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Abstract. Clusters of loosely connected machines are becoming an im-
portant model for commercial computing. The cost/performance ratio
makes these scale-out solutions an attractive platform for a class of
computational needs. The work we describe in this paper focuses on
understanding performance when using a scale-out environment to run
commercial workloads. We describe the novel scale-out environment we
configured and the workload we ran on it. We explain the unique perfor-
mance challenges faced in such an environment and the tools we applied
and improved for this environment to address the challenges. We present
data from the tools that proved useful in optimizing performance on our
system. We discuss the lessons we learned applying and modifying exist-
ing tools to a commercial scale-out environment, and offer insights into
making future performance tools effective in this environment.

1 Introduction

For the past decade mainstream commercial computing has been moving from
uniprocessor computing systems to multiprocessor ones. During the first phase
of the commercial multiprocessor revolution, shared-memory multiprocessors
(SMPs) became pervasive. SMPs of increasing size, with processors of increasing
clock rate, offered ever more computing power to handle the needs of even large
corporations. SMPs currently represent the mainstream of commercial comput-
ing. Companies like IBM, HP, and Sun invest heavily in building bigger and
faster SMPs. These large SMPs are also called scale-up systems.
Computational needs, however, have continued to rise, and more recently,
there has been increased interest in clusters of loosely coupled systems for
commercial computing. These clusters are also called scale-out systems. Com-
puter manufacturers have made it easier to deploy scale-out solutions with rack-
optimized and blade servers. Scale-out has been the only viable alternative for
large scale scientific computing for several years, as observed in the evolution
of the TOP500 systems [1], and they are now becoming more popular for com-
mercial computing. For the past year, we have been working on the problem
of demonstrating a scale-out system with superior performance in commercial



applications. In order to optimize such systems it is important to understand
their performance.

A commercial scale-out (CSO) environment presents several challenges to
understanding the performance of applications. We describe these in Section 2.
In Section 3 we describe the tools we developed, ported, and used to understand
the performance of our environment. Using these tools we obtained a better
performance of our system and used that to guide a directed optimization. We
present this data in Section 4. During the work of understanding performance
and tailoring the tools for our commercial scale-out environment we learned
valuable lessons and gained insights into what future performance tools should
offer to be effective in this environment. We present these in Section 5. We
present related work in Section 6 and conclude in Section 7.

2 Understanding performance in commercial scale out

Understanding performance in a commercial scale-out environment has two chal-
lenges similar to large parallel scientific environments. The first is that the large
number of processing elements generate a large number of trace streams with
a tremendous amount of data. It is thus important to develop automatic tech-
niques for determining which parts of which traces should receive manual atten-
tion. For longer running applications it is important to have techniques to limit
the amount of data.

The second challenge is that to correlate events from different machines a
synchronized time is needed. Some parallel tool developers perform a linear shift
between the first and last event for each trace. This is only sufficient for traces
of smaller time windows collected on higher-end systems with more accurate
clocks. In the CSO space, with commodity hardware the clocks often do not
drift linearly and these techniques are not sufficient.

The two additional challenges that commercial workloads introduce are the
complexity of the software stack and a large number of simultaneous threads of
execution on a single processing element. The stack complexity manifests itself
by requiring multiple loosely related coordinating processes. When multiple coor-
dinating processes are executing it becomes difficult to understand the causality
relationship between observed system behavior and the process or group of pro-
cesses causing the behavior. As a simple example, if both a database and web
server are running on a machine, and the observed behavior is that we are run-
ning short of page cache space, given our knowledge of these applications, we can
probably conclude that it is the database causing the problem. However, if the
characteristics of the running applications are not clearly understood in isola-
tion, or if there is any interaction between them, it becomes much more difficult
to understand particular system behavior. Related to this issue is understanding
the interrelations between processes on different machines. For example, why did
process X on machine 1 start process Y on machine 2.

Typical commercial workloads generate hundreds or thousands of concur-
rently executing threads in each machine. The threads do not necessarily all



belong to a single process or logical unit of computation. It is therefore not
meaningful to combine the performance of all the threads, nor is it practical
to analyze them on a cases-by-case basis. In the scope of this work we made
modifications to the tools described in Section 3 to handle these issues.

3 Performance tools

A major difficulty in a commercial scale-out environment is the number of dif-
ferent software pieces interacting together. Profiling tools like gprof, oprofile,
and nmon show only a breakdown of the CPU time, but do not identify which
resource a program is waiting for when it does not have the CPU. More infor-
mation can be extracted by using an instrumentation approach.

The Linux Trace Toolkit Next Generation (LTTng) [2], is a trace-based tool
that extracts information in a unified manner from all execution layers in the
software stack (from hypervisor through user space) with minimal impact on the
application performance and system behavior. The Linux Trace Toolkit Viewer
(LTTV) uses the data output from LTTng, merges the data collected from each
software stack layer, and organizes them in data structures that permit the
identification of the producer of these events (which node, process, thread) and
classification of the execution context in which the event occurs (process context
or in which system call, trap, interrupt, softirq).

We have added features to LTTng to support commercial scale-out environ-
ments. We added PowerPC-specific instrumentation and tracing support for the
Java language. This support was implemented using a JNI interface that calls a
C handler which in turn calls the LTTng user space tracer to record the infor-
mation. Once the information is available, it is important to be able to identify
the information source. This has been made possible by adding thread brand-
ing events that are triggered when a new Java thread starts. The thread brand
event records information about the name of the main thread function and spe-
cific thread information. The analysis and visualization tool, LTTV, has been
extended to include thread brands into its representation of the system state,
and allows filtering on them. To ameliorate start-up time for the many large
files, we added a new precomputation module.

