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Abstract. Replication of data items among different nodes of a wire-
less infrastructureless network may be an efficient technique to increase
data availability and improve data access latency. This paper proposes a
novel algorithm to distribute data items among nodes in these networks.
The goal of the algorithm is to deploy the replicas of the data items in
such a way that they are sufficiently distant from each other to prevent
excessive redundancy but, simultaneously, they remain close enough to
each participant, such that data retrieval can be achieved using a small
number of messages. The paper describes the algorithm and provides its
performance evaluation for several different network configurations.

1 Introduction

Information management in wireless infrastructureless (ad-hoc) networks is not a
straightforward task. The inherently distributed nature of the environment, and
the dynamic characteristics of both network topology and medium connectivity,
are a challenge for the efficient handling of data. The limited resources and
the frequent disconnection of the devices suggest that data should be replicated
and distributed over multiple nodes. A data dissemination algorithm for such a
decentralised approach should balance the need to provide data replication (to
cope with failures) with the need to avoid excessive data redundancy (as nodes
may have limited storage capability). Finally, since in wireless networks both
bandwidth and battery power are precious resources, the algorithm should also
minimise the amount of signalling data.

In this paper, we address the problem of finding adequate locations for the
replicas of a data object using a distributed algorithm. The same problem has
been addressed before (e.g. [1–6]) although with a different set of assumptions.

System Model. We share most of the assumptions described in [5]. In brief, the
ad hoc network is composed of cooperative nodes which are producers and con-
sumers of uniquely identifiable data items, composed of a key and a value with
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application dependent semantics. Each node has storage space available for stor-
ing the items it produces. In addition, the nodes make available limited storage
space for keeping replicas of a fraction of all the objects produced by other nodes.
The system does not require the space at all nodes to be of the same size.

Replication is used to improve availability and reduce access latency. Also,
like in [5], we assume for simplicity that all items are equally sized so that the
space made available by each node can be referred in item units instead of bytes.

Contrary to [5], we assume that there is no predictable access pattern to the
objects which is known in advance by the nodes and does not change. This access
pattern may be used to bias the distribution of the replicas so that the most
popular items have more replicas. We are interested in scenarios where these
access patterns cannot be derived a priori or even during the lifetime of the
system (for instance, short lived objects). Therefore, we aim at distributing data
items as evenly as possible among all the nodes that form the network, avoiding
clustering of information in sub-areas; an uniform dissemination of data items
should leverage lower access latency to any item from any node in the network,
i.e, whenever a data item is requested by a node S, the distance to the node that
provides the reply should be approximately the same, regardless of the location
of S. Naturally, the actual distance depends on multiple parameters, such as the
number of nodes in the network, the amount of memory made available at each
node, and the number of data items.

There are multiple applications for a distributed storage with these charac-
teristics. Cooperative teams may use it to share photographs, annotations or
measurements while on the field [5]. Users on spontaneous networks can use it
to advertise SIP records containing their interests to find other users willing to
play distributed games or chat [7].

Scope and Contribution of the Paper. Implementing a full system with these
characteristics is a complex task that must address multiple challenges and
requires several algorithms. The contributions of this paper are the following.
Firstly, it proposes an algorithm to perform an initial distribution of the data
items that satisfies the requirements above. Additionally, it describes an algo-
rithm for retrieving the information. Problems like updating the data items,
shuffling the item distribution to address node movement or disconnection, or
tolerating uncooperative nodes are out of the scope of this paper (the interested
reader may consult [8]).

2 Overview

An example of the dissemination of an item is depicted in Fig. 1. The dissemi-
nation begins with the broadcast of a registration message. The item is stored
at the producer and included in the message (Fig. 1(a)). The figure depicts in
black the nodes that store a replica of the item. Registration messages carry a
Time From Storage (TFS) field which records the distance (in number of hops)
from the node sending the message to the known closest copy. The TFS for the
message to be forwarded by each node is depicted in the centre of the node.
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Fig. 1. Example of dissemination of an item

Figs. 1(b) and 1(c) show the progress of the dissemination. Nodes use a mes-
sage propagation algorithm named Pampa [9] (to be discussed later) to reduce
the number of transmissions. Nodes decide whether to forward the message after
a small hold period, during which they monitor the network, listening for possible
retransmissions of the same message. During the hold period, each node com-
putes the lowest value of all the TFS fields it has received in a variable named
mTFS. In the figure, nodes that forward a registration message but did not store
the data item are depicted in gray. When forwarding a registration message, a
node sets the TFS field to mTFS+1, accounting for the additional hop needed
to reach the closest copy of the item.

