
Grid Resource Ranking using Low-level

Performance Measurements �

George Tsouloupas and Marios D. Dikaiakos

Dept. of Computer Science,
University of Cyprus
1678, Nicosia, Cyprus

{georget,mdd}@cs.ucy.ac.cy

Abstract. This paper outlines a feasible approach to ranking Grid re-
sources based on an easily obtainable application-specific performance
model utilizing low-level performance metrics. First, Grid resources are
characterized using low-level performance metrics; Then the performance
of a given application is associated to the low-level performance measure-
ments via a Ranking Function; Finally, the Ranking Function is used to
rank all available resources on the Grid with respect to the specific ap-
plication at hand. We show that this approach yields accurate results.

1 Introduction

Matching between resource requests and resource offerings is one of the key
considerations in Grid computing infrastructures. Currently, the implementation
of matching is based on the matchmaking approach introduced by the Condor
project [6], adapted to multi-domain environments and Globus, and extended
to cover aspects such as data access and work-flow computations, interactive
Grid computing, and multi-platform interoperability. Matchmaking produces a
ranked list of resources that are compatible to the submitted resource requests.
Ranking decisions are based on published information regarding the number of
CPU’s of each resource, their nominal speed, the nominal size of main memory,
the number of free CPU’s, available bandwidth, etc. This information is retrieved
from Grid information services such as the Monitoring and Discovery Service of
Globus.

This approach works well in cases where the main consideration of end-users
is to allocate sufficient numbers of idle CPU’s in order to achieve a high job-
submission throughput with opportunistic scheduling. In several scenarios, how-
ever, reliance to matchmaking is not sufficient; for instance, when end-users wish
to “shop around” for Grid computing resources before deciding where to deploy
a high-performance computing application, or when Virtual Organization (VO)
operators want to audit the real availability and configuration status of their
providers’ computing resources [4]. In such cases, the information published by
� This work was supported in part by the European Commission through projects

EGEE (contract INFSO-RI-031688) and g-Eclipse (contract 034327).



resource providers and Grid monitoring systems does not provide sufficient detail
and accuracy. Grid users need instead the capability to interactively administer
benchmarks and tests, retrieve and analyze performance metrics, and select re-
sources of choice according to their application requirements. To provide Grid
users with such a test-driving functionality, we designed and implemented Grid-
Bench, a framework for evaluating the performance of Grid resources interac-
tively. GridBench facilitates the definition of parameterized execution of various
probes on the Grid, while at the same time allowing for archival, retrieval, and
analysis of results [9, 10]. GridBench comes with a suite of open-source micro-
benchmarks and application kernels, which were chosen to test key aspects of
computer performance, either in isolation or collectively (CPU, memory hierar-
chy, network, etc.) [11].

In this paper, we present SiteRank, a component that we developed on top of
GridBench to support the user-driven ranking of computational Grid resources.
SiteRank enables Grid users to easily construct and adapt ranking functions that:
(i) Take as arguments performance metrics derived with the low-level bench-
marks of GridBench [11]; the selection of these metrics can be done manually
or semi-automatically by the end-user, through the user interface of GridBench.
(ii) Combine the selected metrics into a linear model that takes into account
the particular requirements of the application that the user wishes to execute on
the Grid (e.g., memory vs. floating-point performance bound). Using a ranking
function, Grid users can derive rankings of Grid resources that are tailored to
their specific application requirements.

In this paper, we describe the methodology followed by SiteRank to de-
velop ranking functions. Furthermore, we demonstrate the use of SiteRank
in the ranking of the computational resources of EGEE, which is the largest
production-quality Grid in operation today [1]. To this end, we examine two al-
ternative applications running on EGEE: povray, a ray-tracing application, and
SimpleScalar, a simulator used for hardware-software co-verification and micro-
architectural modelling. Our results show that SiteRank functions can provide
an accurate ranking of EGEE resources, in accordance to the different require-
ments that each application has. Furthermore, that the careful selection of the
low-level metrics used in the linear model is very important for the construction
of accurate ranking functions.

