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Abstract. Due to the increasing performance requirements of decoding
H.264/AVC in HDTV or larger resolutions, new approaches are neces-
sary to enable real-time processing. According to the current trend to
parallel computation in all performance classes, decoding of AVC must
be mapped to these architectures even though this is complicated by the
increased complexity and many data dependencies in the codec. We pro-
pose and evaluate different ways of using multithreading to speed-up our
.NET implemented decoder. While slice based approaches scale best, this
is not a flexible approach because of the reliance on specially encoded
streams. Functional partitioning and macroblock pipelining prove to be
a good alternative for almost all evaluated videos.
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1 Introduction

In recent years, parallelization of computer programs experienced a certain re-
naissance due to the current architecture of processors used in the mainstream
market. CPU manufacturers have changed their CPU architectures from a single-
core to a multi-core design. Several independent processors are combined into
one package with a shared cache and bus interface. While some current desk-
top and mobile computers already use a dual-core design, future systems and
also entertainment devices will use many cores. In addition, today’s multimedia
applications require high CPU performance due to advanced video compression
standards and the emerging demand for large and detailed digital movies. While
current consumer computers still have problems to encode High Definition (HD)
videos in real-time, the decoding process is currently fast enough on many mod-
ern computers. However, the current trend in the entertainment industry is to
go beyond HD and to use Cinema-HD - with a resolution of 4096x2160 pix-
els - in the entire chain from production to consumption. Future encoders and
decoders will have to process approximately four times more data than with
current HD videos. Due to the trends mentioned above and since decoding is
also part of encoding, future decoders and encoders will have to optimize their
processes. They should take advantage of advanced instruction sets (such as



MMX/SSE/SSE2[1]), and possibilities for parallelization provided by the archi-
tecture of the CPU. Many multimedia applications are especially well-suited
for parallelization because some steps of processing videos can be done inde-
pendently. However, in order to increase the efficiency of compression, current
video coding standards like H.264/AVC [2] have introduced additional depen-
dencies into some parts of the encoding/decoding process. Those dependencies
require more advanced parallelization schemes. Manually converting sequential
programs into parallel ones is a difficult and error-prone task. In [3] we have
already presented a slight language extension to the C# programming language
which enables the automatic parallelization of loop operations on independent
blocks of data. This extension has been implemented in the Mono [4] com-
piler and produces multithreaded code, because the run-time systems (Mono,
.NET) map multiple threads to the underlying multicore architecture. Other,
non thread-based schemes are subject of further study.

In this article, we summarize the results of evaluating several different paral-
lelization schemes for an H.264/AVC baseline-profile decoder. Our decoder has
been implemented with the C# programming language using a common style of
object-oriented programming. Since the aim of our implementation was to create
a portable baseline-profile decoder for the Common-Language-Runtime, we did
not use any platform dependent optimizations. We have measured the costs of
different parts in the decoding process and used the results as a basis for fur-
ther parallelization strategies. Although our implementation has high memory
requirements and moderate object creation time, the results of our measure-
ments (see figures 1 and 2) show a similar distribution of the workload as in the
H.264/AVC reference decoder (as presented in [5]). Although slice level paral-
lelization is an obvious solution achieving good speed-up values (see [6], [7], [8],
[9]), it has some disadvantages as well. It can only be applied if frames of a video
are separated into slices, which depends on the encoder. Moreover, supporting
slice-level parallelization reduces coding efficiency due to the reference limits
during the encoding process. Thus, we have evaluated alternative parallelization
concepts and analyzed the achievable speed-up. Simple parallelization schemes
were generated automatically through our compiler extension as presented in [3].
Some more sophisticated schemes had to be adapted manually (see section 4).

