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Abstract. We show empirically that some of the issues that affected the
design of linear algebra libraries for distributed memory architectures
will also likely affect such libraries for shared memory architectures with
many simultaneous threads of execution, including SMP architectures
and future multicore processors. The always-important matrix-matrix
multiplication is used to demonstrate that a simple one-dimensional data
partitioning is suboptimal in the context of dense linear algebra oper-
ations and hinders scalability. In addition we advocate the publishing
of low-level interfaces to supporting operations, such as the copying of
data to contiguous memory, so that library developers may further op-
timize parallel linear algebra implementations. Data collected on a 16
CPU Itanium2 server supports these observations.

1 Introduction

The high-performance computing community is obsessed with efficient matrix-
matrix multiplication (Gemm). This obsession is well justified, however; it has
been shown that fast Gemm is an essential building block of many other linear
algebra operations such as those supported by the Level-3 Basic Linear Alge-
bra Subprograms (BLAS) [1, 2], the Linear Algebra Package (LAPACK) [3], as
well as many other libraries and applications. Moreover, and perhaps more im-
portantly, many of the issues that arise when implementing other dense linear
algebra operations can be demonstrated in the simpler setting of Gemm.

The high-performance implementation of Gemm on serial and distributed
memory architectures is well understood [4–8]. However, the implementation
in the context of multithreaded environments, which includes Symmetric Mul-
tiProcessor (SMP), Non-Uniform Memory Access (NUMA), and multicore ar-
chitectures, is relatively understudied. It is conceivable that architectures with
hundreds of concurrent threads will be widespread within a decade, since each
processor socket of an SMP or NUMA system will have multiple, possibly many,
cores. Thus, issues of programmability as well as scalability must be addressed
for Gemm and related operations.
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Fig. 1. Performance of our optimized implementations of Gemm when k is fixed at 256
on a 16 CPU Itanium2 server. (For further details, see Section 5.)

Our Formal Linear Algebra Methods Environment (FLAME) project studies
these programmability4 and scalability issues. The latter issue is the subject of
this paper, which provides empirical evidence for the following observations:

– As was observed for distributed memory architectures in the late 1980s
and early 1990s [11–14], work must be assigned to threads using a two-
dimensional partitioning of data [15, 16, 10].

– In order to achieve near-optimal performance, library developers must be
given access to routines or kernels that provide computational- and utility-
related functionality at a lower level than the customary BLAS interface.

The first issue is of contemporary concern since a number of recent projects still
use one-dimensional (1D) partitioning when parallelizing dense linear algebra
operations for multithreaded environments [17]. The second is similarly impor-
tant because it is tempting to simply call sequential BLAS within each thread
once the work has been partitioned.

Figure 1 offers a preview of the performance observed when 2D partitioning
and low-level optimizations are applied to a special case of parallel Gemm.

2 Partitioning for Parallel Panel-Panel Multiply

Consider the prototypical matrix multiplication C := AB + C with C ∈ R
m×n,

A ∈ R
m×k, and B ∈ R

k×n. In a recent paper [5], we argue that the case where k is
chosen to be relatively small (in the k = 256 range) and m and n relatively large
is the most important special case of this operation, for a number of reasons: (1)
the general case (m, k, n of any size) can be cast in terms of this special case, (2)
most operations supported by LAPACK can (and should) be cast in terms of this

4 How the programmability issue is addressed by FLAME is discussed in [9, 10].



special case, and (3) this special case can achieve near-optimal performance. In
the literature this case is often referred to as a rank-k update. We prefer calling
it a general panel-times-panel multiply (Gepp). We will restrict the discussion
to this special case.

Now we describe basic ideas behind the partitioning of computation among
threads for parallel execution.

The usual, and simplest, way to parallelize the Gepp operation using t
threads is to partition along the n dimension:

C =
(
C0 · · · Ct−1

)
and B =

(
B0 · · · Bt−1

)

where Cj and Bj consist of nj ≈ n/t columns. Now, Cj := ABj + Cj can be
independently computed by each thread. We will refer to this as a 1D work
partitioning since only one of the three dimensions (m, n, and k) is subdivided.
Clearly, there is a mirror 1D algorithm that partitions along m. In this paper
we consider k to be too small to warrant further partitioning.

When distributed memory architectures became popular in the 1980s and
1990s, it was observed, both in theory and in practice, that as the number
of processors increased, a 2D work and data partitioning is required to attain
scalability5 within dense linear algebra operations like Gemm. It is for this reason
that libraries like ScaLAPACK [18] and PLAPACK [19] use a 2D data and work
distribution. While the cost of data movement is much lower on multithreaded
architectures, we suggest that the same basic principle applies to exploiting very
large numbers of simultaneously executing threads.

To achieve a 2D work partitioning, t threads are logically viewed as forming
a tr × tc grid, with t = tr × tc. Then,

C =

⎛
⎜⎝

C0,0 · · · C0,tc−1

...
...