The rest of this paper is organized as follows: Section 2 introduces SiteR-
ank and its ranking methodology. Section 3 describes the use of SiteRank in
the ranking of EGEE resources for the two applications of choice: povray and
SimpleScalar. We conclude in Section 4.

2 SiteRank

Computational resources on the Grid exhibit considerable variance in terms
of different performance characteristics. This leads to non-uniform application
performance that significantly varies between applications.



One approach for ranking resources in terms of performance is the one taken
by the current (EGEE) infrastructure, which is to publish GlueHostBench-
markSF00 (SPEC-Float 2000 floating point performance metric) and GlueHost-
BenchmarkSI00 (SPEC-Int 2000 integer performance metric) values for each site.
Unfortunately, values quoted by site administrators cannot be relied upon; This
is evident in Figure 1 which compares the effectiveness of a quoted metric (Fig-
ure 1 left) in contrast to a measured metric(Figure 1 right). The charts speak
for themselves; Clearly, the quoted metric does a very poor job in justifying
application performance1. It is important to note that this would be inadequate
even if the quoted values were correct, since application performance depends
on much more than just two metrics (see Section 3).

Fig. 1. The relationship of application performance to quoted and measured metrics.

2.1 The Ranking Methodology

The GridBench tool provides a SiteRank module that allows the user to interac-
tively and semi-automatically build a ranking model. A ranking model consists
of filtering, aggregation and ranking functions (Figure 2).
Filtering refers to a user selection regarding which results will be included or
excluded in the ranking process. Attribute filtering allows the user to limit the
selected set of measurements to the ones that match certain criteria in the bench-
mark description. E.g. limiting the selection to a specific VO , type of CPU, or
the date and time results were obtained.
Aggregation allows the user to specify grouping of the measurements. The user
can specify whether each measurement will count equally, irrespective of which
worker-node it was executed on. In this case, the reported metric may possibly
be less representative of the resource as a whole because some worker-nodes may
be over-represented. On the other hand, this will tend to be more representative
of what the user actually experiences once the resource’s policy is applied. The

1 Similar results are obtained with GlueHostBenchmarkSI00 just as with GlueHost-
BenchmarkSF00.



Fig. 2. The ranking process.

Aggregation step produces a set of statistics for each metric: mean, standard-
deviation, min, max, average-deviation and count. During the aggregation step,
the raw metrics are normalized according to a base value. The base values are
configurable and in our experiments we used values from a typical 3.0GHz Xeon
worker-node. For example, we used the value of 1050.0 to normalize the Mflops4
metric. The aggregation step is also important for the conversion of vector-type
metrics, such as the ones produced by CacheBench into scalars (see later de-
scription on the c512k metric) so that they can be used in ranking functions.
Ranking Function Construction: The end goal of this methodology is a
ranked list of computational resources that reflects the performance that users
will experience running a specific application. It involves establishing a relation-
ship between application performance and a set of low-level measurements. The
process is illustrated in Figure 3, and it is outlined by the following steps (see
Section 3 for an example):

1. Sampling: Obtain low-level performance metrics m for a small sample of
resources – typically 10-15% of the full-set of resources. For the same sample
of resources also obtain application performance measurements, i.e. applica-
tion completion times. The application performance of this sample is denoted
α where each α = 1/(completion time).

2. Ranking Function Generation: Determine a Ranking Function R based
on the low-level metric data m and application performance α, so that
α = R(m). This involves the selection of the low-level metrics that closely
correlate to this application’s performance, followed by a linear fit of the
data, i.e. multivariate regression.

3. Estimation: For the set of the remaining resources, obtain only low-level
performance metrics M , and apply the ranking function in order to obtain
an estimate of the application performance Aest such that Aest = R(M ).
Sorting Aest produces the Rank Estimation.



Fig. 3. Rank Estimate generation process outline.