Central to our algorithm is a constant Distance Between Copies (DbC). The
DbC dictates the maximum value of the TFS field and, implicitly, the degree of
replication of the items. DbC is expected to be small. In this example, we use
DbC=2. Fig. 1(d) shows that a node with mTFS=DbC at the end of the hold
period stores a copy of the item and retransmits the message. The TFS of the
message is reset to 0 to let other nodes learn about the newly stored copy and
update their mTFS variables accordingly (see for example Fig. 1(e)).

The final state of the system after the dissemination of the item is depicted
in Fig. 1(f). Although only a small number of nodes have stored the item, a
replica is stored at no more than DbC hops away from any of the nodes.

Broadcast Algorithm. We use the Pampa [9] broadcast algorithm to propagate
dissemination and query messages. In comparison with a conventional flooding
algorithm, Pampa reduces the number of nodes required to transmit a message
by having nodes more distant to the previous forwarder to broadcast the message
earlier. Nodes closer to the source (i.e., those whose expected additional coverage
would be smaller) do not retransmit. Pampa does not require devices to be
aware of their location or of the location of their neighbours. Instead, each node
uses the Received Signal Strength Indicator (RSSI) of the first retransmission
listened to set the hold period. The hold period is set such that nodes with a
lower RSSI expire their timers first. During the hold period, nodes count the



number of retransmissions listened and, at the end of the hold period, they
do not retransmit the message if a predefined threshold was reached. Based on
evaluation results presented in [9], in this paper we use a threshold value of 2.

Due to the store-and-forward nature of the algorithm, Pampa is not used as
a black-box. Next, we discuss how Pampa was adapted for our purposes.

3 Dissemination

A global overview of the dissemination algorithm was presented in Sec. 2. This
section provides additional details on the steps executed by each node.

Forwarding registration messages and storing items. A node only decides
whether to forward (or drop) a registration message and whether to store or
not the corresponding data item at the end of the hold period. The decision
takes as input the following parameters: i) the output of the Pampa’s algorithm,
that accounts only with the number of retransmissions listened; and ii) the value
of mTFS. The data item is stored if, at the end of the hold period, mTFS=DbC.
Note that if some other node in the vicinity previously decided to store the data
item, it had retransmitted the message with TFS set to zero and, therefore,
mTFS would have been reset accordingly. The message is forwarded if the data
item was stored or if the output of Pampa’s algorithm suggests it.

Computing the hold period. The base value for the hold period is given by the
underlying Pampa broadcast algorithm. Pampa computes the delay based on
the signal strength which, in turn, depends on the relative location of nodes.
We have also seen that if a node is the first node in its own vicinity to decide
to forward a message and mTFS=DbC, then it stores a copy of the data item.
Therefore, depending on the deployment of the nodes, and of the location of the
sources of the registration messages, some nodes may end up storing much more
items than others. To promote a balanced distribution of items, regardless of the
physical location of nodes, our algorithm applies a bias to the base value of the
hold period derived by Pampa. The bias is a function of the number of items
already stored by the node.

When a node whose storage occupancy ratio is above some threshold receives
a registration message with TFS=DbC, it multiplies Pampa’s hold period by a
factor proportional to the occupancy ratio of its storage space. Precisely, the de-
lay is determined by the function holdPeriod = hP×

(
1 + occup−thresh

1−thresh × bias
)
,

where hP represents the hold period computed by Pampa, occup is the current
occupancy ratio of the storage space, and thresh and bias are configuration pa-
rameters indicating respectively the minimal threshold for triggering this func-
tion and a weight of this component on the final value of the hold period. In the
simulations presented in Sec. 5 thresh=0.7 and bias=2.0.

