
A Search Engine Accepting On-Line Updates

Mauricio Marin1, Carolina Bonacic2, Veronica Gil Costa3, and Carlos Gomez1

1 Yahoo! Research, Santiago, University of Chile
2 ARTECS, Complutense University of Madrid, Spain

3 DCC, University of San Luis, Argentina

Abstract. We describe and evaluate the performance of a parallel
search engine that is able to cope efficiently with concurrent read/write
operations. Read operations come in the usual form of queries submitted
to the search engine and write ones come in the form of new documents
added to the text collection in an on-line manner, namely the insertions
are embedded into the main stream of user queries in an unpredictable
arrival order but with query results respecting causality. The search en-
gine is built upon distributed inverted files for which we propose generic
strategies for load balance and concurrency control.

1 Introduction

The inverted file is a well-known index data structure for supporting fast searches
on very large text collections. Web search engines use this strategy to index
huge collections of text. A number of papers have been published reporting
experiments and proposals for efficient parallel query processing upon inverted
files which are distributed on a set of P processor-memory pairs [1–6]. It is
clear that efficiency on clusters of computers is only achieved by using strategies
devised to reduce communication among processors and maintain a reasonable
balance of the amount of computation and communication performed by the
processors to solve the search queries.

An inverted file is composed of a vocabulary table and a set of posting lists.
The vocabulary table contains the set of relevant terms found in the collection.
Each of these terms is associated with a posting list which contains the document
identifiers where the term appears in the collection along with additional data
used for ranking purposes. To solve a query, it is necessary to get the set of
documents associated with the query terms and then perform a ranking of these
documents so as to select the top K documents as the query answer.

The two dominant approaches to distributing the inverted file onto P pro-
cessors are (a) the document partitioned strategy in which the documents are
evenly distributed onto the processors and an inverted file is constructed in each
processor using the respective subset of documents, and (b) the term partitioned
strategy in which a single inverted file is constructed from the whole text collec-
tion to then distribute evenly the terms with their respective posting lists onto
the processors. In addition, some strategies which are hybrids between these two
schemes have been proposed to improve load balance. The way the inverted file is

partitioned onto the processors dictates the way in which the parallel processing
of queries is performed.

Query operations over parallel search engines are usually read-only requests
upon the distributed inverted file. This means that one is not concerned with
multiple users attempting to write information on the same text collection. All
of them are serviced with no regards for consistency problems since no concur-
rent updates are performed over the data structure. Insertion of new documents
is effected off-line in Web search engines. However, it is becoming relevant to
consider mixes of read and write operations.

For example, for a large news service we want users to get very fresh texts as
the answers to their queries. Certainly we cannot stop the server every time we
add and index a few news into the text collection. It is more convenient to let
write and read operations take place concurrently. This becomes critical when
one think of a world-wide trade system in which users put business documents
and others submit queries using words like in Web search engines. Notice that
the pageRank based ranking and lack of support for on-line updates promoted
by Web search engines do not apply in this context. Also in this case it is feasible
to keep all posting lists in main memory.

In this paper we present strategies and performance results for a search en-
gine devised for this purpose. The search engine can be built upon the document
or term partitioned approaches, and variations. We focus on the two most impor-
tant factors affecting its performance, namely the load balancing strategies used
to achieve good parallelism in query processing, and the concurrency control
strategy used to avoid R/W conflicts in the underlying distributed inverted file.
The contribution of this paper is that in both cases we propose efficient strate-
gies and evaluate their comparative performance against alternative strategies.
Another contribution of this paper is the design of the search engine itself, a
design that (i) decouples ranking from posting list treatment in order to achieve
a high rate of queries per second and (ii) is able to accommodate an efficient
concurrency control algorithm by ways of the bulk-synchronous organization of
the ranking and posting lists fetching processes. To the best of our knowledge
no search engine which is able to cope efficiently with concurrent read/write
operations has been proposed in the literature.

The remainder of this paper is organized as follows. Section 2 describes our
search engine. Section 3 discusses load balancing strategies and section 4 con-
currency control algorithms. Section 5 presents conclusions.