Ctr−1,0 · · · Ctr−1,tc−1

⎞
⎟⎠ , A =

⎛
⎜⎝

A0

...
Atc−1

⎞
⎟⎠ , and B =

(
B0 · · · Btc−1

)
,

with Cij ∈ R
mi×nj , Ai ∈ R

mi×k, and Bj ∈ R
k×nj (mi ≈ m/tr and nj ≈ n/tc),

so that each task Ci,j := AiBj + Ci,j can be computed by a separate thread.
The purpose of this partitioning is to create parallelism through independent

tasks that each perform a sequential Gepp.

3 Anatomy of the Sequential, High-performance Gepp
Algorithm

The following is a minimal discussion of key internal mechanisms of the state-of-
the-art Gemm implementation present within the GotoBLAS [5]. This discussion
will allow us to explain how to reduce redundant memory-to-memory copies in
the multithreaded implementation.
5 Roughly speaking, scalability here should be understood as the ability to retain high

performance as the number of processors is increased.



Algorithm: C := Gepp(A,B, C)

Č0

Č1
.
.
.

+:=

Ǎ0

Ǎ1
.
.
.

B

Pack B into B̃
for i = 0, . . . , M − 1

Pack and Transpose Ǎi into Ã

Či := ÃB̃ + Či

endfor

Fig. 2. Outline of optimized implementation of Gepp.

Consider again the computation C := AB + C where the k dimension is
relatively small. Assume for simplicity that m = bmM where bm and M are
integers. Partition

C =

⎛
⎜⎝

Č0

...
ČM−1

⎞
⎟⎠ and A =

⎛
⎜⎝

Ǎ0

...
ǍM−1

⎞
⎟⎠ ,

where Či and Ǎi have bm rows. Figure 2 gives a high-performance algorithm for
the Gepp operation. This algorithm requires three highly optimized components,
or low-level kernels:

– Pack B: A routine for packing B into a contiguous buffer6.
– Pack and transpose Ǎi: A routine for packing Ǎi into a contiguous

buffer. Often this routine also transposes the matrix to improve the order
in which data is accessed by the Gebp kernel routine. This transpose is
orchestrated so that the packed and transposed matrix, Ã, is in the L2 cache
upon completion.

– Gebp kernel routine: This routine computes Či := ÃB̃ + Či using the
packed buffers. Here, Gebp stands for general block-times-panel multiply.

On current architectures the size of Ǎi is chosen to fill about half of the L2 cache
(or the memory addressable by the TLB), as explained in [5]. Considerable effort
is required to tune each of these kernels, especially Gebp.

Two relevant key insights may be gathered from [5]. First, the cost of packing
Âi is not much greater than the cost of loading the L2 cache, so that, while
significant, it is also an unavoidable cost. This means that the column dimension
of B should be large. Second, the cost of packing B is significant and should,
therefore, be amortized over as many blocks of A as possible. This calls for a
careful look at how packing occurs in a parallel implementation.

6 Note that B is typically embedded in an array with more than k rows and is thus
not contiguous.



4 Avoiding Redundant Packing in the Parallel Gepp

The description of the highly tuned GotoBLAS Gepp implementation brings to
light the overhead that is incurred if one naively calls the dgemm library routine
to perform each task: not only will there be redundant parameter checking, but
there will also be redundant packing of B and/or submatrices Ǎi.

Redundant packing of submatrices Ǎi is less of a concern for two reasons.
First, redundant packing is cheaper because the copy is not necessarily written
back to memory and ends up in the L2 cache. Second, creating redundant copies
is unavoidable if each processing core has its own L2 cache; the submatrix has
to be loaded into each L2 cache, regardless. Thus, if tr × tc = 1 × t, the naive
approach that simply invokes the sequential dgemm routine can be expected to
be quite effective.

The packing of matrix B into B̃ is a different matter. It is more expensive
since typically B is large enough that this operation requires both reading from
and writing to memory. Now, if tr > 1, then the separate calls to dgemm per-
formed by the jth column of threads would each repack Bj . The problem is
potentially compounded by the fact that during this redundant packing there is
contention for the limited bandwidth to memory. Thus, it can be argued that
redundant packing of submatrices of B should be avoided, and, if possible, all
available processor-bound threads should be employed during the packing of B.

5 Experiments

In this section we provide early evidence that the issues discussed in this paper
are observed in practice. For this we employed a 16 CPU Itanium2 server. While
the effects are somewhat limited when there are only 16 simultaneously executing
threads, one would expect the effects to become more pronounced as systems
utilize larger numbers of CPU cores, as is expected in the near future.

FLAME/C. The experiments were coded using the FLAME/C API, a program-
ming interface that implements common linear algebra operations in an object-
based environment [20]. The programmability issues in the multithreaded arena
that FLAME/C solves are discussed in a recent paper [9].

