
Periodic Load Balancing on the N -Cycle:

Analytical and Experimental Evaluation

Christian Rieß and Rolf Wanka

Computer Science Department, University of Erlangen-Nuremberg, Germany
sichries@informatik.stud.uni-erlangen.de,rwanka@cs.fau.de

Abstract. We investigate the following very simple load-balancing al-
gorithm on the N-cycle (N even) which we call Odd-Even Transposi-
tion Balancing (OETB). The edges of the cycle are partitioned into two
matchings canonically. A matching defines a single step, the two match-
ings form a single round. Processors connected by an edge of the match-
ing perfectly balance their loads, and, if there is an excess token, it is
sent to the lower-numbered processor. The difference between the real
process where the tokens are assumed integral and the idealized process
where the tokens are assumed divisible can be expressed in terms of the
local divergence [1]. We show that Odd-Even Transposition Balancing
has a local divergence of N/2− 1. Combining this with previous results,
this shows that after O(N2 log(KN)) rounds, any input sequence with
initial imbalance K is perfectly balanced. Experiments are presented that
show that the number of rounds necessary to perfectly balance a load
sequence with imbalance K that has been obtained by pre-balancing a
random sequence with much larger imbalance is significally larger than
the average number of rounds necessary for balancing random sequences
with imbalance K.

1 Introduction

Background. In the standard abstract formulation of load balancing in a dis-
tributed network, processors are modeled as the vertices of a graph and links
between them as edges. Each processor initially has a collection (called load) of
unit-size, integral jobs (called tokens). The object is to balance the number of
tokens at each processor by transmitting tokens along edges according to some
local scheme. This problem has obvious applications to job scheduling and other
coordination tasks in parallel and distributed systems. It also arises in the con-
text of finite element computations, and in simulations of physical phenomena.

One load-balancing approach is the dimension exchange paradigm [2, 3],
where the network is decomposed into a sequence M1, . . . , Md of perfect match-
ings. The edges of the matching are oriented. We write [i:j] for a single edge
connecting processors i and j. Each balancing round consists of d steps, one for
each matching. In step k, each pair [i:j] of processors holding xi and xj tokens,
resp., that are paired in matching Mk balance their load as closely as possible:
their loads become �xi+xj

2 � and �xi+xj

2 �, resp., (this means that the excess token,

M
1

1 2 3 4 5 6 1 2 3 4 5 6

M
2

Fig. 1. The two matchings of OETB on the N-cycle for N = 6. Note that the excess
token goes to the lower-numbered processor.

if there is any, is sent to processor i). This model is equivalent to the (periodic)
balancing circuit paradigm [4]. Such a circuit is composed of a sequence of N
wires connected by simple toggling devices called balancers. The matchings of
the dimension exchange paradigm correspond to the balancers forming a round
of d steps. The purpose of such a circuit is to balance the flow of tokens along the
wires. Rounds are repeated until the total load is spread among the processors
and wires, resp., as evenly as possible.

The Problem. We investigate the following very simple load-balancing algorithm
on the N -cycle (N even) which we call Odd-Even Transposition Balancing. The
edges of the cycle are partitioned into two matchings canonically (e. g., see Fig. 1)
that together form a single round. We call this algorithm Odd-Even Transposition
Balancing (OETB) due to its similarity to Odd-Even Transposition Sort [5,
p. 240].

We are interested in upper bounds on the number of rounds necessary to
perfectly balance the tokens in terms of the initial imbalance (or discrepancy) K
(i. e., maxi |xi − xj |) and the cycle’s graph theoretical properties. If the tokens
are allowed to be subdivided arbitrarily, this idealized balancing process can be
described in terms of Markov chains (see [6]; for the related diffusion paradigm,
see [2, 7, 8]). However, there is a deviation between this idealized process and
the actual token process. In [1], the local divergence Ψ has been introduced
that allows for upper bounding the difference between the two processes. In our
setting, Ψ only depends on the matchings of the balancing method. In this paper,
we compute the local divergence of OETB exactly.

A further question we address experimentally is the hardness of balancing.
We run OETB on random load sequences with certain initial discrepancy K until
discrepancy K ′ is ensured. Then we compare the number of steps necessary to
perfectly balance these “pre-balanced” sequences with the number of steps nec-
essary to perfectly balance random load sequences with initial discrepancy K ′.