2.2 Metrics

Selecting the right metrics to characterise the resources is of utmost importance
in order to adequately characterize the major computational characteristics that
affect application performance. In fact, we consider a good set of metrics one that
can adequately explain the performance of several distinct applications. In the
process of picking the right metrics and the right benchmarks to deliver these
metrics, we limited ourselves to freely available tools that we could widely deploy
and run. We also aimed at keeping the number of metrics low and we favored
well-known metrics. A more detailed discussion can be found in [11].

Table 1. Metrics and Benchmarks.

Factor Metric Delivered By

CPU Floating-Point operations per second Flops

CPU Integer operations per second Dhrystone

Main memory sustainable memory bandwidth in MB/s Stream

Main memory Available physical memory in MB Memsize

Cache memory bandwidth by varying array sizes in MB/s CacheBench

Disk Disk bandwidth for read/write/rewrite bonnie++

Interconnect latency, bandwidth and bisection bandwidth MPPTest

Table 1 shows a list of low-level metrics and the associated benchmarks. The
Flops benchmark yields 4 metrics, Mflops1, Mflops2, Mflops3 and Mflops4, each
consisting of different mixes of floating-point additions, subtractions multiplica-
tions and divisions. Dhrystone yields the dhry integer performance metric. The
STREAM memory benchmark yields the copy, add, multiply and triad metrics
which measure memory bandwidth using different operations. For cache metrics,
measuring memory (cache) bandwidth B by allocating and accessing progres-
sively larger array sizes s, the CacheBench benchmark produces a series of values
Bs where s = 28, 29, 210 . . . 2n. By summing up the product of the bandwidths
and respective sizes we derive a metric that takes into account both the cache



size and the cache speed :
∑n

s=8 s×Bs. For example, summing up to 512kb, i.e.
∑19

s=8 s × Bs yields the c512k metric. This is done for sizes up to 512kb, 1Mb,
2Mb, 4Mb, 8Mb yielding the metrics c512k, c1M, c2M, c4M and c8M respec-
tively. This approach alleviates the problem of looking up the cache size for the
multitude of CPU’s on the Grid, or detecting the cache sizes of a potentially
multilevel cache.

3 Experimentation

In this section we demonstrate the proposed methodology by automatically de-
termining a Ranking Function, obtaining a Ranking Estimate and validating that
the Ranking Estimate is accurate by directly measuring the performance of the
application. This is done for two applications, on a set of about 230 sites that
belong to the EGEE infrastructure. We user two serial applications:
povray: The Povray v3.6 ray-tracing application using the a 40x40 scene.
sisc: The SimpleScalar, computer architecture simulation.2

For this experiment, we aimed at having between 2 and 3 measurements from
each computational resource. One noteworthy fact is that we could only obtain
results for about 160 out of the 230 sites. This was partly due to errors and site
unavailability, but also due to exhausted quotas at some resources. We used the
GridBench framework to obtain our measurements. The process of integrating
the two applications into GridBench including the compilation took less than
one hour and only needs to be performed once. The process of actually running
all the experiments took less than 10 minutes, although we did have to wait for
a few hours until the results from all the queued jobs were in. We then exported
these results into an open-source statistics software package3 (“R”).

The data-set obtained by running the benchmarks on all the available com-
putational resources will be referred to from now on as the full-set. Out of the
full-set, we obtained a random sample, henceforth referred to as the sample-
set, with results from 24 resources (15% of the full-set). A correlation matrix
indicates which metrics are most correlated to application performance; this is
shown in Figure 4. The problem of collinearity must be taken into consideration
when narrowing down the selection of metrics. As shown in Figure 4 some met-
ric groups are highly collinear, in such cases we eliminate the collinear metrics
by selecting one metric out of the group, i.e. the one with the highest correla-
tion to the application. In this example we kept Mflops4 and discarded Mflops2,
Mflops3 and dhry. Selecting the Mflops4 and c512k metrics for building the
Ranking Function, leads to the next step, i.e. calculating the a and b coefficients

2 Limited execution privileges for the Virtual Organization through which we per-
formed our experiments, dictated that we use parameters resulting in short applica-
tion completion times. This applied both to povray and to sisc.