2 Search engine

The parallel processing of queries is basically composed of a phase in which it
is necessary to fetch parts of all of the posting lists associated with each term
present in the query, and perform a ranking of documents in order to produce
the results. After this, additional processing is required to produce the answer
to the user. This paper is concerned with the fetching+ranking part and we are
interested in situations in which a high traffic of queries is arriving at the search

new query

ranker

Inverted file

ranker merge

K-sized pieces

ranking

for (each pair <document, frequency>)

compute filters Cins and Cadd

if (the pair pass the filters)

Compute Cosine Similarities

If (the document with less frequency passes the filter)

perform a new iteration

ask more
pieces

ask
more pieces

If new iteration

ask
more pieces

else FINISH

Fig. 1. Search engine: list fetching, ranking and iterations.

engine and it is relevant to optimize the query throughput. At the parallel server
side, queries arrive from a receptionist machine that we call the broker.

The broker machine is in charge of routing the queries to the cluster’s proces-
sors and receiving the respective answers. It decides to which processor routing a
given query by using a load balancing heuristic. The particular heuristic depends
on the approach used to partition the inverted file. Overall the broker tends to
evenly distribute the queries on all processors.

The processor in which a given query arrives is called the ranker for that query
since it is in this processor where the associated document ranking is performed.
Every query is processed using two major steps: the first one consists on fetching
a K-sized piece of every posting list involved in the query and sending them to
the ranker processor.

In the second step, the ranker performs the actual ranking of documents and,
if necessary, it asks for additional K-sized pieces of the posting lists in order to
produce the K best ranked documents that are passed to the broker as the query
results. We call this iterations. Thus the ranking process can take one or more
iterations to finish. In every iteration a new piece of K pairs (doc id, frequency)
from posting lists are sent to the ranker for every term involved in the query.
See figure 1.

Under this scheme, at a given interval of time, the ranking of two or more
queries can take place in parallel at different processors along with the fetching

of K-sized pieces of posting lists associated with other queries. We assume a
situation in which the query arrival rate in the broker is large enough to let the
broker distribute Q P queries onto the P processors.

We use the vectorial method for performing the ranking of documents along
with the filtering technique proposed in [7]. Consequently, the posting lists are
kept sorted by frequency in descending order. Once the ranker for a query receives
all the required pieces of posting lists, they are merged into a single list and
passed throughout the filters. If it happens that the document with the least
frequency in one of the arrived pieces of posting lists passes the filter, then it
is necessary to perform a new iteration for this term and all others in the same
situation. We also provide support for performing the intersection of posting
lists for boolean AND queries. In this case the ranking is performed over the
documents that contain all the terms present in the query.

The search engine is implemented on top of the BSP model of parallel com-
puting [8] as follows. In BSP the computation is organized as a sequence of
supersteps. During a superstep, the processors may perform computations on
local data and/or send messages to other processors. The messages are available
for processing at their destinations by the next superstep, and each superstep is
ended with the barrier synchronization of the processors. The underlying com-
munication library ensures that all messages are available at their destinations
before starting the next superstep. Thus at the beginning of each superstep the
processors get into their input message queues both new queries placed there by
the broker and messages with pieces of posting lists related to the processing of
queries which arrived at previous supersteps. The processing of a given query
can take two or more supersteps to be completed. All messages are sent at the
end of every superstep and thereby they are sent to their destinations packed
into single messages to reduce communication overheads. In addition, in the in-
put message queues are requests to index new documents and merge them into
the distributed inverted file the resulting pairs (id doc,frequency).

2.1 Experiments

We use two text databases. The first one is a 2GB (and 12GB) sample of the
Chilean Web taken from the www.todocl.cl search engine. The text is in Span-
ish. Using this collection we generated a 1.5GB index structure with 1,408,447
terms. Queries were selected at random from a set of 127,000 queries taken from
the todocl log. The second collection is a set of crawled documents along with a
query log from an experimental search engine at Yahoo! Labs. We took 300,000
random queries from the query log making sure that all terms are in the docu-
ment collection. In practice we did not observe any significant differences in the
results from both text collections and thereby in this paper we report results
from the first one.

The experiments were performed on a cluster with dual processors (2.8 GHz)
that use NFS mounted directories. This system has 2 racks of 6 shelves each with
10 blades to achieve 120 processors.

