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Abstract. Hyperspectral imagery is a new type of high-dimensional im-
age data which is now used in many Earth-based and planetary explo-
ration applications. Many efforts have been devoted to designing and
developing compression algorithms for hyperspectral imagery. Unfortu-
nately, most available approaches have largely overlooked the impact of
mixed pixels and subpixel targets, which can be accurately modeled and
uncovered by resorting to the wealth of spectral information provided
by hyperspectral image data. In this paper, we develop an FPGA-based
data compression technique which relies on the concept of spectral un-
mixing, one of the most popular approaches to deal with mixed pixels and
subpixel targets in hyperspectral analysis. The proposed method uses a
two-stage approach in which the purest pixels in the image (endmem-
bers) are first extracted and then used to express mixed pixels as linear
combinations of end-members. The result is an intelligent, application-
based compression technique which has been implemented and tested on
a Xilinx Virtex-II FPGA.

1 Introduction

Due to significantly improved spectral resolution provided by latest-generation
hyper-spectral imaging sensors, hyperspectral imagery expands the capability of
multispectral imagery in many ways, such as subpixel target detection, object
discrimination, mixed pixel classification and material quantification [1]. Each
pixel in a hyperspectral image is composed of hundreds of reflectance values
which define a ‘spectral signature’ for each pixel. By realizing the importance
of hyperspectral data compression, many efforts have been devoted to designing
and developing compression algorithms for hyperspectral imagery [2]. Two types
of data compression can be performed, lossless and lossy, in accordance with re-
dundancy removal. More specifically, lossless data compression is generally con-
sidered as data compaction which eliminates unnecessary redundancy without
loss of information. By contrast, lossy data compression removes unwanted re-
dundancy or insignificant in-formation which results in entropy reduction. Which
type of compression should be used depends heavily upon the application under
study. For example, in medical imaging, lossless compression is preferred. How-
ever, in this case only small compression ratios can be achieved (typically, 3:1



or below). On the other hand, video processing such as high definition televi-
sion (HDTV) can greatly benefit from lossy compression. For remotely sensed
imagery, both types of compression have been investigated in the past [2].

Our main focus in this work is to design compression techniques able to re-
duce significantly the large volume of information contained in hyperspectral
data while, at the same time, being able to retain information that is crucial
to deal with mixed pixels and subpixel targets. These two types of pixels above
are essential in many hyperspectral analysis applications, including military tar-
get detection and tracking, environmental modeling and assessment at sub-pixel
scales, etc. A subpixel target is a mixed pixel with size smaller than the available
pixel size (spatial resolution) [3]. So, it is embedded in a single pixel and its ex-
istence can only be verified by using the wealth of spectral information provided
by hyperspectral sensors. A mixed pixel is a mixture of two or more different
substances present in the same pixel [4]. In this case, spectral information can
greatly help to effectively characterize the substances within the mixed pixel via
spectral unmixing techniques [5]. When hyperspectral image compression is per-
formed, it is critical and crucial to take into account these two issues, which have
been generally overlooked in the development of lossy compression techniques in
the literature [6].

The possibility of real-time, onboard data compression is a highly desir-
able feature to overcome the problem of transmitting a sheer volume of high-
dimensional data to Earth control stations via downlink connections. An exciting
new development in the field of specialized commodity computing is the emer-
gence of hardware devices such as field programmable gate arrays (FPGAs),
which can bridge the gap towards onboard and real-time analysis of remote
sensing data [7, 8]. FPGAs are now fully reconfigurable, which allows one to
adaptively select a data processing algorithm (out of a pool of available ones)
to be applied onboard the sensor from a control station on Earth. The ever-
growing computational demands of remote sensing applications can fully benefit
from compact, reconfigurable hardware components and take advantage of the
small size and relatively low cost of these units as compared to clusters or net-
works of computers [9].

In this work, we explore a solution based on mapping the proposed compres-
sion algorithm on FPGA hardware. The remainder of the paper is organized
as follows. Section 2 develops a new application-oriented lossy compression al-
gorithm which utilizes a two-stage approach: first, a pixel purity index (PPI)
algorithm is used to extract the purest pixels (endmembers) in the image, and
then a linear spectral unmix-ing (LSU) procedure is used to express mixed pixels
as linear combinations of endmembers, weighted by their respective abundance
fractions. Section 3 maps the proposed compression algorithm in hardware using
systolic array design. Section 4 provides experimental evidence about the algo-
rithm performance using a real image data set collected by the NASA Jet Propul-
sion Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS).
Parallel performance data are given using a Xilinx Virtex-II FPGA. Finally,
Section 5 concludes with some remarks and hints at plausible future research.