Target platform. Experiments were performed on an SGI Altix ccNUMA sys-
tem containing eight dual-processor Itanium2 nodes. Each pair of CPUs shares
4GB of local memory with the other CPUs to form a logically contiguous ad-
dress space of 32GB. The Itanium2 microprocessor executes a maximum of four
floating-point operations per clock cycle. All CPUs on this system run at 1.5GHz.
This allows a peak performance of 6 GFLOPS (109 floating-point operations
per second) per processor and an aggregate peak attainable performance of 96
GFLOPS, which is represented by the top range of the y-axes in the left column
of graphs in Fig. 3. All computation was performed in double precision (64-bit)
arithmetic.



Matrix sizes tested. For all experiments k = 256, a value for which the GotoBLAS
implementation of dgemm is essentially optimal. Dimensions m and n were varied
from 40 to 6000 in increments of 40. Matrices A, B, and C were stored in arrays
that had a leading dimension equal to the maximum row dimension for our
experiments (6000). This was done to ensure that the packing of the matrices
captured what would typically occur when a Gepp operation is employed in
practice.

Implementations tested. Since the tr×tc mesh of threads includes the 1D special
cases of 1×16 and 16×1, our implementation assumed a logical tr×tc mesh and
accordingly partitioned the matrices and computation. Two implementations
were prepared:

– “FLAME without optimization.” Partitions the work so that each thread
performs a panel-panel multiply and also performs its own packing of B and
Ǎi by calling dgemm.

– “FLAME with optimization.” Prepacks B (utilizing all 16 threads) so that
redundant packing of B is avoided.

In addition, we timed the dgemm routine from the GotoBLAS (version 1.07),
which views the threads as a 1 × 16 mesh on this architecture7.

The basic kernels that provide high performance for the GotoBLAS are the
exact same kernels used by our implementations.

Results. Figure 3 (left) shows the performance attained, in GFLOPS, by the
different implementations. The right column of this figure shows speedup relative
to the GotoBLAS dgemm. We only report results for 4 × 4, 2 × 8, and 1 × 16
partitionings since the remaining configurations yielded worse performance.

We point out that,

– For small matrices the prepacking of B for a 4 × 4 partitioning results in
attenuated performance relative to a similar implementation that packs the
matrix data redundantly. We speculate that this is because the packing op-
eration leaves a part of B̃ in the L3 cache of the processor that packs it.
When a thread on a different processor attempts to read this data to per-
form its calculations, the system’s cache coherence protocol first requires the
data to be written to main memory from the packing processor’s L3 cache.
Subsequently, the data may be read into the cache of a different CPU. We
suspect that this memory update operation causes additional overhead that
cannot be well amortized due to the small matrix dimensions.

– As dimensions m and n become large, it becomes worthwhile to configure
the threads logically as a 2D mesh.

7 Naturally, one can expect changes in future multithreaded implementations of the
GotoBLAS consistent with the insights in this paper.
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Fig. 3. Performance of conventional and low-level parallelizations (16 threads) of Gepp
when m and n are varied and k = 256. Absolute performance is shown in the left column
for three choices of tr × tc while the corresponding speedup relative to the GotoBLAS
dgemm is shown on the right. This figure provides evidence that there is merit to (1)
using a 2D partitioning of work and (2) avoiding redundant packing of B.



6 Conclusions

We have shown empirically that the parallelization of gepp on multithreaded
architectures with many threads benefits from a 2D decomposition and assign-
ment of work. Moreover, we have demonstrated that it is important to avoid
redundant copying of submatrices into contiguous memory.

While we have made similar observations about other linear algebra opera-
tions such as symmetric rank-k update [10] and Cholesky factorization [16], the
study of gepp presents the issues in isolation, devoid of tangential complexi-
ties such as dependencies (between subpartitions) and load-imbalance (due to
matrices with special shape). Moreover, in many ways the Itanium2 server on
which the experiments were performed is a much more forgiving architecture
than more commonly encountered Pentium- or Opteron-based multithreaded
architectures due to its massive memory bandwidth. Finally, given that 16 si-
multaneously executing threads represents a relatively small level of parallelism,
the effects observed here will likely become more dramatic as multicore systems
are designed and built with more CPUs.

We envision a range of further studies and development. The Gepp operation
is the most important of three frequently used cases of Gemm, which also include
Gemp (multiplication of a matrix times a panel of columns) and Gepm (multi-
plication of a panel of rows times a matrix). Similar experiments on multicore
processors are in order given that these systems employ memory architectures
different from that of single-core-per-socket SMPs. Interfaces to lower level ker-
nels should be published to help other researchers perform similar experiments
more easily. Furthermore, de facto standards of such interfaces would allow li-
brary developers to realize the performance gains demonstrated in this paper
across platforms.

Further information

For additional information regarding the FLAME project, visit
http://www.cs.utexas.edu/users/flame/.
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