In every run we process 10,000 queries in each processor. That is the total
number of queries processed in each experiment reported below is 10,000 P .
For our collection the values of the filters Cins and Cadd were both set to 0.1
and we set K to 1020. On average, the processing of every query finished with
0.6K results after 1.5 iterations. Before measuring running times and to avoid
any interference with the file system, we load into main memory all the files
associated with queries and the inverted file.

3 Load balance

Key to the efficiency of search engines is the data structure used to support
queries over the text collection. Inverted files are used for this purpose, in par-
ticular most search engines distribute the inverted file onto the processors using
the document partitioned approach. The main advantages of this scheme are its
suitability for boolean AND queries and simplicity of maintenance since insert-
ing a new document requires updating the piece of inverted file stored in one
processor only. Typically a certain number of documents are accumulated and
inserted into a copy of the inverted file to then replace it for the new version.

However, the term partitioned approach has the advantage of being able to
achieve a better performance and has deserved attention in the literature. Its
main disadvantage lays in the problem of calculating the intersection of posting
lists for AND queries. This because as terms are distributed onto the processors,
the pairs (doc id, frequency) tend to be in different processors with high prob-
ability, demanding as a result more communication to calculate intersections.
How costly can be this increase in communication is matter of term distribution
as we show in the following.

In figure 2 [left] we show a term distribution which makes more likely term
co-residence for intersections using 32 processors. We obtained the normalized
frequencies for each term distribution. From the query log, we obtain all possible
pairs and compute a “hit” for each term doing as follows. If terms ti and tj are
terms of a query q, we add 1 to the frequency of each term if ti and tj are in
the same processor. The figure 2 [left] shows that the distribution of terms on
processors labeled by v3 increases the probability of co-residence. In this case
from the query log we detect the P 2 most frequent terms and distribute them
circularly onto the processors.

For the rest of the terms we determine the processor in which they are stored
by using the following strategy. From a query log we count the frequency in which
pairs of terms (t1, t2) appear in queries (all permutations are considered for
queries with three or more terms). We form a list sorted by decreasing frequency
order. Then the pairs (t1, t2) are removed one by one from the front of the list
and are placed on the processors using the following rules. If both t1 and t2
have not been assigned to a processor, place t1 and t2 in the processor with the
least number of pairs. If one of the terms is already assigned to a processor, its
companion goes to the same processor. This defines the initial allocation of terms
to processors. We then use tabu search to improve on that. The method moves

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000

circular

v1
v2

v3

Circular Terms Distribution
v1 Distribution Pair Frecuency
v2 Distribution Pair Frecuency
v3 Distribution Pair Frecuency

 0

 0.2

 0.4

 0.6

 0.8

 1

140120100806040200

Normalized Document Frecuency

Fig. 2. Probability of processor co-residence for the most frequent query terms and
documents containing terms in the query log. [left] the x-axis shows the normalized
frequency of co-residence for the 25K most frequent pairs of terms in queries (0 is the
most frequent one). [right] the x-axis shows documents sorted from the one containing
most of the query terms to the one with least ones (values in thousands of docs).

terms among processors by trying to reduce the BSP cost of executing the query
log and using an optimization criteria to prune the search space. Distribution v1
applies this method without first distributing circularly the most frequent terms
and distribution v2 distributes circularly the only first P most frequent terms.

Figure 2 [right] is more useful in the context of the next section as it shows
for each document the amount of relevant terms that are present in the query
log. This indicates that there is a high probability that during the insertion of
a new document in the collection some of its terms are likely to be identical to
those coming from the user queries.

For the document partitioned approach (D) the load balancing heuristic is
simple. The ranker is selected in a circular manner among the P processors. The
broker performs a broadcast of every query to all the processors. But it does so
in two steps. First and exactly as in the term partitioned approach, the broker
sends one copy of each query to their respective ranker processors. Secondly, the
ranker sends a copy of each query to all other processors. Next, all processors
send K/P pairs (doc id, frequency) of their posting lists to their rankers which
perform the documents ranking. In the case of one or more query terms passing
both filters, the ranker sends messages to all processors asking for additional
K/P pairs (doc id, frequency) of the respective posting lists.