2 Hyperspectral Data Compression

2.1 Compression Algorithm

The idea of the proposed data compression algorithm is to represent a hyper-
spectral image cube by a set of fractional abundance images [10]. More precisely,
for each N-dimensional pixel vector fi, its associated abundance vector ai of E
dimensions is used as a fingerprint of f with regards to E endmembers obtained
by the pixel purity index (PPI) algorithm. The implementation of the proposed
data compression algorithm can be summarized by the following steps:

1. Use the PPI algorithm to generate a set of E endmembers {ee}E
e=1.

2. For each pixel vector fi in the input scene, use the LSU algorithm to estimate
the corresponding endmember abundance fractions ai = {ai1, ai2, · · · , aiE}
and approximate fi = e1 · ai1 + e2 · ai2 + · · · + eE · aiE . Note that this is a
reconstruction of fi.

3. Construct E fractional abundance images, one for each endmember.
4. Apply lossless predictive coding to reduce spatial redundancy within each of

the E fractional abundance images, using Huffman coding to encode predic-
tive errors.

2.2 Pixel Purity Index (PPI)

The PPI is a well-known approach to deal with the problem of mixed pixels in
hyperspectral imaging. In this work, we use an improved version of the PPI algo-
rithm [4] as the first step of our compression algorithm. Due to the algorithm’s
propriety and limited published results, we provide an outline of the algorithm
which is based on limited published results and our own interpretation [3].

The PPI generates a large number of random, N -dimensional unit vectors
called ‘skewers’ through the dataset. Every data point is projected onto each
skewer, and the data points that correspond to extrema in the direction of a
skewer are identified and placed on a list. As more skewers are generated, the
list grows, and the number of times a given pixel is placed on this list is also
tallied. The pixels with the highest tallies are considered the final endmembers.

The inputs to PPI are a hyperspectral data cube F with N dimensions; a
maximum number of endmembers to be extracted, E ; the number of random
skewers to be generated during the process, K ; a cut-off threshold value, tv,
used to select as final endmembers only those pixels that have been selected as
extreme pixels at least tv times throughout the process; and a threshold angle,
ta, used to discard redundant endmembers. The output of the algorithm is a set
of E final endmembers {ee}E

e=1. The algorithm is summarized as follows:

1. Produce a set of K randomly generated unit vectors {skewerj}K
j=1.

2. For each skewerj , all sample pixel vectors fi in the original data set F are
projected onto skewerj via dot products of |fi · skewerj | to find sample



vectors at its extreme (maximum and minimum) projections, thus forming
an extrema set for skewerj which is denoted by Sextrema(skewerj). Despite
the fact that a different skewerj would generate a different extrema set
Sextrema(skewerj), it is very likely that some sample vectors may appear in
more than one extrema set. In order to deal with this situation, we define
an indicator function of a set S, denoted by IS(x), to denote membership of
an element x to that particular set as follows:

IS(fi) =
{

1 if x ∈ S
0 if x /∈ S

}
(1)

3. Calculate the PPI score associated to the pixel vector fi using the following
equation:

NPPI(fi) =
K∑

j=1

ISextrema(skewerj)(fi) (2)

4. Find the pixels with value of NPPI(fi) above tv, and form a unique set of
endmembers {ee}E

e=1.

2.3 Linear Spectral Unmixing (LSU)

For each sample pixel vector fi in F, a set of abundance fractions specified by
ai = {ai1, ai2, · · · , aiE} is obtained using the set of endmembers {ee}E

e=1, so that
fi can be expressed as a linear combination of endmembers as follows:

fi = e1 · ai1 + e2 · ai2 + · · · + eE · aiE (3)

In order to achieve the decomposition above, we multiply each pixel fi by
(MTM)−1MT , where M = {ee}E

e=1 and the superscript ‘T ’ denotes the matrix
transpose operation. In the expression above, abundance sum-to-one and non-
negativity constraints are imposed, i.e.,

∑E
e=1 aie = 1 and aie ≥ 0 for all i =

{1 · · ·T }, where T is the total number of pixels in the image F, and for all
e = {1 · · ·E}, where E is the total number of endmembers extracted by PPI.