Related Work. The dimension exchange method was introduced by Cybenko [2]
and by Hosseini et al. [3] in the context of load balancing on the hypercube
which explains the name of the paradigm. Balancing circuits were introduced
by Aspnes et al. [4]. They replace the comparators of some hypercubic sorting
circuits on N = 2k wires by balancers and show that these depth-O(k2) circuits
perfectly balance any input sequence. Interestingly, the number of steps does
not depend on the inital discrepancy K of the input sequence. A complementary
result was shown by Aharonson and Attiya [9]. They show that, if N �= 2k,

there is no fixed balancing circuit that perfectly balances any input. Therefore,
if N �= 2k, a fixed circuit has to be applied repeatedly to the input sequence,
and the number of repetitions depends at least on K.

A similar approach to load balancing is diffusion [2, 7, 8]. Here, for each i,
processor i with load xi and d neighbors shifts about xi/(d + 1) tokens to every
neighbor. In [2, 7, 8], this method is analyzed assuming that the tokens can be
subdivided arbitrarily.

In both paradigms, one can identify the actual token process and the idealized
process where it is assumed that the load can be arbitrarily subdivided. We refer
to x

(t)
i as the number of tokens stored in processor i after t rounds, and to ξ

(t)
i

as the idealized, i. e., fractal load of processor i after t rounds.
Rabani et al. [1] introduced the local divergence Ψ of a load-balancing al-

gorithm (regardless whether it is a diffusion or a dimension exchange method)
which characterizes the deviation between the idealized and the actual token
process. Ψ does not depend on K, only on the algorithm and the used net-
work. It is shown that, for all t, maxi |ξ(t)

i − x
(t)
i | ≤ Ψ , and that, in general,

Ψ = O(d · (log N)/(1− λ)), where d is the degree of the network, N the number
of processors, and λ the second eigenvalue of a matrix that describes the algo-
rithm (see Sec. 2). As a consequence, it is shown that any load sequence with
initial discrepancy K is transformed into a sequence with imbalance O(Ψ) in
O(log(K · N)/(1 − λ)) rounds. A further reduction of the imbalance cannot be
shown with this approach. For diffusive load balancing on the N -cycle, Ψ = 3

4N
is proved.

For the dimension exchange model, a sorting-based upper bound of O(K ·N)
for perfect balancing on networks that have an almost Hamiltonian cycle, is also
presented in [1].

Our Contribution. In Sect. 3, we prove Ψ = N/2 − 1. In order to compute the
exact value we also compute the exact powers of the so called round matrix. As
λ = 1 − Θ(1/N2) for the round matrix, this means that after O(N2 log(KN))
rounds the discrepancy is at most N/2 − 1. After further 1

2N2 rounds the load
is perfectly distributed among the processors.

In Sect. 4 experiments are presented that show that the number of rounds
necessary to perfectly balance a load sequence with imbalance K that has been
obtained by pre-balancing a random sequence with much larger imbalance is
significantly larger than the average number of rounds necessary for balancing
random sequences with imbalance K.

2 Details on the Model and on the Results

Odd-Even Transposition Balancing (OETB) works on the N -cycle, N even, with
processors 1, . . . , N . The first matching is M1 = {[1:2], [3:4], . . . , [N − 1:N]}, the
second is M2 = {[2:3], [4:5], . . . , [N − 2:N − 1]} ∪ {[1:N]} (e. g., see Fig. 1). The
step matrices P1 and P2 according to M1 and M2, resp., and the round matrix P

are (in Fig. 1, they are presented for N = 6):

