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Abstract. Scientific applications should be well balanced in order to achieve
high scalability on current and future high end massively parallel systems. How-
ever, the identification of sources of load imbalance in such applications is not a
trivial exercise, and the current state of the art in performance analysis tools do
not provide an efficient mechanism to help users to identify the main areas of load
imbalance in an application. In this paper we discuss a new set of metrics that we
defined to identify and measure application load imbalance. We then describe the
extensions that were made to the Cray performance measurement and analysis
infrastructure to detect application load imbalance and present to the user in an
insightful way.

1 Introduction

The current trend in high performance computing is to have systems with very large
number of processors. In the latest list of Top 500 Supercomputing Sites [1], the small-
est system in the top 10 has more than 9,000 processing elements, and the top 3 systems
have more than 25,000 processors each. Moreover, with the recent shift in the micro-
processor industry, which stopped riding the frequency curve and started increasing the
number of processor cores in a chip, we will see a faster growth in the number of pro-
cessing elements in these high end massively parallel systems. With the arrival of the
“many-core” processors, we are going to see several massively parallel systems with
tens and hundreds of thousands of processing elements in the near future. However, in
order to perform at scale on these massively parallel systems, applications will have
to be very well balanced. Thus, users will need performance analysis tools that can
identify and display sources of load imbalance in an intuitive way.

A variety of performance measurement, analysis, and visualization tools have been
created to help programmers tune and optimize their applications. These tools range
from simple source code profilers [2], to sophisticated tracers and binary analysis tools.
However, HPC performance tools currently tend to focus on processor performance,
which is normally measured with hardware performance counters (e.g., Perfctr [3],
PAPI [4], SvPablo [5], HPM Toolkit [6], HPCView [7]); analysis of communication
(e.g., Vampir [8], VampirGuideView [9], Paraver [10], Jumpshot [11]); analysis of the
memory subsystem (e.g., Sigma [12]), performance prediction (e.g., dimemas [13],
Metasim [14]), or a combination of the above (e.g., TAU [15], KOJAK [16], Para-
dyn [17]). However, in general these performance tools do not focus on detection of
load imbalance.



In order to address this problem, we extended the Cray performance measurement
and analysis infrastructure [18], which consists of the CrayPat Performance Collector
and the Cray Apprentice? Performance Analyzer, to automatically identify sources of
performance imbalance, and present to the user in an insightful way. The main innova-
tions presented in this paper include the definition of new metrics for evaluation of load
imbalance in an application, and new insightful approaches for presenting load balance
information in both textual and graphical forms.

The remainder of this paper is organized as follows: In Section 2 we briefly describe
the Cray performance measurement and analysis infrastructure. In Section 3 we discuss
our load balance metrics and demonstrate their use in textual form, using as an example
the ASCI Sweep3d benchmark [19]. In Section 4 we discuss approaches for visual-
ization of load imbalance, also using as example the Sweep3d benchmark. Finally, we
present our conclusions in Section 5.

2 The Cray Performance Measurement and Analysis
Infrastructure

The Cray performance measurement and analysis infrastructure consists of the CrayPat
Performance Collector and the Cray Apprentice? Performance Analyzer. CrayPat pro-
vides an infrastructure for automatic program instrumentation at the binary level with
function granularity. Users can select the functions to be instrumented by name or by
groups, such as MPI, I/O, memory. CrayPat also provides an API for fine grain instru-
mentation. When instrumenting at a function level, users do not need to modify the
source code, the makefile, or even recompile the program. CrayPat uses binary rewrite
techniques at the object level to create an instrumented application, which is generated
with a single static re-link, managed by CrayPat. When using the CrayPat API to in-
strument code regions source code modification and recompilation are needed, but other
than the instrumentation differences, CrayPat and Cray Apprentice? treat code regions
as user functions. Thus, for simplicity, in this paper we will refer to any instrumented
section of the code (code regions, user functions, MPI functions, etc) as functions.

The second main component of the CrayPat Performance Collector is its runtime
performance data collection library, which can be activated by sampling or by interval
timers. Performance data can be generated in the form of a profile or a trace file, and its
selection is based on an environment variable.

A third main CrayPat component is the report generator (pat_report), which is a util-
ity that reads the performance file that was created by the runtime library and generates
text reports, presented in the form of tables.

Finally, the Cray Apprentice? Performance Analyzer is a multi-platform, multi-
function performance data visualization tool that takes as input the performance file
generated by CrayPat and provides the familiar notebook-style tabbed user interface,
displaying a variety of different data panels, depending on the type of performance
experiment that was conducted with CrayPat and the data that was collected. Cray
Apprentice? provides call-graph based profile information and timeline based trace vi-
sualization, supporting the traditional parallel processing and communication mecha-



nisms, such as MPI, OpenMP, and SHMEM, as well as performance visualization for
1/0.