3 FPGA-Based Hardware Implementation

In this subsection, we describe a hardware-based parallel strategy for implemen-
tation of the hyperspectral data processing chain which is aimed at enhancing
replicability and reusability of slices in FPGA devices through the utilization of
systolic array de-sign [11]. One of the main advantages of systolic array-based im-
plementations is that they are able to provide a systematic procedure for system
design that allows for the derivation of a well defined processing element-based
structure and an interconnection pattern which can then be easily ported to real
hardware configurations [12].



Fig. 1. Systolic array design for the proposed FPGA implementation of the PPI.

The rationale behind our systolic array-based parallelization can be summa-
rized as follows. The PPI algorithm consists of computing a very large number
of dot-products, and all these dot-products can be performed simultaneously.
As a result, a possible way of parallelization is to have a hardware system able
to compute K dot-products in the same time against the same pixel fi, where
K is the number of skewers and i = {1 · · ·T }, with T being the total number
of pixels in the input scene. Now, if we suppose that we cannot simultaneously
compute K dot-products but only a fraction K/P , where P is the number of
available processing units, then the PPI algorithm can be split into P passes,
each performing dot-products, where T is the total number of input pixels to be
fed to the systolic. From an architectural point of view, each processor receives
T pixels, computes T dot-products, and keeps in memory the two pixels having
produced the min and the max dot-products. In this scheme, each processor
holds a different skewer which must be input before each new pass.

Fig. 1 illustrates the above principle, in which local results remain static at
each processing element, while pixel vectors are input to the systolic array from
top to bottom and skewer vectors are fed to the systolic array from left to right.
In Fig. 1, asterisks represent delays while skewer(n)

j denotes the value of the
n-th band of the j-th skewer, with j ∈ {1, · · · , K} and n ∈ {1, · · · , N}, being N

the number of bands of the input hyperspectral scene. Similarly, f(n)
i denotes the

reflectance value of the n-th band of the i-th pixel, with i ∈ {1, · · · , T }, being T
is the total number of pixels in the input image. The processing nodes labeled
as dot in Fig. 1 perform the individual products for the skewer projections. On



the other hand, the nodes labeled as max and min respectively compute the
maxima and minima projections after the dot product calculations have been
completed. In fact, the max and min nodes can be respectively seen as part of
a 1-D systolic array which avoids broadcasting the pixel while simplifying the
collection of the results.

The main advantage of the systolic array described in Fig. 1 is its scalability.
Depending of the resources available on the reconfigurable board, the number of
processors can be adjusted without modifying the control of the array. In order
to reduce the number of passes, we decide to allocate the maximum number of
processors in the available FPGA components. In other words, although in Fig.
1 we represent an ideal systolic array in which T pixels can be processed, this
is not the usual situation, and the number of pixels usually has to be divided
by P , the number of available processors. In this scenario, after T/P systolic
cycles, all the nodes are working. When all the pixels have been flushed through
the systolic array, T/P additional systolic cycles are thus required to collect the
results for the considered set of P pixels and a new set of P different pixels
would be flushed until processing all T pixels in the original image. Finally, to
obtain the vector of endmember abundances {ai1, ai2, · · · , aiE} for each pixel fi,
the multiplication of each fi by (MTM)−1MT , where M = {ee}E

e=1, is done as
described in [13], i.e. using a simple parallel block algorithm.

The algorithm described above was synthesized using Handel-C, a hardware
design and prototyping language that allows using a pseudo-C programming
style. The source code in Handel-C corresponding to step 2 of our FPGA imple-
mentation of the PPI algorithm is shown in Algorithm 1. The implementation
was compiled and transformed into an EDIF specification automatically by using
the DK3.1 software package. We also used other tools such as Xilinx ISE 6.1i1

to carry out automatic place and route (PAR), and to adapt the final steps of
the hardware implementation to the Virtex-II FPGA used in experiments.