2 Short Overview of H.264/AVC

In H.264/AVC the video bitstream is organized in Network Abstraction Layer
Units. The most important NAL Unit types are Sequence Parameter Sets (SPS),
Picture Parameter Sets (PPS), and Slices. Only slices are relevant for this arti-
cle, for the other ones please see [2]. A slice consists of a header and a number
of macroblocks. A macroblock (MB) represents a 16x16 pixel area of the de-
coded picture and contains entropy-coded coefficients. Three different types of
macroblocks are defined in the baseline-profile: I-MBs contain intra-coded coef-
ficients of the corresponding luma and chroma components. An intra-coded mac-
roblock has no reference to other frames but may reference other macroblocks in



the current frame. P-MBs are inter-coded macroblocks which contain the mo-
tion prediction from one frame in the past and the coefficients that encode only
the difference to that reference (this is called residual). For Skipped-MBs, there
are no coefficients stored in the bitstream. Such macroblocks use motion-vector-
prediction only (see later). A slice is a container for macroblocks and represents
either an entire frame or a part of a frame. Each slice of a frame can be decoded
independently from other slices in that frame. In general, there are two different
types of slices used in H.264/AVC baseline-profile. I-Slices which may contain
I-MBs and Skipped-MBs, and P-Slices which may contain P-MBs, I-MBs, and
Skipped-MBs. A macroblock itself is composed of partitions that contain 16x16
(only one partition), 16x8, 8x16, 8x8, 4x8, 8x4 or 4x4 pixels. Since a partition is
the elementary unit of motion prediction, encoders typically use large partitions
for homogeneous areas and small partitions for areas with varying luma/chroma
values. While most of the header fields in an SPS, PPS and a slice are coded
using Exp-Golomb Codes, the coefficients of a macroblock are coded using either
Context-based Adaptive Binary Arithmetic Coding (CABAC) or Context-based
Adaptive Variable Length Coding (CAVLC) techniques, as specified in [2].

The general decoding process for a baseline-profile compliant H.264/AVC
decoder consists of the following steps:

Coefficients Parsing: For each macroblock the decoder reads the
macroblock-type followed by optional motion vectors, the scaling delta (quanti-
zation delta), and the CAVLC coded residual coefficients for luma and chroma.
For I-MBs the macroblock-type specifies the chosen intra prediction mode and
whether it has been applied to the entire 16x16 block or to 4x4 blocks. The
motion vectors of P-MBs specify the position of the referenced data in the refer-
ence frame. The process of parsing macroblock coefficients is not parallelizable
because at the begining of a slice the start positions of the macroblocks are not
known due to variable length coding.

Inverse Transform: After parsing the coefficients, the inverse transforma-
tion process is invoked for each macroblock. It is performed on 4x4 blocks of
coefficients and consists of two phases: In the first phase the coefficients are
scanned in inverse zig-zag scan-order and scaled using a function depending on
a context-adaptive scaling value, which is computed from the value of the previ-
ous macroblock by adding the scaling delta for the current macroblock. For the
first macroblock in a slice the scaling value is initialized to the value specified in
the slice header. In the second phase the coefficients are inversely transformed us-
ing a DCT-like inverse transformation scheme, which is mainly based on integer
additions, subtractions and bit-shifting operations. The inverse transformation
process is the only part in the decoding process which is really straightforward
to parallelize because it references no other macroblocks. In section 5 we show
our results of using parallel inverse transformation.

Inter Prediction: After inverse transformation the inter prediction process
can take place for P-MBs. Inter prediction uses motion vector values to add the
decoded data from referenced frames to the inverse transformed residual. Motion
vectors rely on motion-vector-prediction. Thus, motion vectors of a macroblock



specify only the difference to the averaged motion vector values from the mac-
roblock to the left, above, and right-above. Motion-vector-prediction is also ap-
plied to Skipped-MBs. The accuracy of motion vectors is 1/4 pixel for luma and
1/8 pixel for chroma. This means that the referenced data has to be interpolated,
which is an expensive task in the decoding process. It is possible to parallelize
the inter prediction process when operating at macroblock or slice (resp. frame)
level. However, as the motion-vector-prediction uses the left/above/right-above
macroblock as an input, at least this task has to be done sequentially. In section
5 we show our results of using parallel inter prediction.

