
MCSTL:
The Multi-Core Standard Template Library

Johannes Singler, Peter Sanders, and Felix Putze

Universität Karlsruhe
{singler,sanders,putze}@ira.uka.de

Abstract. 1 Future gain in computing performance will not stem from
increased clock rates, but from even more cores in a processor. Since
automatic parallelization is still limited to easily parallelizable sections
of the code, most applications will soon have to support parallelism ex-
plicitly. The Multi-Core Standard Template Library (MCSTL) simpli-
fies parallelization by providing efficient parallel implementations of the
algorithms in the C++ Standard Template Library. Thus, simple re-
compilation will provide partial parallelization of applications that make
consistent use of the STL. We present performance measurements on
several architectures. For example, our sorter achieves a speedup of 21
on an 8-core 32-thread SUN T1.

1 Introduction

Putting multiple cores into a single processor increases peak performance by
exploiting the high transistor budget of modern semiconductor technology. The
performance per Watt can also be improved, in particular when used together
with reduced clock speeds and moderate instruction level parallelism. Dual-core
processors being omnipresent, in the near future, many-cores will be used in
virtually all areas of computing, ranging from mobile systems to supercomputers.

To benefit from this increased power, programs have to exploit parallelism.
This now becomes mandatory not just for a selected number of specialized pro-
grams, but for all nontrivial applications. Because automatic parallelization is
still working only for simple programs and explicit parallelization is expensive
and outside the qualification of most current programmers, this poses a problem.

This paper addresses a third alternative — easy-to-use libraries of parallel
algorithm implementations. While this approach has been successful in numerics
for a long time, it has not yet made its way into the mainstream of non-
numeric programming. We present our initial work on the Multi-Core Standard
Template Library. Parallelizing the C++ Standard Template Library [2] is a
good starting point since it is part of the C++ programming language and offers
a widely-known, simple interface to many useful algorithms. Programs that use
the STL can thus be partially parallelized by recompilation using the MCSTL.
1 This is the full and updated version of a Poster Extended Abstract presented at

PPoPP 2007 [1].

Parallelizing the STL is not an new idea. STAPL [3, 4] provides parallel con-
tainer classes that allow writing scalable parallel programs on distributed mem-
ory machines. However, judged from publications, only few of the STL algorithms
have been implemented, and those that have been implemented sometimes de-
viate from the STL semantics (e. g. p find in [3]).

The MCSTL limits itself to shared memory systems and thus can offer fea-
tures that would be difficult to implement efficiently on distributed memory
systems, e. g. fine-grained dynamic load-balancing. Except for a few inherently
sequential algorithms like binary search, the MCSTL will eventually parallelize
all algorithms in the STL following the original semantics and working on ordi-
nary STL random access iterators (e. g., STL vectors or C arrays). This approach
brings its own challenges. “Traditional” parallel computing works with many
processors, specialized applications, and huge inputs. In contrast, the MCSTL
should already yield noticeable speedup for as few as two cores for as many
applications as possible. In particular, the amount of work submitted to each
call of one of the simple algorithms in STL may be fairly small. In other words,
the tight coupling offered by shared memory machines in general and multi-core
processors in particular, is not only an opportunity but also an obligation to
scale down to small inputs rather than up to many processors. Another issue is
that the MCSTL should coexist with other forms of parallelism. The operating
system will use some of the computational resources, multiple processes may
execute on the same machine and there might be some degree of high-level par-
allelization using multi-threading within the application. These methods are the
easiest way to leverage the power of multi-core processors but might not suffice
to fully saturate the machine. In this context, the MCSTL should have dynamic
load balancing even when static load balancing would be enough on a dedicated
machine. Moreover, parallel algorithms that achieve some limited speedup at the
cost of a great increase of total work should be avoided. A better solution are
algorithms that use only as much parallelism as can be efficiently exploited. Our
algorithms use some heuristics to decide on the level of parallelism. This form
of efficiency is also important with respect to energy consumption.