3 Use of the R software was limited to establishing the relationship between the low-
level metrics and application performance, and the validation of the results. All
charts included in the paper we created using GridBench



Fig. 4. Correlation Matrix for the povray application.

in order to best satisfy:
αpovray = a × Mflops4 + b × c512k

Outlier removal is achieved by performing a linear regression, and data-points
that fall more than two standard deviations away from the rest are filtered out.
In our specific example, 2 out of the 18 points were dropped. Linear regression is
performed once again using the filtered sample-set, which yields the coefficients
a = 0.94 (for Mflops4 ) and b = 0.46 (for c512k). Finally, we apply this model
on the full-set in order estimate the performance of the application:

Apovray = 0.94MMflops4 + 0.46Mc512k

Fig. 5. Rank Estimate for the povray application

Ordering the list of resources by Apovray gives the Rank Estimate. The Rank
Estimate is shown in Figure 5. In order to test that the Ranking Estimate is
accurate the performance of the application was directly measured for the whole
infrastructure. This is only necessary in order to validate the model and not part
of the methodology. The measured performance is shown in Figure 6. The agree-



Fig. 6. Measured povray performance on 159 resources of the EGEE infrastructure.

ment between the Rank Estimate and the measured ranking can be statistically
tested by calculating the rank correlation. There are several ways of doing this,
such as Kendall’s τ , which ranges from -1 to 1 and is also known as the “bubble-
sort distance”. Kendall’s τ yielded τ = 0.90. Spearman’s ρ, which again ranges
from -1 to 1, yielded ρ = 0.977. Finally, Pearson’s correlation coefficient yielded
0.98. All three of the statistics show that the two rankings are quite similar. The
τ statistic appears considerably lower that the other two, due to the fact that
our data-set contains a lot of resources that are of almost identical performance.
Extremely small fluctuations in measurement are enough to change the ordering.
Yet,the performance of the resources is nearly identical, so the reordering is not
very significant. For this reason the authors are inclined to take ρ = 0.977 as the
more representative measure.

For the second application sisc we used the same methodology and the same
sample-set that was used in the previous case. The metrics dictated by the
correlation matrix are dhry and c512k. Performing the regression, outlier removal
and then estimating the metric coefficients yields:

Asisc = 0.27Mdhry + 0.18Mc512k

The Ranking estimate is given in Figure 7. The correlation of estimated and
actual is again quire high with a value of ρ = 0.959. Thus, for both applications
the ranking of resources based on low-level measurements provides results that
are very close to the ranking produced by running the application itself.

4 Conclusions

The work presented here, i.e. Ranking based on derived models of low-level
metrics, describes an alternative way of choosing and ranking resources. We
propose a semi-automated user-driven approach to ranking Grid resources that
employs user-specified metrics and ranking functions.

The process of running benchmarks collecting and analysing results and gen-
erating ranked lists, would simply not be feasible if it had to be done manually,



Fig. 7. Rank Estimate for the sisc application on the EGEE infrastructure.

especially if it had to be done by the end user. Eventually, resource performance
information will be coupled with resource pricing information. Users will then be
able to “shop around” and pick the right resources (e.g. black-listing or white-
listing) in order to influence the matchmaking process is a way that benefits
them. The SiteRank module of the GridBench tool allows the user to interac-
tively construct and modify ranking functions based on the collected measure-
ments. The Ranking Estimate has proven to be quite accurate with a very high
correlation to measured application performance for at least two applications,
povray and SimpleScalar.

We have illustrated that current approaches to expressing the performance
of resources, such as publishing the quoted, not measured, GlueHostBench-
markSF00 and GlueHostBenchmarkSI00 metrics into the information system
are not satisfactory, since they do not correlate well with at least the two appli-
cations that we have investigated.