In the term partitioned approach (T), for the case in which no intersection
of posting lists is performed, we distribute the terms and their posting lists in
an uniformly at random manner onto the processors (we actually use the rule
id term mod P to determine in which processor is located a given term). In this
scheme, for a given query, the broker send the query to its ranker processor which
upon reception sends messages to others asking for the first K pairs (doc id,
frequency) of every term present in the query. The same is repeated if one or
more terms pass the filters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

TDTDTDTITDTITD

R
un

ni
ng

 T
im

e
/ M

ax
 T

im
e

Q=32

P=4
8
16
32

BSP MPI PVM

12 GB

Union

2 GB

Union Intersection

Fig. 3. Normalized running times for 4, 8, 16 and 32 processors under queries requiring
union and intersection of posting lists. For the term partitioned index the intersection
operation is performed under circular distribution of terms (T) and the v3 distribution
of terms (TI). The document partitioned approach is denoted by D. The first part shows
results for BSP over a 2GB text collection whereas the second part shows results for
a 12GB text collection and inverted files implemented using the BSP, MPI and PVM
communication libraries. Top curves are for P= 32 and bottom ones are for P= 4.

In figure 3 we show results for the document and term partitioned approaches
for distributed inverted files. We show running times for union and intersection
of posting lists during ranking. For the term partitioned index if the terms are
co-resident their posting lists are intersected locally. When the terms are not
co-resident the complete smallest posting list is sent to the other processor. If
the documents in the intersection pass the filters new pieces of posting lists are
requested. In the document partitioned approach the intersections are always
effected locally. We also present a comparison with inverted files implemented
by using the asynchronous message passing approach to parallel computing upon
MPI and PVM. Both indexes achieve competitive performance.

In figure 4 we show different strategies we devised to improve load balance
in the term (T) partitioned approach and compare its running against the doc-
ument (D) partitioned strategy. No intersections are performed. The letter R
stands for ranker distributed circularly among the processors. Letter I indicates
distribution v3 to improve locality for intersection operations. Letter M stands
for upper limits to the number of ranking operations performed in every proces-
sor in each superstep. Letter L indicates limits only to the number of list fetches
allowed in each processor and superstep. For both cases we used limit= 2.5 Q.
Letter C indicates a case in which rankers keep in cache memory the pieces of
posting lists arrived from other processors. The results show that the term par-
titioned strategy achieves good efficiency when we decouple ranking from list
fetching. For ranking a good strategy is to distribute rankers circularly among
the processors. The figure also shows that imposing upper limits to the number

 50

 100

 150

 200

 250

 300

TICTCTILTLTIMTMTIRTRD

R
u
n
n
i
n
g

T
i
m
e

(
s
e
c
)

Distributed Inverted Files

4 Procs
8 Procs
16 Procs
32 Procs

Fig. 4. Running times for 4, 8, 16 and 32 processors for different alternatives for load
balancing computation and communication.

of list fetching performed in each superstep and processor can further improve
running time. Performance also improves from the fact that in the strategies “I”
we distribute circularly the most frequent terms onto the processors.

4 Concurrency control

An important component of the proposed search engine is its support for con-
current write and read operations as new documents are expected to be arriving
from the broker machine along with queries in an unpredictable manner. In
the following we describe a very efficient strategy to support concurrent R/W
operations over the document and term partitioned bulk-synchronous inverted
files.

A first point to note is that the semantics of supersteps tell us that all mes-
sages are in their target processors at the start of each superstep. That is, no
messages are in transit at that instant and all the processors are barrier synchro-
nized. If the broker assigns a unique integer timestamp to every R/W operation
that it sends to the processors, then it suffices to process all messages in times-
tamp order in each processor to avoid R/W conflicts. These timestamps are also
used as the ids for the respective queries. To this end, every processor maintains
its input message queue organized as a priority queue with keys given by id query
integer values. The broker selects the processors to send new documents in a cir-
cular manner. Upon reception, a document is parsed to extract all its relevant
terms.

In the document partitioned inverted file the posting lists of all the parsed
terms are updated locally in the same processor. However, this is not effected
in the current superstep but in the next one in order to wait for the arrival of
broadcasted terms which could have timestamps smaller than the one associated

to the current document insertion operation. Instead the processor sends to itself
a message in order to wait one superstep to proceed with the updating of the
posting lists.

