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Abstract. As the number of mobile device users increases, the need
for mobile business applications development increases as well. How-
ever, such development is impeded by the limited resources available on
typical mobile phones. This paper presents a context-dependent XML
compression approach that enables the deployment of business applica-
tions on mobile devices. That is, the compressed XML document is not
self-contained and cannot be de-compressed without using information
shared between the sender and the recipient. By relying on shared infor-
mation, we obtain a better compression ratio than existing context-free
compression algorithms.

1 Introduction

Nowadays, mobile devices, especially cell phones are everywhere. According to a
recent study [1], there are almost 2.5 billions of connected mobile devices in the
world. Furthermore, the capabilities of the available phones are also increasing,
making it possible to envision complex mobile applications. However, business-
related applications running on cell phones are still rare. The major obstacles
are the following: 1) limited data storage capability, 2) limited network access
capability, 3) limited computation capability, and 4) limited display capability.

Most business applications require the client side to process large amounts
of data either locally or through high-speed networks. Currently, most existing
cell phones cannot fulfill these requirements. Typical solutions for large data
issues in the world of desktop applications are compression and caching. Data
are compressed in order to achieve fast transmission, and then de-compressed
for access or caching. However, for mobile devices, the compressed data might
still be too large for efficient transmission. More importantly, mobile devices
lack an efficient way to de-compress the compressed data, and process or store
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the de-compressed data. Hence, business application development for mobile
devices requires an innovative approach to compress and de-compress data. In
this paper, we propose to use context-dependent compression on business data.
That is, the compressed data does not need to contain a lot of additional data for
the de-compressor to interpret. De-compression relies on the presence of shared
information between the sender and the recipient of the data. This approach was
developed at SAP labs to enable building business applications on regular J2ME-
enabled cell phones [2,3]. Data objects are transformed into XML format to be
compressed on the server side, and clients de-compress the compressed XML file
to restore data objects. The main contributions of our approach are that the
context-dependent compression provides a compression rate for business objects
exchange higher than existing compression algorithms, and the de-compression
algorithm is very simple, which can easily adapt to the capabilities of most cell
phones.

XML is frequently used to serialize objects and exchange them through the
network. Also, many tools are currently available to compress XML to facilitate
transferring and querying. These tools can be categorized as follows:

1. General compression tools like Winzip[4], Gzip[5], etc., which compress XML
files as regular text files without considering the XML structure,

2. XML compression tools such as XMill [6], XMLPPM [7], XAUST [8], which
provide better compression ratios than general tools by using the XML struc-
ture to optimize the compression results, and

3. Query-able XML compression tools including XPress [9], TREECHOP [10],
and XGrind [11], which adopt a homomorphic transformation strategy [12]
for compressing the XML structure and supporting queries without de-
compression at the cost of compression efficiency reduction.

All the aforementioned compression approaches are context-free. The com-
pressed XML document contains all the information required to perform the
de-compression, and every transformation is therefore independent. However, in
many business applications, object structures are usually predefined, shared on
both server and client sides, and rarely changed during run-time. Based on this
shared knowledge, the de-compressor can interpret a compressed file even when
the XML structure information is not contained by the compressed file. Further-
more, the coding schema for the compression could be optimized to get better
compression ratios, because the de-compressor already has some knowledge. The
proposed solution combines coding XML file by multiple coding schemata and
de-coupling transmission of XML structure information from data transmission.
By using multiple coding schemata, we are able to reduce the number of bits
required to represent the different symbols transmitted. De-coupling of struc-
ture transmission and data transmission drastically reduces the bits transferred,
especially for short messages.

This paper is organized as follows. We describe the principles supporting
XML compression in Section 2. In Section 3, we describe the proposed com-
pression mechanism. Results from a comparative study with other compression
approaches are presented in Section 4. We conclude in Section 5.