P (1) =

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
2

0 0 0 0
1
2

1
2

0 0 0 0
0 0 1

2
1
2

0 0
0 0 1

2
1
2

0 0
0 0 0 0 1

2
1
2

0 0 0 0 1
2

1
2

⎞
⎟⎟⎟⎟⎟⎠ , P (2) =

⎛
⎜⎜⎜⎜⎜⎝

1
2

0 0 0 0 1
2

0 1
2

1
2

0 0 0
0 1

2
1
2

0 0 0
0 0 0 1

2
1
2

0
0 0 0 1

2
1
2

0
1
2

0 0 0 0 1
2

⎞
⎟⎟⎟⎟⎟⎠ , P = P (1)·P (2) =

⎛
⎜⎜⎜⎜⎜⎝

1
4

1
4

1
4

0 0 1
4

1
4

1
4

1
4

0 0 1
4

0 1
4

1
4

1
4

1
4

0
0 1

4
1
4

1
4

1
4

0
1
4

0 0 1
4

1
4

1
4

1
4

0 0 1
4

1
4

1
4

⎞
⎟⎟⎟⎟⎟⎠

We write P (t,1) = P t−1 · P (1), P (t,2) = P t, P (t,1)−1 = P (t−1,2), and P (t,2)−1 =
P (t,1). P (1,1)−1 is the identity matrix. E. g., P (2,1) = P (1) ·P (2) ·P (1). Note that
all matrices are block matrices. In the round matrix P (t,k), the denominator is
always 22t+k.

The load sequence after round t, t ≥ 0, is x(t) = (x(t)
1 , . . . , x

(t)
N). x

(t)
i denotes

the number of tokens processor i stores after round t. The discrepancy (or im-
balance) of a load squence is D(x(t)) = maxij |x(t)

i − x
(t)
j |. K = D(x(0)) is the

initial discrepancy. The goal is to determine the number T of rounds required to
reduce the discrepancy to some specific value �: we refer to this as �-smoothing.
In general, the number of rounds required to �-smooth an initial sequence will
depend on both � and the initial discrepancy.

In an idealized setting, single tokens are allowed to be split between the
processors involved in a balancing step. In this setting, and with ξ(0) = x(0), it
is easy to see that ξ(t) = ξ(0) · P t. The number of rounds t to �-smooth ξ(0) is
bounded above by t ≤ 2/(1−λ) · ln(KN2/�), where λ is the second eigenvalue of
(a symmetrization of) P [1]. For OETB, it is easy to see that λ = 1 − Θ(1/N2)
because the underlying graph is the N -cycle.

In order to relate the deviation between the integral and the idealized process,
the local divergence has been introduced [1]. Here, we present it already adapted
to OETB on the N -cycle.

Definition 1 ([1]). The local divergence (adapted to OETB and the N -cycle) is

Ψ(P) = max
l

∞∑
t=1

(∑
[i:j]∈M1

∣∣∣P (t,1)−1
li − P

(t,1)−1
lj

∣∣∣+ ∑
[i:j]∈M2

∣∣∣P (t,2)−1
li − P

(t,2)−1
lj

∣∣∣)

Theorem 1 ([1]). The maximum deviation between the idealized process and
the integral process satisfies maxi |ξ(t)

i − x
(t)
i | ≤ Ψ(PT) for all t, where P is the

round matrix and PT its transpose.

Note that the bound depends on the local divergence computed on the transpose
of P .

In this paper, we compute the local divergence for OETB exactly:

Theorem 2. For OETB on the N -cylce, Ψ(PT) = N/2 − 1.

Corollary 1. OETB needs O(N2 log(KN)) rounds to 1-smooth any load se-
quence with initial discrepancy K.

3 Computation of the Local Divergence of OETB

This section is devoted to the proof of Theorem 2.

3.1 Obtaining an Expression for P
(t,k)
ij

Simplifying P . Using the block structure of the matrix enables us to work
with n × n matrices, n = N/2, by choosing every second row and column from
the original matrix. E. g., with N = 6 and n = 3, we get the reduced n × n

matrix Q =

⎛
⎝ 1

4
1
4 0

0 1
4

1
4

1
4 0 1

4

⎞
⎠.

No information is lost in the smaller matrix because its entries are exactly the
same as the neighboring ones in the full matrix; additionally the calculation gets
handier:

Ψ(QT) = max
l

∞∑
t=1

2∑
k=1

(
|Q(t,k)−1

1l − Q
(t,k)−1
nl | +

n∑
i=1

|Q(t,k)−1
il − Q

(t,k)−1
i+1,l |

)

Error propagation on the infinite circle. Consider an infinite linear array
with the nodes numbered from −∞ to ∞ omitting 0, and let node 1 be the pivot.
Fig. 2 shows the error contribution of the surrounding nodes:

11 4 4 6 6 44 11

11 11

11 11

1111

11

2

33 33

2

1

64 5321−3 −2 −1

2

33 33

2

1

11

11446 64 411

11

11

11 11

11

11

node id 64 5321−3 −2 −1−4
time

(1, 1)

(1, 2)

(2, 1)

(2, 2)

(3, 1)

Fig. 2. Token exchange skeleton on an infinite circle – if every second node is left out
the binomial coefficients are clearly visible. In order to obtain P (t,k) one has to multiply
the shown numbers by 2−(2t+k).