3 Load Imbalance Metrics

The first step in order to be able to report load imbalance in an insightful way is to define
load imbalance metrics that are intuitive. Thus, we defined a couple of metrics: “imbal-
ance percentage” and “imbalance time”. Assuming that n is the number of processing
elements, we define the imbalance percentage of a parallel application! as:

. maximum time — average time n
imbalance percentage = : : X (1
maximum time n—1

The goal of imbalance percentage is to provide an idea of the “badness” of the im-
balance. Thus, to make it intuitive, we defined it to be in the range of 0 to 100, where a
perfectly balanced code segment would have 0 imbalance percentage and a serial por-
tion of a code segment on a parallel application (for example a serial I/O) would have
imbalance percentage of 100. The imbalance percentage corresponds to the percentage
of time that the rest of the team, excluding the slowest processing element, is not en-
gaged in useful work on the given function. If they are idle, this is the “percentage of
resources available for parallelism” that is wasted. In the worst case (as in the example
above), one processing element does all the work, so that the others are 100% wasted.

Notice, however, that a section of code that has a high imbalance percentage should
not necessarily be the main target of performance optimization. Following the example
above, a serial I/O will always have imbalance percentage of 100, independently of the
amount of time that it takes. If the fraction of time spent on that particular I/O operation
is small, its impact on the overall performance of the application will not be significant.
Thus, we also need a metric that is related to execution time, in order to identify regions
of the program that should be considered for optimization. We opted to define a metric
that would provide an estimation to the user of how much time in the overall program
would be saved, if the corresponding section of code had a perfect balance. Thus we
defined the imbalance time as:

imbalance time = maximum time — average time 2)

The imbalance time for a code section represents an upper bound on the potential
saving that could result from perfectly balancing that particular code section. It is only
an upper bound because it assumes that other processing elements are simply waiting
without doing any useful work while the slowest member finishes.

Figure 1 shows a pat_report table displaying the profile output? with load imbalance
information from a 48 processors execution of the Sweep3d benchmark, running 20 it-
erations with a 150 x 150 x 150 grid, on a Cray XT3. As described in Section 2, CrayPat

" As defined, the imbalance percentage is only valid for parallel programs. Serial programs
would have an imbalance percentage of 0.

% This is the summary version of the output, which only shows the lines where the percentage
of time is at least 0.05% of the total time.



Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group

| | |Time % | | Function

| | | | | PE='HIDE’
100.0% | 3.661935 | - -- | 675604 |Total
| __________________________________________________________
|  72.2% | 2.644437 | - -- | 245380 |USER
[
[| 97.1% | 2.568997 | 0.126365 | 4.8% | 576 |sweep_
[| 1.8% | 0.047655 | 0.001252 | 2.6% | 576 |source_
[| 0.3% | 0.008992 | 0.000212 | 2.4% | 576 |flux_err_
|| 0.3% | 0.007960 | 0.000940 | 10.8% | 118080 |snd_real_
[| 0.1% | 0.003182 | 0.001944 | 38.7% | 48 |MAIN_
[|  0.1% | 0.002816 | 0.000591 | 17.7% | 118080 |rcv_real_
|| 0.1% | 0.001637 | 0.039748 | 98.1% | 48 |inner_
[| 0.1% | 0.001386 | 0.000055 | 3.9% | 48 |initialize_
| | ==============z=====z====z=====z=====z=====z=====z=z=====z=z=====
| 27.8% | 1.016999 | - -- | 238224 |MPI
[
[| 79.9% | 0.812923 | 0.232522 | 22.7% | 118080 |mpi_recv_
[| 12.8% | 0.129678 | 0.125148 | 50.2% | 1536 |mpi_allreduce_
||  5.8% | 0.059340 | 0.010950 | 15.9% | 118080 |mpi_send_
[| 0.8% | 0.007631 | 0.000221 | 2.9% | 192 |mpi_bcast_
|| 0.7% | 0.007423 | 0.000347 | 4.6% | 144 |mpi_barrier_

Fig. 1. CrayPat profile with load balance by function group and function

provides functionality for automatic performance instrumentation at the function level,
and provides an API for hand instrumentation at a smaller granularity. The imbalance
metrics described above are automatically calculated at the level that the code was in-
strumented. Pat_report splits the profile by the different instrumentation groups (user
functions, MPI, I/O, Memory, etc), which provides an idea of the balance of the various
phases of the application (computation, communication, I/O, and memory allocation).
In the example shown in Figure 1, only MPI and user functions were instrumented, and
we observe that 72.2% of the total time was spent in users functions, while 27.8% of the
time was spent in MPI functions. We also observe that the function that has the highest
potential savings (“Imb. Time”) is the “MPI_recv”, which is consistent with the
Sweep3d application, since it communicates using a wave front approach, which cre-
ates a communication imbalance, since the higher ranks tend to wait longer on receives.
Although not shown in the example, CrayPat can also display the call path, as well as
source code and line number information for each function.