Intra Prediction: Intra prediction is applied to I-MBs after inverse trans-
formation, depending on the macroblock-type. Intra prediction may use already
predicted surrounding macroblocks (more precisely the left, above, left-above,
and right-above MBs) of the current frame as a reference. Similar to P-MBs,
the data gathered from the intra prediction is added to the inverse transformed
residual. This sum is copied to the decoded buffer which is used as an input
for the next step (deblocking filter). It is not a straightforward task to paral-
lelize intra prediction due to the possible existence of referenced macroblocks. A
schedule of operations based on references could be calculated and processed in
correct order as described in [10].

Deblocking: The deblocking filter (DF) is applied to decoded samples on all
4x4 block edges except to those at frame borders. It uses the already deblocked
pair of macroblocks above and to the left as an input for its operation. It is
possible to parallelize the deblocking filter when following some processing rules
as described in section 4.

More details about H.264/AVC can be found in [2], [5], and [11].

3 Related Work

Research on parallelization of H.264 is primarily done for encoders due to their
higher performance requirements in comparison to the decoder. The authors of
[6] compare the parallelization of MPEG-2, MPEG-4 and H.264 video encoders
for multiprocessor architectures. The parallelization of H.264 is found to be the
most difficult due to data dependencies and varying macro block sizes, therefore
slice level parallelization is used. Encoding a separate slice per thread leads to
a reduction of the workload of up to 96% (for 64 CPUs) but increases bitrate
requirements by about 20% for 32 slices. The Intel Hyperthreading architecture
is the platform used in [7], where the implementation uses slice level threading
as well. The tradeoff between speed-up and compression efficiency is evaluated,
leading to the conclusion that it is important to keep the number of slices as low
as possible, even though a higher number enables higher parallelism. Therefore,
in a later work([12]), a multi-level approach is adopted which processes two
frames in a pipeline and uses multiple threads to work on their macroblocks. In
[8] a hybrid approach is introduced, which combines the advantages of GoP level
(high throughput) with slice level parallelization (low latency) using an encoding
cluster. But due to the resulting increase in bitrate, the slice level parallelization



is only advantageous for up to 12 slice encoders per GoP. Research and practice
indicate a trend to avoid encoding with multiple slices whenever possible, in
order to get the best picture quality with regard to the bitrate. While slice level
parallelization is an obvious approach to support multithreaded decoding, these
results encouraged us to evaluate other approaches to partition the workload.

Most research on H.264 decoders focuses on CPU specific optimizations and
hardware/software combinations: For example, [5] discusses optimizations of the
reference decoder for media instruction sets. Execution time of the reference de-
coder is dominated by chrominance and luminance motion compensation and
integer transformation. Optimizations achieve a speed up of 10.2x, 2.9x and
4.3x, respectively, for these operations. Entropy decoding and deblocking were
barely accelerated at all, and in the optimized decoder they account for half of
the decoding time altogether. The authors of [13] provide a detailed analysis of
the performance of H.264 decoding when optimized for AltiVec SIMD architec-
tures. While the distribution of time spent at different stages varies with source
material and encoding options, the deblocking filter usually dominates because
of the limited data level parallelism that could be exploited using AltiVec. In
[10] a data-partitioning approach to multithreaded H.264 decoding is described,
which does not depend on slices in the encoded video. Macroblock dependencies
are resolved by employing a work schedule on the processing order of data parti-
tions. This work targeted a specialized architecture consisting of RISC and media
processors and is therefore not directly applicable to general purpose CPUs. An
optimized H.264 decoder with block-level pipelining, which is implemented on an
ARM platform, is described in [14]. While the implemented optimizations in the
software result in a considerable speed-up compared to the reference decoder,
the focus is on the integration of a dedicated coprocessor which can process
motion compensation and integer IDCT for single macroblocks. Pure software
parallelization on shared memory multiprocessors was evaluated for MPEG-2 in
[9], where GoP level and slice level parallelism were compared. While both ap-
proaches deliver very good speed-ups, parallel processing of entire GoPs requires
less synchronization and leads to higher efficiency, but increases delay on start
and random access and has extreme memory requirements.

To our best knowledge, at time of writing, no similar evaluation of such a
wide variety of parallelization approaches for H.264 decoding has been published.