More Related Work. Recently, another shared memory STL library has
surfaced. MPTL [5] parallelizes many of the simple algorithms in STL using
elegant abstractions. However, it does not implement the more complicated
parallel algorithms partition, nth element, random shuffle, partial sum,
merge. MPTL has a “näıve” parallelization of quicksort using sequential parti-
tioning. Similarly, there is only a “näıve” implementation of find that does not
guarantee any speedup even if the position sought is far away from the starting
point. MPTL offers a simple dynamic load balancer based on the master worker
scheme and fixed chunk sizes.

Most of the algorithms we present here are previously known or can be con-
sidered folklore even if we do not cite a specific reference. We view the main
contribution of this paper as selecting good starting points and engineering effi-
cient implementations. Interestingly, many of our algorithms were originally de-
veloped for distributed memory parallel computing. Very often, such algorithms

naturally translate into shared memory algorithms with good cache locality and
few costly synchronization operations. The key ideas behind our sorting algo-
rithms are also not new [6, 7] but not widely known. It is somewhat astonishing
that although there are virtually hundreds of papers on parallel sorting, so few
notice that multiway merging can be done with exact splitting, and that the
partition in quicksort can be parallelized without changing the inner loop.

Notation. In general, n will refer to the problem size, m to some secondary
problem quantity. Often, we are dealing with a sequence [S[0], . . . , S[n − 1]].
There are p threads that run in parallel, numbered 0 through p− 1.

2 Algorithms

We plan to implement all the algorithms provided in the STL for which paral-
lelization looks promising. Figure 1 summarizes the current status of the imple-
mentation.

Algorithm
Class

Function Call(s) Status w/LB w/oLB

Embarrassingly
Parallel

for each, generate(n),
fill(n), count(if),
transform, unique copy,
min/max element,
replace(copy)(if)

impl yes yes

Find find(if), mismatch,
equal, adjacent find,
lexicographical compare

impl yes nww

Search search(n) impl yes nww
Numerical
Algorithms

accumulate, partial sum,
inner product,
adjacent diff.

impl nww yes

Partition (stable) partition, impl yes nww
Merge merge, multiway merge,

inplace merge

impl pl yes

Partial Sort nth element,
partial sort(copy)

impl yes pl

Sort sort, stable sort impl impl yes
Shuffle random shuffle impl yes nww
Set Operations set union,

set intersection,
set (symmetric)diff.

impl nww yes

Vector valarray operations pl
Containers vector, (multi)map/set,

priority queue

operations

pl

Heap make heap, sort heap pl

Fig. 1. Considered STL functions. already
implemented, (except italicized), planned,
not worthwhile, wLB / w/oLB = with /
without dynamic load-balancing

p0 p1 p2partition in parallel

input

p0 p1partition in parallel

sequential sorting
p2p0 p1

steal

Fig. 2. Schema of parallel bal-
anced quicksort. The ramped parts
are already sorted, while the dark
grey parts are currently parti-
tioned. The colored parts are re-
membered on the stack and wait
for being (stolen) and processed.

Embarrassingly Parallel Computation. Several STL algorithms may
be viewed as the problem of processing n independent atomic jobs in parallel,
see the row “Embarrassingly Parallel” in Figure 1 for a list. This looks quite
easy on the first glance. For example, we could simply assign ≤ dn/pe jobs to
each thread. Indeed, we provide such an implementation in order to scale down
to very small, fine-grained, and uniform inputs on dedicated machines. However,

in general, we cannot assume anything about the availability of cores or the
running time of the jobs which might reach from a few machine instructions
(quite typical for STL) to complex computations. Hence, we can neither afford
dynamic load balancers that schedule each job individually nor should we a priori
cluster chunks of jobs together. Random Polling or randomized work stealing is
a way out of this dilemma.2