Notice that in the profile shown in Figure 1, by default, “Time” is the average time
per processing element. Thus, the imbalance time will be greater than the average time



if the maximum time is more than twice the average. So it would not be unusual to see
imbalance times that are larger than the average time for some functions, as is the case
of function “inner” in Figure 1, but typically these would not be near the top of the
profile.

The point of the imbalance metric is to reveal cases in which the average time un-
derestimates the “contribution” of a function to the elapsed time of the program. The
functions with the best opportunities for reducing runtime by improving load balance
will be among those for which the maximum time spent by a single processing element
exceeds the average time over all processing elements by an amount that is a significant
fraction of the program runtime. Our “imbalance time” is precisely the excess of max-
imum over average. Notice that in the statement above, we have to say “are among”
instead of just “are” because of cases like the following:

void F1()

{
if (rank%2) G1()
else G2();

}

Here G1 () and G2 () will be very unbalanced individually, but if F1 () has bal-
anced inclusive time, then this section of the code will probably not have a load balance
problem. Currently, CrayPat only shows the imbalance metrics for exclusive times. We
are in the process of extending it to also provide imbalance metrics for inclusive times.

An alternative approach to display load balance information, which is also provided
by CrayPat, is shown in Figure 2. This pat_report table displays the maximum, median,
and minimum values for each function and corresponding PEs>. If desired, one can dis-
play the complete PE distribution for each function, but for runs with a large processor
count, such table would not be practical. Another option is available, where the report
presents a distribution with the top three and the bottom three PEs, in addition to the
median.

4 Visualization of Load Imbalance

As described in Section 2 users can visualize the performance data generated by Cray-
Pat with the Cray Apprentice? Performance Analyzer. One of the multiple views pro-
vided by Cray Apprentice? is the call graph profile shown in Figure 3. The call graph
profile has a similar approach to the call graph visualization described in [20], where
the size of the boxes are relative to the execution time of the function. In our case,
the height of a rectangle represents the exclusive time of the function, while the width
represents its children time (i.e., the inclusive time minus the exclusive time, which is
the same as the sum of the time of all its children). Thus, when searching for the code
segments that take most of the execution time, users should look for large tall boxes in
the call graph.

3 In the interest of brevity, this table only shows lines where the percentage of time is at least
5.0% of the total time. This threshold can be selected by the user when running pat_report. The
default is to show only functions that execute at least 0.05% of the time.



Table 2: Load Balance across PE’s by Function
This table shows only lines with Time% > 5.0.

Time % | Cum. | Time | Calls |Group
Time % Function
| | | |
| | | |  PE [mmm]

100.0% | 100.0% | 3.661935 | 675604 |Total

| 72.2% | 72.2% | 2.644437 | 245380 |USER

| [ =
[| 97.1% | 97.1% | 2.568997 | 576 |sweep_
||| == mmm oo oo
30 2.2% | 2.2% | 2.695363 | 12 |pe.O

3 2.1% | 52.7% | 2.590278 | 12 |pe.31
3] 2.0% | 100.0% | 2.487526 | 12 |pe.37

| |[s======================o=soosoosoooooooooooes

| 27.8% | 100.0% | 1.016999 | 238224 |MPI

| [ ==
[| 79.9% | 79.9% | 0.812923 | 118080 |mpi_recv_
||| =mm oo oo
3] 2.7% | 2.7% | 1.045446 | 1440 |pe.47
3 2.0% | 56.9% | 0.786257 | 2880 |pe.l6
3] 1.4% | 100.0% | 0.563250 | 1440 |pe.0

| | | =================z=z====z=z====z=z=====z=====z=z=====
[| 12.8% | 92.7% | 0.129678 | 1536 |mpi_allreduce_
||| =mmmmm oo oo
3] 4.1% | 4.1% | 0.254826 | 32 |pe.O