<PurchaseOrder no="1456">
<Date>06/05/05</Date>
<CustomerID>765345</CustomerID>
<0rder>
<Item>
<ProductNo>P-4534</ProductNo>
<Quantity>2</Quantity>
</Item>
<Item>
<ProductNo>P-9182</ProductNo>
<Quantity>1</Quantity>
</Item>
</Order>
</PurchaseOrder>

PurchaseOrder)

Fig. 1. XML Encoding of a Simple Object Fig. 2. Parse Tree for the XML Encoding

2 Principles Supporting XML Compression

Kropf et al. [13] have claimed that the information to be transmitted between two
systems may be reduced when considering the knowledge (semantic, syntactic,
etc.) shared by both systems. Consequently, only the information that is not
shared needs to be exchanged, which leads to context-dependent compression.

2.1 Object-Oriented XML

Our compression approach is mostly used to exchange application data in XML
format between server and client; messages are relatively small and usually con-
tain a single data object or a collection of data objects. We use a simple algo-
rithme to transform objects to XML files (many tools exist to perform this task,
see SOX [14] and XStream [15]). First, the name of the object class becomes
the root element of the XML file. Each simple attribute (number or text) of
the object is transformed into an attribute of the root element. Each complex
attribute (subordinate object) is transformed to a child element. For collection
objects (vectors, hash tables, etc.), each contained object is transformed to a
child of the wrapping element representing the collection object. This process
continues recursively until the whole object has been transformed (see Fig. 1).

2.2 Structured Compression

All general-purpose compression algorithms, such as gzip [5], do not take into
account knowledge of internal file structure, business-specific information or data
types. They assume that the file to be compressed is composed of plain text
with symbol (ASCII characters or their combinations) occurrence frequencies
unknown in advance. These algorithms collect their statistics based on a limited
data set, build an ad-hoc encoding dictionary, and attach this dictionary to the
compressed file. These algorithms assume that every file/message sent is unique



(in terms of frequency distribution), is unstructured, and that all parts of the
message are equally important. Because of these assumptions, most general-
purpose compression algorithms do not work well on short messages and do not
achieve the highest possible compression ratios.

If we consider compression in terms of information entropy [16], we can then
apply the additional knowledge of business objects structure to reduce the en-
tropy of the message, making it possible to provide a better compression mech-
anism that yields a better compression ratio. This is the case for specialized
business applications; we have additional information about business objects ex-
changed between the server and the client. For instance, since most business
applications use XML as a universal data exchange format, we can use some
knowledge of the file structure such as DTD or XML schema. The DTD pro-
vides us with all possible states we may encounter when parsing the XML file:
tag names, attribute names, and values inside every attribute and inside every
tag. The DTD also limits the type of information that may be encountered in
each of these states. Consequently, we can determine the probability of meet-
ing certain information in certain states, and can use this knowledge to reduce
message entropy. For example, we know that inside a lexical unit delimited by
symbols ‘<’ and ‘>’ there is a “very high” probability to encounter one of the
tag names listed in the DTD. In fact, most XML compression algorithms use
this approach (XMill [6], XGrind [11], Xpress [9]). To further reduce entropy,
we build multiple encoding dictionaries, one for each state. This way, we can
use longer lexical items (sequences of characters) and their occurrence frequency
distribution. Every state has its own set of lexical items and therefore its own
dictionary. If more than one state have the same data domain, we can reuse the
dictionary. The decision to reuse a dictionary depends on the expected gain in
compression.

The advantage of using state-specific dictionaries is that each dictionary is
then relatively small, and the resulting encoding requires fewer bits per symbol.
Indeed, in many situations, the number of available lexical items per state is
finite. We can often list all possible values for these states. In other situations
where some items do not exist in a dictionary, we can list the most frequent items,
collected by statistical processing. In this latter case, we can introduce “escape”
symbols, which are used to inform the parser that the following sequence of
symbols is not a part of the dictionary, but a combination of lower-level symbols,
like, for example decimal numbers or ASCII characters.