Initially, each thread gets ≤ dn/pe consecutive jobs defined by a pair of
iterators. A busy thread processes one job after the other. When a thread is
done, it looks for more work. If all jobs are already finished, it terminates and so
does the algorithms. Otherwise, it tries to steal half of the jobs from a randomly
chosen other thread. We implement this without intervention of the victim. Note
that this way, the jobs will be dynamically partitioned into a small number of
consecutive intervals (this is important for (parallel) cache efficiency), very large
jobs will never irrevocably be clustered together, and threads without a processor
core assigned to them will lose jobs to stealing (and thus active) threads. To
achieve a good compromise between worst-case performance and overhead, the
user can optionally devise the algorithm to process the jobs in indivisible chunks
of a certain size. Using known techniques (e. g. [10, 11]), it can be shown that
almost perfect load balancing can be achieved at the cost of only a logarithmic
number of work stealing operations per thread.

Find. Function find if finds the first element in a sequence that satisfies
a certain predicate. The functions find, adjacent find, mismatch, equal, and
lexicographical compare can be immediately reduced to find if. On the first
glance, this looks like just another embarrassingly parallel problem. However, a
näıve parallelization may not yield any useful speedup. Assume the first matching
element is at position m in a sequence of length n. The sequential algorithm
needs time O(m). A näıve parallelization that splits the input into p pieces of
size n/p needs time Ω(n/p) = Ω(m) if m = n/p− 1. In practice, we might even
see speedup � 1 if m is so small that the overhead for coordinating threads
becomes overwhelming. Hence, our algorithm starts with a sequential search for
the first m0 steps. Only then it starts assigning blocks of consecutive sequence
positions to the p threads. Consumption of these blocks is dynamically load-
balanced using the fetch-and-add primitive. A thread that finds the element,
signals this by grabbing all the remaining work. There is still a difficult trade-
off here. Assigning small blocks is good because all threads will learn about
termination quickly. On the other hand, small blocks are bad because there
is some overhead for a fetch-and-add operation. Therefore, our implementation
combines both advantages by starting with a block size of m and increasing it by
a factor g until a value of m̄ is reached. The tuning parameters m and m̄ allow a
flexible compromise between fast termination for small m and low overhead for
large m. The execution time of our algorithm is independent of n and the term
dependent on m is an optimal O(m/p). We need only a single synchronization
at the end.

2 The method goes back at least to [8], using it for loop scheduling is proposed in [9].
An elegant analysis for shared memory that coined the term work stealing is in [10].

Partial Sum. When computing prefix sums, we synchronize only twice,
instead of log p times, as done by typical textbook algorithms (e. g. [12]). After
splitting the sequence into p + 1 parts, the partial sums of part 0 and the totals
sums of parts 1..p− 1 are computed in parallel. After processing these interme-
diate results in a sequential step, the partial sums of parts 1..p are computed.
To compensate for the first thread possibly taking longer because of having to
write back the results in the first step, the user can specify a dilatation factor d.
The total running time then is O(n/p + p), the maximum speedup achievable is
(p + d)/(1 + d), i. e. (p + 1)/2 for d = 1.

Sorting and its Kindred. Partition. Given a pivot predicate P , we are
asked to permute [S[0], . . . , S[n− 1]] such that we have P (S[i]) for i < m and
¬P (S[i]) for i ≥ m. This routine is part of the STL and the most important
building block for quicksort, selection, etc. We use a parallel algorithm similar
to the one by Tsigas and Zhang [7], which has many advantages. Its inner loop
is the same as in sequential quicksort, it works in-place, and it is dynamically
load-balanced.