3 2.1% | 71.1% | 0.128529 | 32 |pe.21
3 0.0% | 100.0% | 0.002649 | 32 |pe.47

| | | ==================z====z=z====z=z=====z=====z=z=====
|| 5.8% | 98.5% | 0.059340 | 118080 |mpi_send_
||| === mmm oo oo
3 2.5% | 2.5% | 0.070290 | 2880 |pe.27
3 2.0% | 58.6% | 0.056842 | 2160 |pe.6

3] 1.2% | 100.0% | 0.033176 | 1440 |pe.0

Fig. 2. CrayPat profile with Load Balance across PE’s by Function
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Fig. 3. Cray Apprentice? call graph view

As described above, when looking at the overall call graph, users have an idea of
how each of the code segments contributes to total execution time of the application.
We extended this call graph representation by adding a second level of abstraction, such
that users could quickly observe load balance information when looking at a single
rectangle. With this second level of abstraction, the height of each individual rectangle
in the call graph represents the maximum execution time across all processing elements.
The size of the darker blue bar in the left side of the rectangle is proportional to the
average time, while the size of the light blue bar in the right side is proportional to the
minimum time across all processing elements. The rest of the rectangle is filled with
yellow. Thus, when looking at a single rectangle, users have an idea of the load balance
of the code segment considering all processing elements. In order to identify functions
that have a high percentage of load imbalance users should look for rectangles with
a large yellow area. In particular, a large amount on yellow in the left side of a tall
rectangle will indicate a high potential saving, since the amount of yellow in the left
side of a rectangle represents the difference between the maximum time and the average
time for the function, as defined in Equation 2. A rectangle almost completely filled with
yellow (e.g., the function “inner” in Figure 3) normally indicates a function that is
executing on a single PE.

The call graph view also provides a list of functions, which can be sorted by exclu-
sive time, imbalance percentage, or imbalance time, as shown in Figure 4. Functions
that have multiple call sites will appear multiple times in the list (with numbers added
to the names for disambiguation). The sorted list helps users to quickly locate the main
sources of load imbalance, which is helpful especially with large call graphs. When
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Fig. 4. load balance view

clicking on a function name the call graph pane will focus on the corresponding rectan-
gle and highlight it. Also, when the user puts the cursor on top of a rectangle in the call
graph, a popup window will appear, as shown for the function “mpi_recv” in Figure 4.
The popup window displays the measured information for the function, including the
corresponding PE that had the minimum and maximum times, as well as the average
time, imbalance percentage, and imbalance time. Whenever collected during runtime,
hardware counters data is also displayed in the popup window.

Cray Apprentice? also provides a view with the load balance distribution for any
function in the call graph, as shown in Figure 5. The PEs in the load balance view
can be sorted by time or number of calls. In addition, this load balance view display
lines indicating the minimum, average, and maximum times for the function, as well
as marks indicating the range of plus and minus one standard deviation from the mean,
which can be used for a better understanding of the load balance distribution.

5 Conclusions

Applications will need to be well balance in order to achieve high scalability on current
and future high end massively parallel systems. However, there is no standard for the
measurement of load imbalance in an application and the current state of the art in
performance tools does not focus on detection of load imbalance, which makes harder
for users to tune applications on these massively parallel systems.

In this paper we presented the extensions to the Cray performance measurement
and analysis infrastructure to support measurement, identification, and visualization of
sources of performance imbalance in an application. The main contributions presented



B Apprentice =]
Eile Help
~Praweepdsp.ap2 |

ees

PeS

~Overview|  Call Graph ~Load Balancs |
Load Balance: mpl_recy_ =
PE Calls Time (in secs) =
PE#47 [ — R
PE #41 —_ e
PE #46 __
PE #45
By e e
PE #44
PE #39 __
PE #43
PE #42 (|
PE #38 |
PE #37 __
PE #36
PE #35  C——
PE #29 _-_
PE #34 _
PE #23 —
PE #28 .
PE #33 _. i
PE #17 _
PE #22
el —
= ——————————
PE #11
PE #05
PE #16
PE #21 |
PE #31 _
PE #26
PE #30
29e+03 0 032 0.81 1
Z I

Fig. 5. load balance view

here were the definition of new metrics for evaluation of load imbalance in an applica-
tion, and approaches for presentation in both textual and graphical form of load balance
information that are insightful for the user. These approaches were exemplified with the
ASCI Sweep3d benchmark.

In this paper we focus on the discussion of imbalance for time, which is calcu-
lated by default on CrayPat. However, CrayPat extends the concepts of “imbalance
percentage” and “imbalance (time)” for any metric of interest. Using Figure 1 as an
example, with the appropriate user options, pat_report could calculate these metrics for
“CALLS?”, or for any other metric, including hardware counter metrics, such as FLOPS
or cache misses.
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