We are interested in the contribution of the neighboring nodes to the error
in the pivot. Therefore we trace the error contribution of every single node back
in time. On the infinite array the binomial coefficients show up, which becomes
obvious if every second node is masked out (see Fig. 2 right).

Winding up the infinite array. We will see that winding up the infinite array
leads to an explicit expression for the local divergence of OETB.

When winding the series around the cycle with n nodes then every n-th entry
is mapped on the same node. The following sum from [5, p. 89] extracts and sums
up every n-th entry from a sequence, starting with entry r:

∑
m mod n=r

amzm =
1
n

∑
0≤k<n

ω−kr
n G(ωk

nz) , 0 ≤ r < m, (1)

where ωn = cos(2π/n) + i · sin(2π/n) denotes an n-th primitive root of unity,
and G(z) =

∑∞
m=−∞ amzm a generating function for the am.

We choose a generating polynomial that fixes the maximum coefficient to z0,
symmetrically surrounded by the other coefficients of z±i. A double time step
from (t−1, k) to (t, k) is obtained by multiplying the existing series of coefficients
by

1
22

(
1 · z−1 + 2 + 1 · z1

)
This double step avoids the difficulties that arise on handling a single step from
(t, k) to (t, k) + 1, where the existing polynomial must be multiplied alternately
by 1

2 (z−1 + 1) and 1
2 (1 + z1).

Consequently we distinguish two cases when determining Q
(t,k)
ij , one for the

time steps (t, 1) and one for the time steps (t, 2). Note the offset of 1
2 and that

for d = 2 one requires an additional factor, which comes from the first single
time step:

Q
(t,k)
ij =

⎧⎪⎪⎨
⎪⎪⎩

1
n

n∑
k=0

ωk
n · 1

2

(
1
4ωk

n + 2
4 + 1

4ω
k(n−1)
n

)t

for d = 1

1
n

n∑
k=0

ωk
n · 1

4

(
1 + ω

k(n−1)
n

)(
1
4ωk

n + 2
4 + 1

4ω
k(n−1)
n

)t

for d = 2

Four different cases

– Distinguishing odd and even time steps
The representation of Q

(t,k)
ij suggests a first split of the calculation in two

cases, one for the steps (t, 1) and one for the steps (t, 2). Thus Ψ(QT) =
Ψ1(QT) + Ψ2(QT) where Ψi(QT) denotes the sum over all steps (t, i).

– Splitting to n ≡ 0 mod 2 and n ≡ 1 mod 2
Both cases end up in the same result, but the calculation is slightly different.

Lemma 1. Ψ1(QT) = n
2 , Ψ2(QT) = n

2 − 1 if n ≡ 0 mod 2
Ψ1(QT) = n

2 − 1
2n , Ψ2(QT) = n

2 + 1
2n − 1 if n ≡ 1 mod 2

The calculations for the four cases are very similar. Instead of a full proof of
Lemma 1 we present the calculation for Ψ2(QT) in the case that n ≡ 0 mod 2,
which contains all important intermediate steps and is still reasonably short. For
a full presentation of all four cases see [10].

3.2 Rewriting the Sum as an Easier Expression

Several simplifications apply in the case of OETB to the original equation:

– block circularity
Since the round matrix is block circular, it is possible to leave out the max-
imization over l and put l = 1, since all columns are equal up to circular
shifts, thus

Ψ2(QT) =
∞∑

t=1

(
|Q(t,1)−1

11 − Q
(t,1)−1
n1 | +

n∑
i=1

|Q(t,1)−1
i1 − Q

(t,1)−1
i+1,1 |

)

– symmetry of one column
Since the entries in one column of Q are symmetrical it is possible to sum
over only half of the matrix and multiply it by 2:

Ψ2(QT) =
∞∑

t=1

2
�n/2�∑
i=1

|Q(t,1)−1
i1 − Q

(t,1)−1
i+1,1 |

– telescoping the sum
The sum over the differences Q

(t,1)−1
i1 −Q

(t,1)−1
i+1,1 collapses to a simple differ-

ence Q
(t,1)−1
11 − Q

(t,1)−1
�n/2�,1 due to the unimodality of the winded up binomial

coefficients that form the entries of the matrix:

Ψ2(QT) =
∞∑

t=1

2
(
Q

(t,1)−1
11 − Q

(t,1)−1
j1

)

3.3 Calculating Ψ(QT)

Ψ2(QT) =
∞∑

t=1
2
(
Q

(t,1)−1
11 − Q

(t,1)−1
�n/2�1

)
= 1

n

∞∑
t=0

n−1∑
k=0

(
1 − ω

k�n/2�
n

)(
1
2 + 1

2ω
k(n−1)
n

)(
2
4 + 1

4ωk
n + 1

4ω
k(n−1)
n

)t

= 1
n

n−1∑
k=0

(1−ωk�n/2�
n)(1

2+ 1
2 ωk(n−1)

n)
1−
(

2
4+ 1

4 ωk
n+ 1

4 ω
k(n−1)
n

)
= 1

2n

n−1∑
k=1

1+cos(2πk
n ·(n−1))−cos(2πk

n ·�n
2 �)−cos(2πk

n ·(�n
2 �−1))

sin2(πk
n)

The final task is to handle the cases for �n
2 � properly. As mentioned earlier,

we focus on the case n ≡ 0 mod 2, the other one is substantially the same, but
lengthier.

Ψ2(QT) =
1
2n

n−1∑
k=1

1 + cos
(

2πk
n

)− cos (πk) − cos
(
πk + 2πk

n

)
sin2

(
πk
n

)

The sum can be split into even and odd k now. For even k, we have (1 −
cos(πk)) = 2 and cos

(
2πk
n

)− cos
(
πk + 2πk

n

)
= 2 cos

(
4πk
n + 2π

n

)
; for odd k, the

summand is zero:

Ψ2(QT) =
1
2n

n/2−1∑
k=0

2 + 2 cos
(

4πk
n + 2π

n

)
sin2

(
2πk
n

π
n

)
According to Bromwich [11, p. 216], n2 sin−2 (nφ) =

n−1∑
k=0

sin−2
(

kπ
n + φ

)
,

which can finally be used for solving to

Ψ2(QT) = 2
n

n/2−1∑
k=0

(
sin−2

(
2πk
n + π

n

)− 1
)

= 2
n

(
n
2

)2 sin−2
(

πn
2n

)− 2
n

(
n
2

)
= n

2 − 1 = N
4 − 1

�

4 Experimental Results

4.1 Worst Case Bounds for 1-Smoothing

In [1], a further, sorting-based upper bound of O(N ·K) on the number of rounds
to 1-smooth load sequences with initial discrepancy K is shown, in contrast to the
local divergence-based upper bound of O(N2 log(KN)) rounds for Ψ -smoothing.

Now, we investigate the question whether a break-even point for the two
bounds can be identified experimentally. Since a general method for generating
bad case inputs is not yet known, we produce random load vectors and simulate
the balancing process.

Unfortunately we were not able to identify a break-even point, probably be-
cause the randomly generated load distributions were too far from the (assumed)
worst case bound, but the bad inputs showed to be useful when compared to
the average case behavior of inputs with larger discrepancy, as shown in the
following section.

4.2 Average Case Behaviour of 1-Smoothing

In this section, we show that balancing a randomly chosen input pre-balances
the input in a way that makes it much more robust against further balancing
steps.

Thus balancing for a specified period of time takes away the obvious dif-
ferences in a randomly chosen input and seems to leave a what we call “inner
discrepancy” that is on average hard to 1-smooth.

It is surprising to see that from a fixed discrepancy k0 it is on average much
harder to 1-smooth a randomly chosen input with an initial discrepancy of k1 �
k0 that was pre-balanced to a discrepancy of k0 than taking the hardest vector
from a number of random experiments with an initial discrepancy of k0.

Consequently, if the average running time of random load distributions with
an initial discrepancy of k0 is considered, it is in most cases smaller than the av-
erage remaining balancing time of random load distributions that were balanced
down from an initial discrepancy of k1 � k0 to k0.

