compiler assumes that sieve code can generate
dependences only on immediate data. This reduces the complexity of dependence
analysis and thereby makes the code fragment more amenable to parallelisation.

3.2 Programming hierarchical heterogeneous systems

In modern heterogeneous computer systems, each processor can have its own
memory space mitigating a potential bottleneck when several processors require
access to shared memory. For example, a general-purpose processor connected
to a (reasonably large) memory can be supplemented with a co-processor (for
specialised compute-intensive tasks, such as graphics, physics or mathematics)
having its own local memory.

When programming such systems, it is often desirable to transfer code and
data for the off-loaded computation from host’s main memory to co-processor’s
local memory, perform the computation with the co-processor accessing only its
local memory, and then transfer the results back to main memory.

The sieve construct provides a high-level abstraction of this programming
model. Assume that code outside of any sieve blocks is to be executed on the
host processor. Think of a sieve block as containing code to be executed on the
co-processor and immediate data to be (statically) allocated in the co-processor’s
local memory. Think of delayed data (either statically or dynamically allocated)
as residing in main memory.

Conceptually (recall CBVDR), delayed data is passed to a sieve block by
reference, read on entry to the block, and written to on exit. The actual imple-
mentation can be system and program specific.

Suppose the co-processor can only access data in local memory, i.e. requires
DMA transfers to access data in main memory. The compiler replaces main
memory accesses in sieve code with calls to a run-time system.

The run-time system maintains the side-effect queue for writes to main mem-
ory; furthermore, it can optimise reads from main memory by prefetching and
servicing them from local memory.

Run-time operation can be guided by a system description (specifying, for
example, latency and bandwidth of DMA requests) and pragma annotations.
The annotations give a benevolent hint to the compiler at what might be the
most efficient implementation of a particular sieve block (perhaps, suggested by
profiling).

For example, for a system composed of a multi-core general-purpose processor
and a co-processor, the programmer can hint the compiler that it is better to
parallelise a particular sieve block across multiple cores than off-loading it to the
co-processor. As another example, if sieve code reads an array allocated in main
memory, the programmer can hint whether array accesses are dense (hence it is
worth prefetching the array using a contiguous DMA transfer) or sparse (array



elements can be read on demand). The programmer can also specify when the
side-effect queue is to be committed to main memory. After dispatching code
and data to the co-processor, the host processor can continue execution until
off-loaded computation results are needed, apply the queued side-effects, and
resume execution.

3.3 Auto-parallelising sieve blocks

The sieve construct relieves the compiler from complex inter-procedural depen-
dence analysis on delayed data. The compiler, however, still needs to analyse
dependences on immediate data, and again the programmer can assist in this.

The programmer is discouraged from accessing immediate storage via im-
mediate pointers3, as this can hinder dependence analysis and defeat the very
purpose of the sieve construct.

Scalar variables are a frequent source of data dependences [6]. Two important
classes of scalar variables that give rise to loop-carried dependences are iterators
(used to control loops) and accumulators (used as the target of reduction op-
erations). The auto-parallelising compiler needs to know the exact behaviour of
such variables, e.g. that a loop iterator is modified only within the loop header
or that a reduction operation is associative. By defining and using special classes
for accumulator and iterator variables, the programmer can pass his knowledge
about such variables to the compiler.

4 Experimental evaluation

Sieve C++ is an extension to C++ by Codeplay [4], which supports the sieve
construct and several refinements, including the support of iterator and accu-
mulator classes. As of May 2007, Sieve C++ backends exist for: homogeneous
multi-core x86 systems, x86 supplemented with an AGEIA PhysX board [2], and
the IBM/Sony/Toshiba Cell processor.

The Codeplay Sieve system consists of a Sieve C++ compiler and a run-
time system. The compiler partitions code inside a sieve block into fragments
which can be executed in parallel. The run-time system is invoked on entry to a
sieve block with the independent fragments, which the system distributes among
multiple cores. In particular, a parallel loop can be strip-mined and speculatively
executed by parallel threads. The threads build their own side-effect queues and
return them to the run-time system which then commits the side-effects in order.