4 Experimental Results

This section provides an assessment of the effectiveness of the hardware-based
compression algorithm described in sections 2 and 3. The algorithm was imple-
mented on a Virtex-II XC2V6000-6 FPGA, which contains 33,792 slices, 144
Select RAM Blocks and 144 multipliers (of 18-bit x 18-bit). The algorithm was
applied to a real hyperspectral scene collected by an AVIRIS flight over the
Cuprite mining district in Nevada, which consists of 614 × 512 pixels and 224
bands. The site has several exposed minerals of interest. Fig. 2(left) shows a
spectral band of the image, and Fig. 2(right) plots the spectra of five minerals
measured in the field by U.S. Geological Survey (USGS).

In order to explore the quality of the compressed images produced by the pro-
posed compression method, Table 1 reports the spectral angle similarity scores
[1, 3] among the USGS reference signatures in Fig. 2 and the PPI-extracted end-
members from the resulting images after data compression (the lowest the scores,
1 http://www.xilinx.com



Algorithm 1 Handel-C implementation of the PPI for FPGAs.
void main(void) {

unsigned int 16 max[E]; //E is the number of endmembers
unsigned int 16 end[E];
unsigned int 16 i;
unsigned int 10000 k; //k denotes the number of skewers
unsigned int 224 N ; //N denotes the number of bands
par (i = 0; i < E; i++) max[i] = 0;
par (k = 0; k < E; k++) {

par (k = 0; k < E; k++) {
par (j = 0; j < N ; j++) {

Proc Element[i][k](pixels[i][j],skewers[k][j],0@i,0@k);}}}
for (i = 0; i < E; i++) {

max[i]=Proc Element[i][k](0@max[i],0, 0@i, 0@k); }
phase 1 finished=1
while (!phase 2) { //Waiting to enter phase 2 }
for (i = 0; i < E; i++) end[i]=0;
for (i = 0; i < E; i++) {

par (k = 0; k < E; k++) {
par (j = 0; j < N ; j++) {

end[i]=end[i]&&Proc Element[i][k](pixels[i][j],skewers[k][j],0,0);}}}
phase 2 finished=1
global finished=0
for (i = 0; i < E; i++) global finished=global finished&&end[i];

Table 1. Spectral similarity scores among USGS spectra and endmembers extracted from the original
image, and from several reconstructed versions of the image after applying PPI/LSU, JPEG2000 and
SPIHT algorithms with different compression ratios.

Mineral Original PPI/LSU: JPEG2000: SPIHT:
signature image 20:1 40:1 80:1 20:1 40:1 80:1 20:1 40:1 80:1
Alunite 0.063 0.069 0.078 0.085 0.112 0.123 0.133 0.106 0.119 0.129
Buddingtonite 0.042 0.053 0.061 0.068 0.105 0.131 0.142 0.102 0.125 0.127
Calcite 0.055 0.057 0.063 0.074 0.102 0.128 0.139 0.097 0.122 0.134
Kaolinite 0.054 0.059 0.062 0.071 0.114 0.140 0.151 0.110 0.134 0.146
Muscovite 0.067 0.074 0.082 0.089 0.123 0.145 0.167 0.116 0.139 0.152

the highest the similarity), using compression ratios of 20:1, 40:1 and 80:1 (given
by different tested values of input parameter E). Spectral similarity scores below
0.1 are widely considered as a requirement in many applications [4].

As expected, the highest-quality endmembers were extracted from the orig-
inal data set. As the compression ratio was increased, the quality of extracted
endmembers was decreased. For illustrative purposes, we have also included the
results provided by two standard methods in our comparison, i.e., the wavelet-
based JPEG2000 multi-component [14] and the set partitioning in hierarchical
trees (SPIHT) [15]. The JPEG2000 implementation used for our experiments
was the one available in kakadu software 2. Both techniques are 3-D compres-
sion algorithms that treat the hyperspectral data as a 3-D volume, where the
spectral information is the third dimension. Results in Table 1 show that such
3-D techniques, which enjoy great success in classical image processing, may not
necessarily find equal success in hyperspectral image compression. Specifically,
techniques able to preserve the spectral information are required to characterize
mixed pixels and subpixel targets. As demonstrated by Table 1, for the same
compression ratio, a 3-D lossy compression may result in significant loss of spec-
2 http://www.kakadusoftware.com



Fig. 2. AVIRIS hyperspectral image (left) and USGS mineral signatures (right).

tral information which can be preserved much better, in turn, by an application-
oriented algorithm such as the proposed PPI/LSU. It should be noted that the
serial versions of the algorithms in Table 1 required several minutes of compu-
tation to compress the AVIRIS Cuprite data set in a PC with AMD Athlon
2.6 GHz processor and 512 MB of RAM (specifically, the PPI/LSU algorithm
required almost one hour).