In the term partitioned inverted file the arrival of a new document to a
processor is much more demanding in communication. This because once the
document is parsed a pair (id doc,frequency) for each term has to be sent to every
processor holding the posting list of the respective terms. However, insertion of
new document is expected to be comparatively less frequent than queries in
real-life settings.

A complication arises from the fact that the processing of a given query can
take several iterations (supersteps). A given pair (id doc,frequency) cannot be
inserted in its posting list by a write operation with timestamp larger than the
query being solved throughout several iterations. We solve this by keeping aside
this pair for those queries and logically including the pair in the posting list
for queries with timestamps larger than the pair one. In practice the pair is
physically inserted in the posting list in frequency descending order but it is not
considered by queries with smaller timestamps.

In figure 5 we show performance results for the concurrency control strategy.
The figure shows the running time for both the document and term partitioned
inverted files under a situation of doing nothing to prevent read/write conflicts
and the case in which these conflicts are avoided using the bulk-synchronous
timestamp based strategy. The results shows that the running time of the strat-
egy is very similar to the running time of doing nothing, that is, a case in which
R/W conflicts never take place and thereby it represents the “fastest” concur-
rency control algorithm.

5 Conclusions

We have presented the design of a search engine which provides an efficient
support for the on-line arrival of new documents. The design can accommodate
both the document and term partitioned approaches to distributing inverted
files onto the processors. We have proposed efficient implementations of both
approaches and found that even for intersection operations the term partitioned
approach performs comparatively well whereas for cases in which this operation
is not a requirement this strategy achieves a very high rate of queries per second.

It is not clear that for the type of application our search engine is intended
for the intersection operations are a firm requirement for all queries. Moreover,
an half-the-way case can be to perform the ranking of the K-sized pieces of
posting lists without performing any intersection and once a sufficient amount
of well ranked documents is reached (say 2K), the ranker assigns the highest
scores to the document that contain all the query terms. This is an issue we plan
to explore in the near future.

Also, the adoption of the BSP model of computing allowed us to solve in a
trivial manner the problem of controlling concurrency for read and write opera-
tions. The experimental results show that this strategy is very efficient.

 100

 150

 200

 250

 300

 350

321684

Number of processors

T-NC
T-TS
D-NC
D-TS

321684

Number of processors

T-NC
T-TS
D-NC
D-TS

Fig. 5. Running times (sec) for processing 10, 000 queries in each processor by inserting
Q= 32 new queries (read operations) in each superstep and processor respectively. With
probability p a write operation is generated and new the document is formed with 100
words randomly generated from the same query log to increase R/W conflicts. D and
T stand for document and term partitioned inverted files, and NC and TS stand for
no-concurrency and timestamped-concurrency control respectively. Figure [left] shows
results for a probability of document arrival per user query of p=0.25 whereas figure
[right] shows results for probability p=0.5 (y-axis is the same to [left]).

Acknowledgment partially funded by Cyted Project 505PI0058.

References

1. Badue, C., Baeza-Yates, R., Ribeiro, B., Ziviani, N.: Distributed query process-
ing using partitioned inverted files. Eighth Symposium on String Processing and
Information Retrieval (SPIRE’01) (Nov. 2001) 10–20

2. Buttcher, S., Clarke, C.: Indexing time vs. query time trade-offs in dynamic informa-
tion retrieval systems. In International Conference on Information and Knowledge
Man-agement (2005) 317–318

3. MacFarlane, A., McCann, J., Robertson, S.: Parallel search using partitioned in-
verted files. In: 7th International Symposium on String Processing and Information
Retrieval, (IEEE CS Press) (2000) 209–220

4. Moffat, W., Webber, J., Zobel, Baeza-Yates, R.: A pipelined architecture for dis-
tributed text query evaluation. Information Retrieval (October 5 2006)

5. Orlando, S., Perego, R., Silvestri, F.: Design of a parallel and distributed web search
engine. In Proc. 2001 Parallel Computing Conf. (2001) 197–204

6. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys
38(2) (2006)

7. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval with frequency-
sorted indexes. Journal of the American Society for Information Science 47(10)
(1996) 749–764

8. Valiant, L.: A bridging model for parallel computation. Comm. ACM 33 (Aug.
1990) 103–111