The sequential algorithm scans S from both ends until it finds two elements
S[i] and S[j] that belong to the “other” side respectively. It swaps S[i] and
S[j] and continues scanning. The parallel algorithm works similarly. However,
each thread reserves two chunks of a certain size B from each end. It performs
the partitioning of those two chunks, until one of them runs empty. If the left
chunk runs empty, it reserves a succeeding block using a fetch-and-add primitive.
Symmetrically, if the right size runs empty it reserves a preceding block. This
process terminates when there are less than B elements left between the left and
the right boundary. When all threads have noticed this condition, there is at
most one chunk per thread that is partly unprocessed. After calculating various
offsets sequentially, each thread swaps its unprocessed part to the “middle” of
the sequence. Those remaining elements are treated recursively in this manner,
with fewer threads, ending in the sequential call for less than B elements. The
running time of this algorithm is bounded by O(n/p + Bp).

mth Element3. Using the above parallel partitioning algorithm, it is easy
to parallelize the well known quickselect algorithm: partition around a pivot
chosen as the median of three. If the left side has at least m elements, recurse
on the left side. Otherwise recurse on the right side. Switch to a sequential
algorithm when the subproblem size becomes smaller than size 2Bp where B is
the tuning parameter used in partition. We get total expected execution time
O(n

p + Bp log p).
Multi-Sequence Partitioning. Given k sorted sequences S1,. . . ,Sk and a global

rank m, we are asked to find splitting positions i1,. . . ,ik such that i1+· · ·+ik = m
and ∀j, j′ ∈ 1..k : Sj [ij − 1] ≤ Sj′ [ij′]. The function multiseq partition is
not part of the STL, but useful for many of the subsequent routines based on
merging. Our starting point is an asymptotically optimal algorithm by Varman
et al. [6] for selecting the element of global rank m in a set of sorted sequences. It

3 For consistency with our notation, where n is the input size, we use m for the
requested rank, although the STL function is called nth element.

is fairly complicated, and to our knowledge, has been implemented before only
for the case that the number of sequences is a power of two and all sequences
have the same length |Sj | = 2k − 1 for some integer k.

Explicit care has been taken of the case of many equal elements surrounding
the requested rank. To allow stable parallelized merging based on this parti-
tioning, the splitter positions may not be in arbitrary positions in the equal
subsequence. In fact, there must not be more than one sequence Sj having a
splitter “inside” the equal subsequence. All Si with i < j must have the splitter
at the end of it, all Si with i > j must have the splitter at its beginning. The
running time amounts to O(k log k · log maxj |Sj |).

Merging. Given two sorted sequences S1 and S2, STL function merge pro-
duces a sorted sequence T containing the elements from S1 and S2. We generalize
this functionality to multiple sorted sequences S1,. . . ,Sk. This is an operation
known to be very effective for both cache efficient and parallel algorithms related
to sorting (e. g., [13–15]).

We can reduce parallel multiway merging to sequential multi-
way merging using calls to multi-sequence partition with global ranks
{m/p, 2m/p, . . . , (p− 1)m/p, m}, and splitting accordingly. Our implementa-
tion of sequential multiway merging is an adaptation of the implementation
used for cache-efficient priority queues and external sorting in [13, 15]: For
k ≤ 4, we use specialized routines that encode the relative ordering of the next
elements of each sequence into the program counter. For k > 4, a highly tuned
tournament tree data structure keeps the next element of each sequence. The
total execution time of our algorithm is O(m

p log k + k log k · log maxj |Sj |).
Sort. Using the infrastructure presented, we can implement two different

parallel sorting algorithms:
(Stable) Parallel Multiway Mergesort: Each thread sorts ≤ dn/pe elements

sequentially. Then, the resulting sorted sequences are merged using parallel mul-
tiway merging. Finally, the result is copied back into the input sequence. The
algorithm runs in time O(n log n

p + p log p · log n
p). Our implementation of parallel

multiway merging allows stable merging — it will always take Si with the min-
imum i available when it encounters equal elements. Hence, by using a stable
algorithm for sequential sorting we get a stable parallel sorting algorithm.

Load-Balanced Quicksort: Using the parallel partitioning algorithm from Sec-
tion 2, we can obtain a highly scalable parallel variant of quicksort, as described
in [7]. Although this algorithm is likely to be somewhat slower than Parallel Mul-
tiway Mergesort, it has the advantage to work in-place and to feature dynamic
load balancing.