The average performance of the systolic array is mainly determined by the
dot-product capacity, that is the number of additions/subtractions executed in
one second. Fig. 3(left) shows the estimated computing times considering various
bandwidths (from Bw = 10 to Bw = 50 Mbytes/second) and various numbers
of processors (P = 100, P = 200 and P = 400). On the other hand, Fig.
3(right) shows the speedups compared to a single-processor run of the PPI in
one of the Thunderhead nodes, again with a bandwidth ranging from 10 to 50
Mbytes/second and a systolic array with 100, 200 and 400 processors. As shown
by Fig. 3, theoretical speedups can be very high.

In order to validate the estimations in Fig. 3 on a real FPGA architecture,
Table 2 shows a summary of resource utilization by the proposed systolic array-
based implementation of the PPI/LSU compression algorithm on a complete
system (systolic array plus PCI interface), implemented on a Xilinx XC2V6000-
6 board, using different numbers of processors. We measured an average PCI
bandwidth of 15 Mbytes between the PC and the board, leading to a speedup of
120 when running the PPI/LSU with a maximum number of P = 400 processors.
The optimum trade-off between the achieveable parallelism versus clockrate was
found for the maximum number of processors used since the balance between the
speedup found and the operation frequency (around 18 MHz) was satisfactory
while at the same leaving enough room in the FPGA for implementation of
additional algorithms (only 36% of the FPGA resources were used).

It should be noted that, in our experimentation, the performance was seri-
ously limited by the transfer rate between the PC and the board: the array is
able to absorb a pixel flow of above 40 Mbytes/second, while the PCI interface



Fig. 3. Time in seconds for computing the full hyperspectral data compression algo-
rithm using a reconfigurable board connected to a PC through the I/O bus (left) and
speedup compared to a single-processor version running on a single AMD PC (right).

Table 2. Resource utilization for the FPGA implementation (operation frequency given in MHz).

Number of processors Total gates Total slices % of total Frequency

100 97,443 1,185 3% 29,257
200 212,412 3,587 10% 21,782
400 526,944 12,418 36% 18,032

can only provide a flow of 15 Mbytes. This experiment, however, demonstrated
that the considered board, even with a non-optimized PCI connection (with no
DMA), can still yield very good speedup for the PPI/LSU, with a final execution
time for all the compression procedure of only 7.94 seconds for P = 400 proces-
sors. This response is not strictly in real-time since the cross-track scan line in
AVIRIS, a pushbroom instrument [1], is quite fast (8.3 msec). This introduces
the need to process a full image cube (614×512 pixels with 224 bands) in no
more than 5 seconds to fully achieve real-time performance. However, we antici-
pate that the proposed FPGA design can still be significantly optimized to fulfill
real-time requirements (even without increasing the number of processors) by
improving the communication bandwidth between the PC and the FPGA board,
which seems feasible given the limited flow of the considered PCI interface.

5 Conclusions

The wealth of spectral information provided by hyperspectral sensors is essen-
tial in many applications, and needs to be retained by compression algorithms.
Standard 3-D lossy compression techniques may cause significant loss of crucial
information that is provided by mixed pixels and subpixel targets, which are
essential in hyperspectral imaing applications. In order to satisfy (near) real-
time requirements, we have developed an FPGA-based algorithm for onboard
data compression. A major goal is to overcome the bottleneck introduced by the



bandwidth of the downlink connection from the observatory platform. Experi-
mental results demonstrate that our hardware version makes appropriate use of
computing resources in the considered FPGA, and further provides a response
in (near) real-time which is believed to be acceptable in most applications. It
should be noted that efficient onboard compression has been a long-awaited goal
by the remote sensing community. In this regard, the reconfigurability of FPGA
systems opens many innovative perspectives from an application point of view.
Although the experimental results presented in this paper are encouraging, fur-
ther work is still needed to arrive to optimal parallel design and implementations
for the proposed and other hyperspectral compression algorithms.
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