Other tools in the general area of Grid testing and benchmarking include
the Grid Assessment Probes [3], DiPerF [5] and the Inca test harness and re-
porting framework [7]. These are testing/benchmarking frameworks that provide
functionality ranging from testing of Grid services to the monitoring of service
agreements. In contrast, we focus on user-driven performance exploration and
ranking. Benchmarking as a data-source for resource-brokering is explored in [2].
This work suggests the application of weights to different resource attributes and
the use of application benchmarks to obtain a ranking that can eventually be
used for resource brokering; we have also suggested this in our previous work [8].

Choosing the right metrics to collect is of vital importance, as an incomplete
set of metrics will yield poor characterization. For example, our initial exper-
iments did not include metrics that characterize the memory cache. While we
had been collecting measurements about the cache, the data was in a form that
was rather difficult to integrate into a regular function. Also, we had falsely as-
sumed that the cache effects would be largely accounted for in other metrics.
The initial results were not at all encouraging; but including the cache metrics,



i.e. c512k, completely changed the situation. Indicative was the improvement of
the ρ rank correlation statistic from approximately ρ = 0.8 to ρ = 0.96 for the
SimpleScalar application. This also confirms the importance of a well-sized, fast
cache to computational applications.

Further plans include the investigation of more applications, especially ap-
plications that are not CPU/memory bound, in order to evaluate the extent to
which the metrics that we collect provide sufficient characterization.

References

1. Enabling Grids for E-SciencE project. http://www.eu-egee.org/.
2. Enis Afgan, Vijay Velusamy, and Purushotham V. Bangalore. Grid resource broker

using application benchmarking. In EGC, pages 691–701, 2005.
3. Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Benchmark probes for

grid assessment. In 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004, Santa
Fe, New Mexico, USA. IEEE Computer Society, 2004.

4. J. Coles. Grid Deployment and Operations: EGEE, LCG and GridPP.
In Proceedings of the UK e-Science All Hands Meeting 2005, 2005.
http://www.allhands.org.uk/proceedings/2005 (accessed Oct. 2005).

5. Catalin Dumitrescu, Ioan Raicu, Matei Ripeanu, and Ian Foster. Diperf: an au-
tomated distributed performance testing framework. In Proceedings of the 5th
International Workshop on Grid Computing (GRID2004). IEEE, November 2004.

6. Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: An extensible
framework for distributed resource management. Cluster Computing, 2(2):129–138,
1999.

7. Shava Smallen, Catherine Olschanowsky, Kate Ericson, Pete Beckman, and Jen-
nifer M. Schopf. The inca test harness and reporting framework. In SC ’04: Proceed-
ings of the 2004 ACM/IEEE conference on Supercomputing, page 55, Washington,
DC, USA, 2004. IEEE Computer Society.

8. A. Tiramo-Ramos, G. Tsouloupas, M. D. Dikaiakos, and P. Sloot. Grid Resource
Selection by Application Benchmarking: a Computational Haemodynamics Case
Study. In Computational Science - ICCS 2005, 5th International Conference, At-
lanta, GA, USA, May 22-25, 2005, Proceedings, Part I., volume 3514, pages 534–
543. Springer, May 2005.

9. G. Tsouloupas and M. D. Dikaiakos. GridBench: A Tool for Benchmarking Grids.
In Proceedings of the 4th International Workshop on Grid Computing (Grid2003),
pages 60–67. IEEE Computer Society, November 2003.

10. G. Tsouloupas and M. D. Dikaiakos. GridBench: A Workbench for Grid Bench-
marking. In In Advances in Grid Computing - EGC 2005. European Grid Confer-
ence. Amsterdam, The Netherlands. February 14-16, 2005, Revised Selected Papers,
number 3470 in Lecture Notes in Computer Science, pages 211–225. Springer, June
2005.

11. G. Tsouloupas and M. D. Dikaiakos. Characterization of Computational Grid
Resources Using Low-level Benchmarks. In Second IEEE International Conference
on e-Science and Grid Computing (e-Science’06), pages 70–77. IEEE Computer
Society, December 2006.