2.3 Combining XML parser and compressor

The XML parser implements a finite state machine that navigates the XML
document tree (Fig. 2), as determined by an XML schema or DTD. This ap-
proach is somewhat similar to XAUST [8], where the compressor uses a recur-
sive finite state machine, one machine per syntactic element. In the approach we
propose, we replace the recursive finite state machines by multiple dictionaries
with a single finite state machine. Every state corresponds to a specific syntac-
tic unit (XML tag, attribute, value) where symbol combinations have different



Tree Path (key) Dictionary elements (bits: value)
/ 1 : PurchaseOrder
00: Date 01: CustomerID 10: Order

/PurchaseOrder 111:no 1101:; 1100: \
/PurchaseOrder/Date 1: 06/05/05 0: \
/PurchaseOrder/CustomerID 1: 765345 0: '\
/PurchaseOrder/Order/ 1: item 0: '\

/PurchaseOrder/Order/Item/ (;:()é?u\antlty 11: ProductNo 101:;
/PurchaseOrder/Order/Item/ProductNo|0: P-4534 11: P-9182 10: \
/PurchaseOrder/Order/Item/Quantity [0: 1 11:1 10:\
/PurchaseOrder/no 1: 1456 0:\

Fig. 3. DTD-Specific Dictionaries of the PurchaseOrder Object

occurrence probabilities. The transitions correspond to the passage from one
syntactic unit to the next. The machine can be presented as a graph with nodes
corresponding to states and arcs corresponding to transitions. The graph can
be automatically created from the DTD or from any formal syntax description
such as BNF. Formally, the parser is defined as F' = (A, V,T), where A is the
set of symbols read by the parser, V' are vertices or states and T are transitions
(T:VxA-=V).

Every state (v; € V) has its own alphabet of lexical items (i.e., its own
dictionary A;). In fact, the dictionaries are built according to the parse tree
following the DTD syntax. Lexical items can be single characters, words, tag
names or possible choice options in the data field. Every lexical item (a € A)
has a probability of appearance in the current state P(a|v;). This probability is
determined by collecting statistics on a set of messages, which provides better
results than using a single file, as many implementations of gzip and similar
compression utilities do. In XML, symbols like: ‘<’, >’ ‘"’ and ‘&’ play the
role of delimiters which force a transition in the state machine. To enable the
transition from one state to the next, the state-specific alphabet contains not
only the set of possible lexical items but also the set of transition delimiters.
Formally, A; = {L;}U{E;} C A, where L; are possible lexical items for the state
v; and F; are symbols marking possible transitions leaving state v;. These state
transition delimiters also occur with a certain probability that can be calculated
using statistical analysis. Then, every symbol from A; can be encoded. Figure 3
shows the dictionaries generated based on the tree of Figure 2, where ‘;” is the
end-of-state symbol and ¢\’ is an escape symbol.

The compression module replaces every lexical item in the business object
with a bit sequence. Figure 4 shows the resulting bit sequence to encode the
XML stream of Figure 1. The length of the sequence depends on the encoding
algorithm used (e.g., Huffman encoding [17,18], arithmetic compression [19]).
At the end of a state, the encoder adds an end-of-state symbol (’;’), which is
also encoded in the same dictionary. If it can be determined from the data
schema that there is only one lexical item in the state and that the next state
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Fig. 4. Compressed XML Stream for the PurchaseOrder Object

is predetermined, then the end-of-state symbol may be omitted. For example,
XML attribute encoding presumes that each attribute name is always followed
by an attribute value, and hence the transition system between the attribute
name and its value can be omitted.

2.4 De-Coupling Dictionaries From Business Messages

One characteristic of business applications is that many messages of the same
type will have the same frequency distribution with high probability and there-
fore can share the same dictionary. This assumption allows the de-coupling of
the dictionary from the message. De-coupling helps both with compression ra-
tio and performance as dictionaries can be sent once for many messages, hence
making messages shorter. Context-free compression techniques cannot make this
assumption, and therefore cannot gain from past messages. Dictionary construc-
tion is the most time consuming part of the compression. By using a single
dictionary for multiple messages, dictionary construction does not need to be
performed for every message. Furthermore, it can be done on the server where
the CPU is much more powerful that on the (mobile) client. Once compression
dictionaries are compiled, they can be deployed to the client and be ready for
a fast streamline compression and de-compression. It is also possible to collect
frequency statistics during business operations and periodically optimize and
re-compile dictionaries using new statistical data.