Since in the average inputs with larger initial discrepancy need more rounds
for 1-smoothing, this leads to the assumption that these additional rounds are
“created” by earlier balancing steps: Balancing a randomly chosen input several
rounds leaves a load distribution of discrepancy ki that is very hard to 1-smooth
because of the previous balancing steps. See Table 1 and Fig. 3 and 4 for some
typical results.

Table 1. Experimental evaluation: Some typical results are shown for four different
setups. One column contains a single experiment setup, and in the last two rows the
obtained significant difference between sorting a pre-balanced input further and sorting
randomly generated input. Cf. Figures 3 and 4 for tracing the discrepancy’s decrease.

number of nodes (constant) 200 200 100 100

larger initial discrepancy 3200 1600 3200 1600

number experiments (larger discrepancy) 10000 10000 10000 10000

smaller initial discrepancy 400 400 100 400

number experiments (smaller discrepancy) 30000 30000 52030 10000

average number rounds larger dataset 6984 5349 1632 1957

worst example from smaller discrepancy 5418 5418 1176 1896

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250 300 350 400

av
er

ag
e

nu
m

be
r

of
 r

ou
nd

s
ne

ed
ed

remaining discrepancy to smooth

initial discrepancy 3200
initial discrepancy 400

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400

av
er

ag
e

nu
m

be
r

of
 r

ou
nd

s
ne

ed
ed

remaining discrepancy to smooth

initial discrepancy 1600
initial discrepancy 400

Fig. 3. Left: Example on 200 nodes. Starting out with a large initial discrepancy of
3200 results in a very difficult to 1-smooth pre-balanced string in the average when it
reaches a discrepancy of 400 (solid line). Compare the average (much faster) progress
when starting out with an initial discrepancy of 400 (dashed line). On the right the
same setting with a large initial discrepancy of 1600

In Figures 3 and 4 is the average progress on a remaining discrepancy of 400
or 100, resp., shown for two cases, for distributions that are

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

nu
m

be
r

of
 r

ou
nd

s
ne

ed
ed

remaining discrepancy to smooth

initial discrepancy 3200
initial discrepancy 100

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300 350 400

av
er

ag
e

nu
m

be
r

of
 r

ou
nd

s
ne

ed
ed

remaining discrepancy to smooth

initial discrepancy 1600
initial discrepancy 400

Fig. 4. This property seems to be invariant under the number of processors or the initial
discrepancy: On the left an experiments with 100 nodes, large initial discrepancy of
3200 (solid line), smaller initial discrepancy of 100 (dashed line), on the right also 100
nodes, and the discrepancies 1600 and 400

1. pre-balanced from an initial discrepancy of 3200 down to 400 (solid line)
2. randomly chosen with an initial discrepancy of 400 (dashed line)

The two curves show the average number of remaining rounds until the load
balancing distributions were 1-smoothed.

References

1. Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and the
analysis of iterative load-balancing schemes. In: Proc. 39th IEEE Foundations of
Computer Science (FOCS). (1998) 694–703

2. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors.
Journal of Parallel and Distributed Computing 7 (1989) 279–301

3. Hosseini, S., Litow, B., Malkawi, M., McPherson, J., Vairavan, K.: Analysis of a
graph coloring based distributed load balancing algorithm. Journal of Parallel and
Distributed Computing 10 (1990) 160–166

4. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. Journal of the ACM 41
(1994) 1020–1048

5. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing. 2nd edn. Addison-Wesley, Reading, Massachusetts (1998)

6. Busch, C., Mavronicolas, M.: A combinatorial treatment of balancing networks.
Journal of the ACM 43 (1996) 794–983

7. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computations: Numerical
Methods. Prentice-Hall (1989)

8. Boillat, J.E.: Load balancing and poisson equation in a graph. Concurrency:
Practice and Experience 2 (1990) 289–313

9. Aharonson, E., Attiya, H.: Counting networks with arbitrary fan-out. Distributed
Computing 8 (1995) 163–169

10. Rieß, C.: Load-Balancing auf dem Kreis. Studienarbeit, Department of Computer
Science, University of Erlangen-Nuremberg (2006)

11. Bromwich, T.: An Introduction to the Theory of Infinite Series. MacMillan (1926)