4 Parallelization Concepts

4.1 Parallelization on Slice-Level

An obvious approach for parallelizing H.264/AVC is to use slices as units of
parallelization because slices can be encoded/decoded independently from each
other in single a frame. In general, with slice-level parallelism good speed-ups
are obtainable; however, it has many disadvantages as well. In order to be useful
for a variable number of CPUs, the frame should be partitioned into many slices
rather than just a few. The number of slices for a frame depends on the chosen
encoder which is usually not suggestible by the decoder. Furthermore, with each



additional slice of a frame, the required bitrate increases. As described in [6],
using 32 slices increases the bitrate requirements by about 20%. Due to these
disadvantages we have analyzed alternative parallelization schemes which are
discussed in section 4.2. We have implemented slice-level parallelism using our
language extension introduced in [3].

4.2 Parallelization on Macroblock-Level

Due to the results of our measurements of the workload in our H.264/AVC
decoder which are illustrated in figures 1 and 2, we have analyzed the individual
steps of the decoding process for further parallelization. As shown in the figures
the most expensive task is inverse transformation, which has an average share
of 42% in the overall decoding process. Another very expensive part is inter
prediction with 31% average fraction, although for small video-resolutions (with
smaller bitrates) this value decreases. Furthermore, the deblocking filter produces
high workload as well, especially for low bitrates.

Fig. 1. Load distribution of our
H.264/AVC decoder
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Fig. 2. Load distribution with different resolu-
tions and bitrates

Parallelization of the Inverse Transformation: Inverse transformation
can be easily parallelized because there are no dependencies between the mac-
roblocks. However, using a high number of small processing units1 results in very
poor performance when using the default parallelization behavior of our language
extension which interleaves the threads over all blocks of data. Instead, for mea-
suring parallel inverse transformation, we used manually adapted multithreading
code which processes evenly sized partitions of consecutive macroblocks. For ex-
ample, when using four threads for 1000 macroblocks, each thread processes 250
consecutive macroblocks.

Parallelization of the Inter Prediction: Inter prediction can be paral-
lelized when separating motion-vector-prediction, which has to be done sequen-
tially, from the other steps. The remaining steps of inter prediction can be done
1 as there are e.g. above 8000 macroblocks for a HD resolution video



simultaneously. We used the same strategy for parallelizing inter prediction as
with inverse transformation (i.e. uniform areas of consecutive blocks).

Parallelization of the Deblocking Filter We have developed an approach
that supports multiple threads deblocking a single frame simultaneously, while
considering that deblocking of a macroblock requires read/write access to the
blocks directly above and to the right. As shown in figure 3, it is necessary to syn-
chronize all threads in a staggered pattern2, where each worker remains at least
two macroblocks left of the one above it. This way, a complete parallelization
of deblocking is theoretically possible for the most part of an image, exclud-
ing 2*(numThreads-1) macroblocks at the top-left and the bottom-right of the
frame3. This method could be extended by processing vertical ranges starting
from the left at same time, but due to the need for more complex synchronization
and the good speed-up of the top-down solution, this approach was abandoned.

The same solution seems to be possible for intra prediction and motion-
vector-prediction, where similar speedups can be expected.

Parallelization using Macroblock Pipelining We have, furthermore, de-
veloped another parallelization scheme which we denote as macroblock pipelining.
Thereby macroblocks of a frame are processed in parallel, each part of the de-
coding process working on another macroblock. Consider figure 4 to see how this
pipelining works with multithreading. One thread parses the macroblock coeffi-
cients while another thread performs inverse transformation one block behind.
This pipelining continues until deblocking which is performed by a fifth thread.
All threads are synchronized on the basis of macroblock level. Of course, in this
version pipelining has a scaling limit to five threads, however, because different
parts of the pipeline take different time (e.g. coefficients parsing is much faster
than inverse transform, compare to figure 2), this scheme can be extended to use
several threads in the most expensive parts of the pipeline. However, we have
not yet performed measurements for this extension.
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Fig. 3. Multithreaded deblocking using staggered threads

5 Performance Results and Analysis

For our measurements, we used the Elephants Dream[15] video which we en-
coded with the current release of the x264 encoder[16] using different resolutions
2 We did not discover other decoders using this technique, but found out that [12]

integrates it into the decoder.
3 Assuming the ideal case that numThreads|imageHeightInMBs.