The sequence is partitioned into two parts recursively. After the sequence has
been split to p parts, each thread sorts its subsequence sequentially. However,
the length of those subsequences may differ strongly, so normally the overall
performance would be poor. To overcome this problem, we implemented the
quicksort variant using lock-free double-ended queues to replace the local call
stacks. After partitioning a subsequence, the longer part is pushed onto the top
end of the local queue, while the shorter part is sorted recursively. When the

recursion returns, a subsequence is popped from the top end of the local queue.
If there is none available, the thread steals a subsequence from another thread’s
queue. It pops a block from the bottom end of the victim’s queue. Since this
part is probably relatively large, the overhead of this operation is compensated
for quite well. If the length of the current part is smaller than some threshold,
no pushing to the local queue is done any more, so the remaining work is done
completely by the owning thread.

The functionality required for the double-ended queue is quite restricted,
as is its maximum size. Thus, a circular buffer held in an array and atomic
operations like fetch-and-add and compare-and-swap suffice to implement such
a data structure, with all operations taking only constant time.

If an attempt to steal a block from another thread is unsuccessful, the thread
offers the operating system to yield control using an appropriate call. This is
necessary to avoid starvation of threads, in particular if there are less (available)
processors than threads. There could still be work available albeit all queues are
empty, since all busy threads might be in a high-level partitioning step.

The total running time is O(n log n
p + Bp log p), ignoring the load-balancing

overhead. Figure 2 shows a possible state of operation.
Random Shuffle. We use a cache-efficient algorithm random permutation

algorithm [16] which extends naturally to the parallel setting: In parallel, throw
each element into one out of k random bins per thread, pool the corresponding
bins, and permute the resulting bins independently in parallel (using the stan-
dard algorithm). We use the Mersenne-Twister random number generator [17]
which is known to have very good statistical properties even if random numbers
are split into their constituent bits, as we do.

3 Software Engineering

Goals. A major design goal of the MCSTL is to provide parallelism with
hardly any effort from the user. The interface fully complies to the C++ Stan-
dard Template Library in terms of syntax. However, the MCSTL has quite high
requirements when it comes to semantics. For example, the operations called
in algorithms like for each must be independent and non-interfering with each
other. Also, the order of execution cannot be guaranteed any more. The user
should call the appropriate algorithms like accumulate, if this is undesired.
Also, some programs might rely on invariants of algorithms that are not guar-
anteed by the standard. A common example is merge. For the standard merging
algorithm, both sequences can overlap without doing any harm. However, this
is fatal for the parallel algorithm.

Library Particularities. Many parallel algorithms are published that show
excellent scalability results. However, the experiments are usually either limited
to a platform, a specific data type as input, and / or assumptions on the input
data type. The code is hard to re-use since it is specialized to a specific machine
and specific needs.

In contrast to this, a library implementation of a parallel algorithms must
be more general. First of all, it need be parameterizable by the data type the
input consists of. Secondly, the basic operations are defined by the user, for some
algorithms. The data type can carry additional semantics, e. g. the comparison
operator might be redefined, or the assignment operator and the copy construc-
tor. The library may not violate any consequences following from this. Also, the
running time of the functors may be arbitrarily distributed. For some operations,
e. g. prefix sum and accumulation, we assume the execution time to be about
the same for each call, while for for each, no such assumption is made.

Implementation. Any parallel library needs a foundation that supports
concurrent execution. For our library, this foundation should be both efficient and
platform-independent. We have chosen to use OpenMP 2.5 [18]. Additionally, a
thin platform-specific layer provides access to a small number of efficiently imple-
mented primitive atomic operations like fetch-and-add and compare-and-swap.
Although these primitives are still compiler specific, there is already enough
convergence that one can obtain a portable library using this functionality.