In Fig. 1 we present results4 obtained on a Dell PowerEdge SC1430 system,
with two 1.6GHz quad-core Intel Xeon E5310 processors and 2GB RAM, running
under Windows XP. The execution time is normalised with respect to the original
C++ code.
3 Immediate and global pointers are incompatible, as they may refer to distinct mem-

ory spaces.
4 We thank Colin Riley and Alastair Donaldson for providing performance figures.



1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Active cores

S
pe

ed
up

 (
w

.r
.t.

 n
o 

si
ev

e)

 

 
Matrix multiply
Image noise reduction
Cyclic redundancy check
Mandelbrot
Julia
FFT

Fig. 1. Experimental results on Dell PowerEdge SC1430.

The matrix multiplication is performed for square 750 × 750 matrices. The
noise reduction program applies a median filter to a 512 × 512 image, using
a 20 × 20 neighbourhood per pixel. The cyclic redundancy check is performed
on a random 1M (1M = 220) word message. The Julia program ray traces a
1024 × 1024 3D slice of a 4D quaternion Julia set. The Mandelbrot program
calculates a 4500 × 4500 fragment of the Mandelbrot set. The FFT program
performs a 16M-point Fast Fourier Transform.

The Sieve C++ programs suffer up to a 10% overhead on a single core5,
but show a performance improvement on multiple cores. The noise reduction
program has nearly linear speed up. The FFT program, however, shows little
improvement. We attribute this to cache-line locking because of the program’s
irregular memory access pattern.

5 Related work

Recent approaches to shared memory parallel programming include Soft-
ware Transactional Memory (STM) [7] and Intel Threading Building Blocks
(TBB) [8].

In the STM [7] approach, the programmer places a fragment of code inside
an atomic block, which behaves similar to a database transaction: transaction
5 Conceivably, the cost of maintaining the side-effect queue can be offset for some

programs by (stable) sorting the queue by address and thus improving spatial locality
of writes; besides, writes to the same address (in practice, these should be suspicious:
remember Section 2.5) can be optimised by writing only the last queued value.



side-effects are not visible until the transaction commits. Unlike code in a sieve
block, code in an atomic block can immediately read new values of modified free
variables. Unlike code in an atomic block, code in a sieve block always “commits”
its side-effects without retrying.

Intel TBB [8] is a C++ runtime library that simplifies multithreaded appli-
cation development. Unlike Sieve C++, the TBB is a template library and works
with existing compilers. Using TBB, however, implies parallel programming, not
sequential programming and auto-parallelisation by the compiler.

PeakStream [9] and RapidMind [10] offer high-level software development
platforms for programming HPC algorithms to run on GPU hardware. As with
the sieve system, the same source code can be compiled to a range of systems,
but again the programmer explicitly manages parallelism and data movement.

6 Conclusion

This paper has introduced the sieve concept—a novel language construct which
facilitates dependence analysis by using the programmer’s knowledge about de-
pendences in his code and makes code more amenable to automatic paralleli-
sation. Essentially, the sieve construct plays the rôle of a treaty-point between
what is easy for the programmer to guarantee and what the compiler is capable
of refactoring.

Observable behaviour of sieve programs is deterministic, hence predictable
and repeatable. Codeplay’s Sieve C++ implementation has demonstrated that
sieve programs can be efficiently mapped onto a range of systems. All this sug-
gests that the sieve construct can be used for building reliable, portable and
efficient software for multi-core systems.

Since the sieve construct is a high-level abstraction, its performance is imple-
mentation dependent. Future work will concentrate on advanced implementation
and optimisation techniques for performance and scalability of sieve programs.

References

1. White paper: Intel is leading the way in designing energy-efficient platforms (2006)
2. AGEIA Technologies: The PhysX processor. http://www.ageia.com/

3. ClearSpeed Technology: The CSX processor. http://www.clearspeed.com/

4. Codeplay: Portable high-performance compilers. http://www.codeplay.com/

5. Lindley, S.: Implementing deterministic declarative concurrency using sieves. In:
Proceedings of the ACM SIGPLAN Workshop on Declarative Aspects of Multicore
Programming (DAMP). (2007)

6. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann. (2002)

7. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Pro-
ceedings of the 18th ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications (OOPSLA), ACM Press (2003) 388–402

8. Intel: Threading building blocks.
http://www.intel.com/software/products/tbb/



9. PeakStream: SW development platform. http://www.peakstreaminc.com/

10. RapidMind: SW development platform. http://www.rapidmind.net/