Fig. 4. Parallelization by us-
ing macroblock pipelining.

Fig. 5. Measurement results showing speed-up when
parallelizing different parts of the decoding process
(CP=coeff parsing, IT=inverse transformation, IP=inter
prediction, IA=intra prediction, DF=deblocking).

(480x270 to 1920x1080) and bitrates (1200KBit/s to 10MBit/s). The videos en-
coded with x264 do contain only one slice per frame. For comparison we used
encodings of QuickTime Pro [17] with default baseline-profile settings. Per de-
fault QuickTime Pro uses seven slices per frame. Our measurements have been
performed on an SMP system with 4 Intel� Xeon� CPUs, each 1.5 GHz with
256 KB Cache, and 3.5 GB RAM running Windows Server 2003� with the
Microsoft .NET Runtime 2.0. For measuring less than four CPUs, we deacti-
vated the others in the boot.ini file. We did not used the Mono Runtime for our
Measurements because in its current version 1.2.2.1, it is much slower than the
Microsoft .NET Runtime.

We first measured our parallelization of the elementary processing tasks in-
dependently to demonstrate the achievable speed-ups when using multithreaded
implementations. The results presented in fig. 5 are calculated by comparing
the duration of this elementary task between the sequential and the parallelized
(n threads) versions for the input file that provided the best speed-up. Inverse
transformation has no data dependencies and is therefore easily parallelizable
without much synchronization overhead. It is a processor intensive operation
with some data access which explains the good speed-up: Even on a single CPU
a speed-up of 1.24 can be observed when using 4 threads, while 8 threads lead to
a speed-up of 3.51 on three cores. Inverse transformation is obviously well suited
to parallelization, as well as optimization with SIMD instructions or dedicated
coprocessors (see related work).

For inter prediction, our results show that only a speed-up of 2.46 is achiev-
able with four CPUs. Because the computational effort of inter prediction is
much lower than for inverse transformation but shared memory access is higher,
our measurements show a slow-down if too many threads are used (e.g. eight
threads on a single CPU achieve 0.95 speed-up).

As described above, our approach to a multithreaded deblocking filter re-
quires some synchronization between the threads, even though this is a mi-



nor influence if all threads work with a similar speed. Therefore the number of
threads should be equal to the number of cores available on the system. Using
two threads results in a speed-up of 1.86 on two CPUs, but with more threads
the speed-up never increases beyond 1.80 on the same configuration due to syn-
chronization overhead.

In figures 6 and 7, the results of combining parallel inverse transformation,
inter prediction, and deblocking in direct comparison with macroblock pipelin-
ing and slice-level parallelism are given. For a low-resolution video (fig. 6) with
only one slice per frame the combination of IT,IP, and DF achieves the best
speed-up (1.86) when four threads are in use. Also macroblock pipelining (with
five threads) achieves a similar result, while slice-level parallelism causes a slow-
down due to the fact that only one slice is used per frame. For a high-resolution
video, slice-level parallelism clearly achieves the best speed-up value of 3.2 on
four CPUs, because no dependencies between slices of a frame have to be consid-
ered. However, it turns out that combining parallel inverse transformation, inter
prediction, and deblocking is the best alternative (speed-up of 2.34) to slice-level
parallelism.

Fig. 6. Measurement results (speed-up)
using the 480x270 video without slices

Fig. 7. Measurement results (speed-up)
using the 1920x1080 video with seven slices

6 Conclusion and Further Work

Our results show that parallelizing the most expensive parts in the decoding
process of an H.264/AVC baseline-profile compliant decoder results in speed-
up values which are not far behind those of slice-level parallelization. From our
results we can conclude, that parallelizing all three parts, inverse transformation,
inter prediction, and deblocking, is the most appropriate alternative to slice-level
parallelism. As further work, we continue our measurements with more than four
CPUs and an extended version of macroblock-pipelining.
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