Using the MCSTL. Using the MCSTL in a program is extremely sim-
ple, just add a few compiler command line options. The library will then use
default values for deciding whether to parallelize an algorithm, based on the
automatically determined number of cores.

However, if the user wants to customize the calls for maximum performance
in any setting, he can do so at little effort. The library allows setting for each al-
gorithm the minimal problem size from which the library should call the parallel
algorithm. Also, the number of threads used can be easily specified. The algo-
rithm alternatives and tuning parameters are also accessible to the user. If an
algorithm must be executed sequentially by all means, the programmer specifies
this by adding mcstl::sequential tag() to the end of the call. The original
STL version will then be called without any runtime overhead since the decision
is made at compile-time through function overloading.

4 Experimental Results

Testing Procedures. We have tested on four different platforms, namely a
Sun T1 (8 cores, 1.0 GHz, 32 threads, 3 MB shared L2 cache), a AMD Opteron
270 (2 cores, 2.0 GHz, 1MB L2 cache per core), an 2-way Intel Xeon 5140 (Core
2 architecture, 2 × 2 cores, 2.33 GHz, 2 × 4 MB shared L2 cache per processor),
and a 4-way Opteron 848 (4 × 1 core, 1.8GHz, 1MB L2 cache per processor). For
comparability, all programs were compiled with the same GCC 4.2 snapshot4,
which features a reliable implementation of OpenMP.

In the following subsections, we show how the running time relates to the
original sequential algorithm provided by the corresponding STL, expressed as
speedup. Unless stated explicitly, the Sun T1 is considered. For testing, the
parallel execution of all algorithms was forced, to also show the results for small
inputs which would not have executed in parallel, normally.
4 Revision 114849, 2006-06-21

Input Data. Unless stated otherwise, we used uniform random input data
for our experiments. All test were run at least 30 times, the running times were
averaged. The input data varies with every run, and is generated immediately
before executing the algorithm, so it may (partly) reside in cache. This is a
realistic setting which in fact favors the sequential version because it can access
the data right away, while the many threads of the parallel implementation have
to communicate the data via the slow main memory.

Embarrassingly Parallel Computations. We tested the algorithms for
performing embarrassingly parallel computations by computing the Mandelbrot
fractal, on the 4-way Opteron. For each pixel, for up to i iterations of a com-
putation with complex numbers. Since the computation is interrupted as soon
as the point known to be outside the Mandelbrot set, the computation time for
the different pixels differs greatly. Speedup of up to 3.4 is achieved for i = 10000
iterations per pixel with the dynamical load balancing, whereas static load bal-
ancing only gains a factor of at most 2. This shows the superiority of the dynamic
load balancing for jobs with highly varying running time.

Find. The näıve parallel implementation of find performs very badly and
is far from achieving good speedup, as shown in Figure 3. For the parameters
chosen, m0 = 1000,m = 10000, m̄ = 64000, g = 2, we report an interesting
insight. The growing block variant (gb) performs best for most cases. It is only
superseded by the fixed size block (fsb) variant in a narrow segment, where the
parameters are just right by chance. When switching to the parallel processing
there is speedup < 1, for small inputs. Speedup then goes up steeply, too almost
full speddup, as long as there are enough cores available.

Partial Sum. The speedups for partial sum (see Figure 5) are only about
half of the number of processor, as predicted, because the parallel algorithm
performs almost twice the work than the sequential one.

Partition / mth Element. partition gains linear speedup for up to
eight threads, and benefits from multi-threading up to a factor of 15, as shown
in Figure 4. However, there is no speedup at all for small input sizes. This is
because there is only little computation for integers, so overhead comes in badly.

Sort. With large elements, the multiway mergesort (mwms) achieves
speedup up to 20 on the 8-core T1 (see Figure 7). This is quite impressive, the
multi-threading is utilized extensively. With as many threads as cores, speedup
7.5 is possible. Also, speedup can be achieved with a small number of threads
for as few as 3000 elements. Not only performing well in this practical settings,
the MCSTL parallel multiway merge sorter does exact splitting and therefore
guarantees these good execution times, even for worst-case inputs. Tests have
shown that calculating the exact partition only costs negligible time.