When comparing our compression approach to others, we must consider the
fact that the dictionary is not sent with every message, but once in a while.
Consequently, we must determine the average number of messages that are sent
between dictionary updates. This will allow us to compute the adjusted compres-

sion rate (C,) as:
Ca = N j—wpDa

where N is the number of bytes sent in the compressed message, D is the number
of bytes of the dictionary, p is the probability that the dictionary is sent with
the message, and M is the number of bytes of the uncompressed message. Fur-
thermore, if changes in the dictionary are not too significant, i.e. one additional
option has been added to the possible attribute selections, then we can send
differential updates for the dictionary, including only updated symbols. This is
possible since dictionaries are only dependent on states. A change in one dic-
tionary will not change others. Differential updates for business objects will be
described in another paper. Every time we change the dictionary, we update its
version. When the mobile client initializes the session with the server, it includes
the version of local dictionaries into the session handshake. If the version is out
of date, the server sends differential dictionary updates first.



3 Implementation

The compression algorithm consists of a compressor and a de-compressor. The
compressor is implemented using J2SE and is running on the server. The de-
compressor is implemented using J2ME and is running on mobile phones. The
compressor’s operations can be broken up in two stages. During the first stage,
it collects frequency of occurrence statistics and builds a set of dictionaries. This
is done by analyzing a sample set of XML files used in the business process. The
compressor first determines the frequency of occurrence of all XML elements,
attributes, and tag values by state, where every tag, attribute, and value consti-
tutes a separate state. The alphabet for a specific state consists of all the lexical
items allowable by the XML schema (L;) plus two transition symbols (E;): a
generic end-of-state symbol (‘;’) and an escape symbol (‘\’) for adding new val-
ues to the state without rebuilding the whole set of dictionaries. For a given
state, we can choose a single generic dictionary to encode symbols not present
in the state-specific dictionary, which requires a single escape character. These
symbols are also considered in collecting the frequency distribution statistics.

Once the alphabet for each state (A;) is defined and the frequency of each
symbol is determined, the compressor builds a Huffman binary tree [17,18] for
each state. These trees are in turn compressed using generic dictionaries also
built by using the Huffman compression algorithm.

During the second stage of the compression, actual messages are compressed
for transmission to the mobile device. This process requires the compressed dic-
tionaries to be already deployed on mobile phones. The compressed message is
wrapped into a standard XML header that has some attributes to identify the
XML schema, the compression schema, the encoding, the encryption method,
and some other parameters. The attributes can be easily extended because of
the flexibility of XML. Clearly, the wrapping schema can also be compressed
using the proposed approach, the compression dictionary required being pre-
deployed with the compressor.

When de-compressing, the parser is combined with the de-compressor and
therefore it has knowledge of the current state. The transitions are determined
from the XML schema used. The de-compression algorithm is very simple and
allows to uncompress and to de-serialize an XML stream into a business object in
a single run, bypassing the conversion phase from binary format to text format.
The general algorithm is illustrated as follows:

decompress (state,input)
tree := findDictionaryTree(state)
do
token := getToken(tree,input)
if (token <> end-of-state)
nextState := getNextState(state,token)
decompress (nextState,input)
end-if
while (token <> end-of-state)
end



The de-compression starts at the root element of the XML document (the
initial state). Function findDictionaryTree() can readily identify the dictio-
nary for this element as dictionaries are organized in a tree structure that follows
the DTD syntax. As we move from state to state, we are moving from one dictio-
nary to another. The de-compressor then reads bits from the input stream and
immediately converts them into lexical items using the Huffman binary three for
the current state (getToken()). This is accomplished by reading one byte from
the stream and then traversing the Huffman tree one node at a time by shifting
single bits. If we reach the end of the current byte, we retrieve the next byte from
the input stream. When a leaf node in the Huffman tree is reached, we determine
the corresponding lexical item and return it to the parser. The parser changes its
state depending on the lexical item identified (getNextState()). This method
simply implements the transition table 7" for the current state. We then call the
decompress () method recursively from this new state. This process is repeated
sequentially until the end-of-state symbol for the root element is reached.