Memory management. We assume that each node has some memory region re-
served for storing data items. Nodes keep on adding items to this region until it



is completely filled. Only then, nodes are required to drop stored items to make
room for new items. Note that our scheme to compute the hold period already
attempts to balance the memory occupation among nodes. If a nodes needs to
make room for a new item, it will randomly selected one of the previous entries.
We note that policies like Least Recently Used (LRU) or other deterministic poli-
cies should be avoided in our algorithm. This is because a deterministic criteria
applied to different nodes would likely select the same entry for replacement.
This undesirable behaviour would eliminate a large number of replicas of the
same item resulting in an uneven distribution.

Analytical Properties of the Algorithm. At the end of the dissemination, and
assuming a perfect networking environment without message losses and if nodes
did not discard any item from their local storage, the following properties can
be derived concerning the distance of the nodes to some data item.

All nodes, with the exception of those at the margins of the networked region,
should be able to find a copy of the data item at a distance not higher than
DbC+1

2 r (where r is the transmission range of the devices) or
⌈
DbC+1

2

⌉
hops.

This results from the fact that each node storing a copy of the item will become
the “closest copy” to nodes that have served either as predecessors or successors
in the dissemination of the registration message. An interesting case happens
when DbC is even what may leave some nodes equidistant (in hops) of at least
two copies of the item. Fig. 1(f) shows such a node at the centre of the network.

From the previous result it is possible to derive the expected average dis-
tance from any node to a data item, assuming an uniform deployment of the

nodes. Function τ is given by τ (DbC) =
∑DbC

i=0

⎛
⎝⌈

i+1
2

⌉ π( i+1
2 r)2−π( i

2 r)2

π

(
DbC+1

2 r

)2

⎞
⎠ =

∑DbC
i=0 (� i+1

2 �(2i+1))
(DbC+1)2

and successively partitions a circle with radius correspond-
ing to the DbC in semi-circles centred at the node storing the copy of the item.
The function accounts with the proportion of the area contributed by each semi-
circle and with the distance in hops of the nodes located in that semi-circle to
the node storing the copy. Function τ has the following values for small DbCs:
τ(2) = 1.55(5), τ(3) = 1.75 and τ(4) = 2.2.

4 Data Retrieval

To retrieve some item, a node begins by looking for it in its local storage. If
the item is not found locally, the node initiates a search in its vicinity. This is
implemented by broadcasting a query message with a limited range, given by a
variable qTTL. This variable is initialised with a small value and is successively
adjusted, in order to adapted to the network conditions. Function τ , introduced
in the analysis above, is used to set the initial value of qTTL. If no answer to the
query message is received from the vicinity within a predefined amount of time,
the query will be broadcast with a TTL large enough to deliver the message to



every node in the network. This broadcast should be avoided as it requires the
transmission of as many messages as the data dissemination algorithm.

When a node receives a query message and does not have the item in its local
storage, it will have to decide whether to forward or drop the query message.
Again this decision is made after an hold period, according to the criteria defined
by the underlying Pampa broadcast algorithm. Note that if the TTL field of the
message has reached the value of 0 the query is simply dropped. If the query
messages is retransmitted, the forwarding node pushes its own address to a route
stack field of the message, in a route construction process similar to the route
discovery algorithm in some source routing protocols for MANETs (e.g. [10]).

If the key is found, the node sends a point to point reply to the source of the
query without waiting the delay suggested by Pampa. The reply message follows
the path constructed in the routeStack field of the query. The TFS field of the
reply is set to 0 at the origin of the reply and incremented at every intermediate
hop to capture the distance at which the data item was found.

The reply message is unreliably forwarded by the intermediate hops, thus
there is some probability that the reply is lost. On the other hand, no provision
is taken to limit the number of replies sent to the node. Therefore, there is a
reasonable probability that at least one of the routes constructed during the
query propagation remains valid until the reply is delivered.

When the node that issued the query receives the first reply, it performs
corrective measures over the data distribution and the qTTL value. A reply
found far away from the source of the query signals an uneven distribution
of the item. Therefore, the node that issued the query stores the item if the
reply was received from a node located more than DbC hops away. Given that
the dissemination algorithm aims at achieving an adequate distribution of the
items, the distance (in number of hops) from the source of the query to any
item should be approximately the same and will depend mostly of the number
of neighbours of the node and their storage space. After each query, qTTL is
tuned by weighting its previous value with the distance at which the reply was
found (available in the TFS field of the reply). The goal is to reduce the number
of queries requiring a second broadcast while keeping qTTL as small as possible.