The numbers for balanced quicksort (bqs) converge to about the same values,
but more slowly, even beating mergesort in some cases, culminating in a speedup
of 21. The algorithm works in-place and also is dynamically load-balanced.

With the former example, we also want to demonstrate the power efficiency
of multi-core processors. For sorting more than 31.6 million integers, the T1 is
about as fast as the 4-way Opteron running with 3 threads. However, those three

processors consume about 246 W, while the T1 can be run with only 72 W. This
yields a three-times better power-efficiency, although both processors are of the
same generation.

The results for the Xeon, presented in Figure 6, show the great influence
of the caches on the performances. For one processor, the speedups for two
threads are excellent, and also scale down well. The two cores work together
very well because they share the L2 cache. The break-even point is below 3000
integers. However, additional speedup by incorporating the other two cores is
only achieved for an input data size at least as large as the L2 cache size (4 MB).
Also, one can clearly see the gap in speedup between the two machines in the
region between 1000 and 100000 input elements, where the Dual-Core-Opteron
suffers from its separated L2 caches.

Random Shuffle. The performance for random shuffling, shown in Figure 8,
profits from the cache-aware implementation that makes the sequential algorithm
already twice as fast as the standard one. The speedup continues to scale with
the number of threads, for inputs exceeding the cache.

5 Conclusions

We have demonstrated that most algorithms of the STL can be efficiently par-
allelized on multi-core processors. Simultaneous multithreading has also been
shown to have a great potential in the algorithmic setting. The Sun T1 pro-
cessor shows speedups far exceeding the number of cores when using multiple
threads per core. Before, there have only been few experimental results in such
a library setting.

Future Work. Implementation of the MCSTL will continue with imple-
mentations of worthwhile functions that are not yet parallelized. We have just
started to implement containers. We will start with complex operations (e. g.
(re)construction, rehashing), advancing to the more fine-grained ones like prior-
ity queue updates.

We will add (optional) dynamic load balancing to more functions. In some
case, like parallel multiway mergesort or prefix sum, this poses interesting algo-
rithmic problems.

The MCSTL sometimes offers several implementations of functions. Of
course, in an easy-to-use library we would like automatic support for selecting
an implementation. Some work in this direction has been done in [4]. However,
more work is needed because it is not sufficient to select an algorithm, we also
have to configure it to use the right values for tuning parameters such as the
value B in partition, and, most importantly, the number of threads to be used.

The MCSTL is available freely on our website [19], and can be used by
everyone free of charge. We plan to integrate it with the external memory library
STXXL [20]. Since in many situations the STXXL is compute bound rather than
I/O bound, we expect significantly improved performance for various algorithmic
problems on huge data sets.

 0

 5

 10

 15

 20

 25

107106100000

S
pe

ed
up

Length of Sequence

 2 th, gb
 4 th, gb
 8 th, gb

16 th, gb
32 th, gb
 2 th, fsb
 4 th, fsb
 8 th, fsb

16 th, fsb
32 th, fsb

 2 th, naive
 4 th, naive
 8 th, naive

16 th, naive
32 th, naive

sequential

Fig. 3. Finding a 32-bit integer at random
position, using different algorithm vari-
ants: growing block size (gb), fixed-size
blocks (fsb), and naive.

 0

 2

 4

 6

 8

 10

 12

 14

 16

10710610000010000

S
pe

ed
up

Number of Elements

sequential
1 thread

2 threads
3 threads
4 threads
8 threads

16 threads
32 threads

Fig. 4. Partitioning a sequence of 32-bit
integers.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

10810710610000010000

S
pe

ed
up

Number of Elements

sequential
1 thread

2 threads
3 threads
4 threads
8 threads

16 threads
32 threads

Fig. 5. Computing partial sums of 32-bit
integers.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

107106100000100001000100

S
pe

ed
up

Number of Elements

sequential
Xeon, 2 threads
Xeon, 3 threads
Xeon, 4 threads

Opteron, 2 threads

Fig. 6. Sorting 32-bit integers on the
Xeon and the Dual-Core-Opteron.