This algorithm only requires 1) one encoded tree that reflects the structure
of the XML file (based on the DTD or XML schema) and 2) a number of small
binary trees that determine Huffman codes for every possible lexical item in
each state. The transition from one node to another in the Huffman code tree
is similar to the transition in the XML structure and therefore the decoding
module is very compact and efficient. It is suitable for the computation capability
of mobile phones.

The encoding algorithm is a little bit more complex; however in many busi-
ness cases the amount of information transferred from server to the mobile device
and from the device to the server is highly asymmetric. In this case, instead of
encoding the whole XML file, the client can only send back the values modified
by the user.

4 Comparison with Other Algorithms

In order to assess the quality of the proposed context-dependent compression
algorithm, we compared it with a number of existing context-free compression
algorithms, namely: bzip2 [20], gzip, and XMill. We executed these compression
algorithms on a number of test cases on a Pentium 4 machine (CPU 3.4 GHz and
2 GB RAM) running Windows XP. The test cases included 7 typical messages
used to exchange data between SAP mobile business applications and the SAP
mobile infrastructure middle-ware. Each message contains a list objects; the
smallest message contains 20 business objects (3,742 bytes) and the biggest
message contains 436 business objects (100,029 bytes). For each test case, we
measured the adjusted compression ratio (C,). Better compression mechanisms
will show smaller compression ratios. The results are presented in Table 1, which
shows message sizes for the smallest (M4, ) and largest (My,q.) messages, and
the average (1) and standard deviation (o) of C, over all the test cases.

When comparing gzip and XMill, we see that gzip performed better for
smaller messages, but worse for bigger messages. These results are consistent



Table 1. Comparison of compression algorithms; 1, is the smallest message, Mmmaz
is the largest message. u and o are the average and standard deviation (o) of the
adjusted compression ratio Cg, p is the probability of sending the dictionary with the
message

p  Size of Mmin Size of Mmaa I o
(Bytes) (Bytes)
Original file 3742 100029 1 0
Context-dependent compression 0.00 127 4108 0.0422 0.0088
0.10 535 4516 0.0732 0.0333
0.33 1489 5470 0.1457 0.1260
0.50 2169 6150 0.1974 0.1923
bzip2 772 8417 0.1520 0.0725
gzip 648 10864 0.1603 0.0617
Xmill 919 9189 0.1690 0.0903

with results from [21]. Table 1 shows that gzip has a better average compres-
sion rate than XMill since our test cases tend to be small, which is typical for
object exchange in mobile applications. The results also support our claim that
context-dependent compression performs better than other algorithms. When all
the dictionaries are sent once every 10 messages (p = 0.1), the average compres-
sion rate is two times better than other compression algorithms. Only when the
dictionaries are sent once every 3 messages (p = 0.33) is the compression rate
close to the other algorithms. Considering the nature of business applications
where multiple messages of the same nature are sent between client and server
in a short time interval, p is much closer to 0 than to 0.33.

5 Conclusion

The context-dependent compression method provides a high compression ratio
and a simple de-compression algorithm that works reasonably on very simple
mobile devices. This compression approach performs very well for mobile busi-
ness applications where an intensive exchange between server and client takes
place, using short XML messages, and when the structure of the XML docu-
ments is known in advance. This method will probably not prove as efficient for
unstructured files or even for XML files having diverse schemata and frequency
distributions.

One of the important advantages of this method is a simple de-compression
algorithm combined with a simple XML parser. This approach better suits mo-
bile devices, which neither have powerful CPUs to de-compress data nor enough
memory to keep all the files uncompressed. Our proposed method requires more
resources on the compressing side and a more complex infrastructure for dic-
tionary management, however these requirements are justified for an enterprise
environment where the servers normally have high CPU resources. In addition
such an environment typically has a business process work-flow that is already
in place which makes it simple to manage the synchronization of dictionaries.



Overall, there is an increasing demand for the efficient compression methods
for mobile client-server applications, which is growing rapidly with the growth
of the mobile application market. The context-dependent compression method
described in this paper provides good results for this niche and potentially can
be used in many applications.
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