5 Evaluation

We have implemented a prototype of our algorithm in the ns-2 network simulator
v. 2.28. The simulated network is composed of 100 nodes uniformly disposed over
a region with 1500mx500m. The simulated network is an IEEE 802.11 at 2Mb/s.

Runs are executed for 900s of simulated time. Each run consisted of 400
queries over a variable number of disseminated data items, as described below.
Data items have 300 bytes and are disseminated in time instants selected uni-
formly between 0 and 400s. Note that the size of the data items is only relevant
for estimating the traffic generated at the network; when considering memory
availability at each node we have simply taken into account the number of data
items stored at each node. Queries start at 200s and are uniformly distributed



until the 890s. The nodes performing the queries and the queried items are se-
lected using an uniform distribution. The simulation ensures that only advertised
records can be queried.

No warm-up period is defined. All values presented below average 100 inde-
pendent runs, combining different node deployments, query and dissemination
times. The evaluation uses two metrics. The “average distance of the replies”
measures the distance (in number of hops) from the querying node to the source
of the first reply received. The distance of a reply is 0 if the value is stored in the
querying node. The “average number of transmissions per query” measures the
total number of query and reply messages (initial transmissions and forwarding)
performed by all nodes and divides it by the number of queries.

Theoretic Idealised Model and Saturation Point. The simulation results are com-
pared with an execution of the algorithm, analytically computed for an idealised
network where nodes are uniformly distributed and the space made available at
the nodes within each circle with radius DbC+1

2 r is sufficient to store all the
disseminated items.

The storage capacity in a network region containing n nodes is given by
n × (

s + i
N

)
where i is the number of items advertised, N the number of nodes

in the system (recall that nodes keep the items they advertise in a separate region
of the storage space), and s is the storage space made available at each node for
data items advertised by other nodes. We define the “saturation points” (SP) of
our algorithm as the multiple solutions of the equation n × (

s + i
N

)
= i. Each

solution will correspond to a different configuration that is capable of storing all
the data items being advertised and, therefore, that should be able to provide
all the replies in the target average distance given by function τ .

In this evaluation we are interested in comparing the implementation of the
algorithm with this ideal model, given that it characterises the best results that
can be achieved. In particular, to evaluate the performance of the algorithm close
to the SP and to compare the performance for different values of DbC.

Sensitivity to Different Network Configurations. The performance of the algo-
rithm is affected by the number of nodes in the neighbourhood of each node, the
storage size at every node and the number of items advertised in the network.
To evaluate the effect of the variation of each of these parameters individually,
we fixed a value for each in a baseline configuration. Each parameter was then
individually varied keeping the remaining consistent with the baseline config-
uration. The number of neighbours was varied by configuring the nodes with
transmission ranges between 150 and 325 meters. The number of neighbours
was estimated by counting the number of nodes that received each broadcast
message on each simulation with the same transmission range. A transmission
range of 250m was settled for the baseline configuration. The storage size was
varied between 2 and 16 items. In the baseline configuration, each node makes
available storage for 10 items. The number of items advertised was varied be-
tween 50 and 800. Advertisements were uniformly distributed by the nodes. In
the baseline configuration, 200 data items are advertised.



 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 r
ep

ly
 d

is
ta

nc
e

Saturation point ratio

DbC=2
DbC=3
DbC=4

(a) Variation of number of neighbours

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 r
ep

ly
 d

is
ta

nc
e

Saturation point ratio

DbC=2
DbC=3
DbC=4

(b) Variation of storage size

Fig. 2. Average distance of the replies
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Note that the baseline configuration is below the SP for all values of DbC.
Figure 2 shows the average distance of the replies in the simulations. The x axis
harmonises the results by presenting them according to a ratio to the SP given

by
n×(s+ i

N )
i . Error bars show the highest and lowest average distance of the

replies of a subset of the simulations that excluded the 10% with higher and
lower values. To facilitate the comparison with the theoretical model, the figures
show the values of function τ for every DbC tested.