 0

 5

 10

 15

 20

 25

107106100000100001000100

S
pe

ed
up

Number of elements

sequential
 2 threads, mwms
 4 threads, mwms
 8 threads, mwms

16 threads, mwms
32 threads, mwms

 2 threads, bqs
 4 threads, bqs
 8 threads, bqs

16 threads, bqs
32 threads, bqs

Fig. 7. Sorting pairs of 64-bit integers.

 0

 1

 2

 3

 4

 5

 6

 7

 8

108107106

S
pe

ed
up

n

sequential
1 threads
2 threads
3 threads
4 threads

Fig. 8. Random shuffling of 32-bit inte-
gers on the 4-way Opteron.

References

1. Putze, F., Sanders, P., Singler, J.: The multi-core standard template library. In:
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
(2007) 144–145

2. Plauger, P.J., Stepanov, A.A., Lee, M., Musser, D.R.: The C++ Standard Tem-
plate Library. Prentice-Hall (2000)

3. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato,
N.M., Rauchwerger, L.: STAPL: An Adaptive, Generic Parallel C++ Library.
In: LCPC. (2001) 193–208 http://parasol.tamu.edu/groups/rwergergroup/

research/stapl/.
4. Thomas, N., Tanase, G., Tkachyshyn, O., Perdue, J., Amato, N.M., Rauchwerger,

L.: A framework for adaptive algorithm selection in STAPL. In: ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. (2005) 277–288

5. Baertschiger, D.: Multi-processing template library. Master thesis, Université de
Genève (in French), http://spc.unige.ch/mptl (2006)

6. Varman, P.J., Scheufler, S.D., Iyer, B.R., Ricard, G.R.: Merging Multiple Lists on
Hierarchical-Memory Multiprocessors. Journal of Parallel and Distributed Com-
puting 12(2) (1991) 171–177

7. Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000. In: 11th Euromicro Conference
on Parallel, Distributed and Network-Based Processing. (2003) 372

8. Finkel, R., Manber, U.: DIB – A distributed implementation of backtracking. ACM
Transactions on Programming Languages and Systems 9(2) (1987) 235–256

9. Sanders, P.: Tree shaped computations as a model for parallel applications. In:
ALV’98 Workshop on Application Based Load Balancing. (1998)

10. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. Journal of the ACM 46(5) (1999) 720–748

11. Sanders, P.: Randomized Receiver Initiated Load Balancing Algorithms for Tree
Shaped Computations. The Computer Journal 45(5) (2002) 561–573

12. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley (1992)
13. Sanders, P.: Fast priority queues for cached memory. ACM Journal of Experimental

Algorithmics 5 (2000)
14. Ranade, A., Kothari, S., Udupa, R.: Register Efficient Mergesorting. In: High

Performance Computing. Volume 1970 of LNCS., Springer (2000) 96–103
15. Dementiev, R., Sanders, P.: Asynchronous parallel disk sorting. In: 15th ACM

Symposium on Parallelism in Algorithms and Architectures. (2003) 138–148
16. Sanders, P.: Random permutations on distributed, external and hierarchical mem-

ory. Information Processing Letters 67(6) (1998) 305–310
17. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Mod-
eling and Computer Simulation 8 (1998) 3–30

18. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 2.5. (May 2005)

19. Singler, J.: The MCSTL website (June 2006) http://algo2.iti.uni-karlsruhe.
de/singler/mcstl/.

20. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard Template Library for
XXL data sets. In: 13th European Symposium on Algorithms. Volume 3669 of
LNCS., Springer (2005) 640–651