When the system is below the SP, our algorithm exhibits a smaller aver-
age reply distance than the computed for the idealised model. Our approach
is creating more replicas than estimated by the idealised model, resulting in an
increased proximity of the nodes to the data items. When the system approaches
the SP, as expected, the average reply distance increases (as it becomes impos-
sible to store all the items in the target DbC). The target distance is reached
with SP > 1. Still, the system continues to provide acceptable results, and in
the majority of the cases copies are found within only a few hops in excess of
the optimum limit.

We identify two differences between the idealised and the experimental mod-
els to justify the discrepancies: i) since nodes are randomly deployed, it is un-
likely that at every retransmission, there exists one node located precisely over
the limit of the transmission radius of the previous source. Smaller distances



result in additional hops travelled by the messages, and reduce the effective area
(and nodes) that should be accounted in the estimation of the SP; ii) concurrent
decisions, amplified by the delay in the propagation of the messages may permit
to nodes in proximity to simultaneously decide to store the items.

Figure 3 depicts results for different numbers of advertised items (in the
x axis). It shows that DbC plays an important role in the performance of the
algorithm. It can be seen that the average distance of the replies for the different
values of DbC tend to approximate as the storage capacity of the region is
reduced. In particular, the lines for DbC=2 and DbC=3 intersect around the
SP for DbC=2. This is the expected behaviour of the algorithm, given that, by
definition, above the SP, it is not possible to store all information at the target
range.

Traffic. The average number of messages per query is presented in Fig. 4. It is
interesting to notice the overlap, for each value of DbC, of the lines that capture
the behaviour of the system with the size of the storage space and with the
number of items. This confirms that when the system is below the SP, none of
these factors influences the number of messages transmitted per query. Addi-
tionally, we compared the growing ratios of the curves for the average distance
of the replies (Fig. 2(b) and 3) and for the number of messages forwarded/query
(Fig. 4) in both scenarios. The difference between these ratios is less than 2%
when the storage space is changed and less than 7% when the number of items
changes. These small values show that the growing of the average distance implies
an almost linear grow of the number of messages. This confirms the efficiency
of our adaptive mechanism for defining qTTL: it prevents the query algorithm
from frequently resorting to a full broadcast, even in adverse conditions.

On the other hand, we expect the number of messages to drop significantly
when the density increases, because we benefit from the properties of Pampa,
which adapts the proportion of nodes retransmitting a message to the network
density. Comparing results depicted in Figs. 2(a) and 4, it can be seen that
although the distance of the replies tends to stabilise with the grow of the net-
work density, the number of messages continues to diminish. Here, the difference
between the ratios is higher than 36%.

6 Related Work

Several papers have addressed the problem of distributing copies of data items
in MANETs. However, most of the previous work makes stronger assumptions
about the network or the application scenario. Some assume that it is possible
to collect statistics about data usage, such as which items are accessed more
frequently [5] or obtain similar information from user profiles [4]. Others assume
that there is a single data source [6] or that nodes are aware of their location [1–
3]. In contrast with previous approaches, our work is targeted at spontaneous
networks (such as rescue teams) where all nodes need to share many short lived
data items. Our algorithm prevents the duplication of data items in neighbour-
ing nodes by counting the number of hops travelled by an item before being



stored. Instead of using geographical information, we take advantage of the fine
dissemination properties of Pampa to ensure the geographical distribution of the
information.

7 Conclusions

This paper has presented an algorithm for retrieving and distributing informa-
tion in ad-hoc networks. The algorithm is fully distributed. Its main goal is to
ensure an even geographical distribution of the data items, so that requests for
a given data item are satisfied by some nodes close to the source of the query.

This goal is obtained by combining different techniques. Data items are dis-
seminated with a counter to provide a minimal distance between the copies;
a broadcast protocol reduces the number of messages required for propagation
and increases the geographical distance between the hops. Finally, an adaptive
mechanism allows to limit the propagation of most queries. Simulation results
show that the algorithm achieves a fair dissemination of items throughout the
network and that a small number of messages is required to retrieve items.
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