To complement the functionality of LTT, we designed a performance monitor-
ing facility that provides an easy-to-use interface to the hardware Performance
Monitoring Unit (PMU) of the PowerPC processors. This facility uses statis-
tical sampling to continuously identify microprocessor bottlenecks. It has been
implemented as a kernel module that performs hardware performance counter
(HPC) multiplexing, does PC and data sampling, and calculates a stall break-
down model.

The key to achieve acceptable overhead during run-time monitoring is to
minimize the frequency of user-kernel protection boundary crossings. In our im-
plementation, the sampling module is fully implemented inside the Linux 2.6
kernel. As a result, except for infrequent control operations (such as initializa-
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Table 1. Types of miss events with their potential effect in the micro-architecture
function.

tion or reset), there is no interaction between the user code and the performance
monitoring module.

We alleviate the problem of having limited number of physical counters by
dynamically multiplexing [3] the set of hardware events counted by the HPCs
using fine-grained time slices. The sampling module assigns each group of events
a fraction of g cycles out of a multiplering round R that is the time period
in which all HPC groups have a chance to be scheduled. At the end of each
HPC group’s time slice, the sampling engine automatically assigns another HPC
group to be counted by the hardware PMU. The value that is read from an HPC
after g cycles is scaled linearly, as if that event had been counted during the
entire R-cycle period. As a result, the user program is presented with N logical
HPCs on top of n physical HPCs, where N can be an order of magnitude larger
than n. Our earlier experimental evaluation [3] demonstrated that the statistical
distance between the sampled and real rates of hardware events is small.

We use the hardware performance counters to calculate a Cycle-Per-Instruc-
tion (CPI) breakdown that attributes CPU cycles to the different hardware
components that caused them. We restrict our approach to a breakdown of
stall cycles. A stall cycle is a processor cycle in which no instruction completes
(retires). When no stall occurs, the CPU throughput, in terms of IPC, is fairly
close to the pipeline width and is fairly application-independent.

The key idea behind the stall breakdown model is that most bottlenecks can
be detected by speculatively attributing a source to each stall. There are two
major categories of such stalls:

— Empty Reorder Buffer: This implies that the front-end has not been able
to feed the back-end in time. Assuming the micro-architecture is designed



and tuned properly, such situations happen mostly when there is an I-Cache
miss, or when a branch misprediction occurs.

— Completion Stops: In this case, the reorder buffer is not empty, but the oldest
instruction bundle in the reorder buffer cannot retire. This happens mainly
because one or more of its instructions in the bundle have not yet finished
(i.e., they are waiting for an functional unit to provide the results).

We call the hardware events that can cause a stall long-latency events. The
long-latency events we consider in this study are listed in Table 1 along with
the type of stalls they cause and the potential effect they may have. By taking
all sources of stalls into account, the following formula can be used to specula-
tively characterize the potential CPU bottlenecks at each phase in the program
execution:

CPlLoea = Z Stall; + CPI¢x
=0

where, Stall; is the number of stalls caused by long-latency event ¢ in the mon-
itoring period, and CPI¢ is number of completion cycles in each of which at
least one instruction is completed. In fact, CPIo can be used as an estimate for
the CPI that can be achieved by an ideal hardware in which all the long la-
tency events are removed and performance is solely determined by the program
dependences and the width of the pipeline.

4 Experimental results

Our Commercial Scale-Out (CSO) environment was built using PowerPC blades
to run the Nutch [4] web search application workload. The basic building block
of the cluster is a BladeCenter-H (BC-H) chassis. Each BC-H chassis has 14
blade slots and is coupled with one DS4100 storage controller with a 2 Gbs
Fiber Channel. Of the 8 chassis in our cluster, 4 are filled with JS21 blades.
These are quad-processor (dual-socket, dual-core) PowerPC 970 blades, running
at 2.5 GHz, with 8 GiB of memory each. The chassis are interconnected through
two nearest-neighbor networks: a 4 Gbs Fiber Channel network and a 1 Gbs
Ethernet network. Each DS4100 consists of dual redundant RAID controllers
and 14 SATA drives of 400GB each.

Nutch is an open-source distributed web search application built on top of
the Lucene search library [5]. The query engine consists of one or more front-ends
and one or more back-ends, as shown in Figure 1. The front-ends provide a web
interface for queries. Each back-end is responsible for a data partition, a subset of
the complete set of documents. When a front-end receives a query, it broadcasts
the query to all back-ends. Each back-end responds to the front-end with the top
n (e.g., 10) documents in its data partition that match the query. The front-end
collects the responses from all the back-ends to produce a single list of the top n
documents with the best overall matches. For each document in the top n list,
the front-end asks the corresponding back-end to return representative snippets



of the document text. The front-end then responds to the requester with the
query results. The Nutch architecture is similar to the Google search engine [6].

=
Back-end ]_@

Driver |+ Front-end

througliput measurement

Fig. 1. Nutch distributed query environment.

We took two approaches in understanding the performance of our application.
The first was to use HPCs to understand the CPI-breakdown of our application.
The second approach was to use LTT to examine and categorize time spent in
different OS services.

Our measurements with HPCs show that the CPI for query fluctuates be-
tween 1.5 and 2.0 during a run, with an average of 1.7. This is far from the
PowerPC 970 peak CPI of 0.2, but it is within what would be expected from
previous experience with SPECcpu2000 benchmarks where we observed a CPI of
1.53. To better understand what aspects of the hardware were limiting the CPI
we used the tool we described earlier to classify stalls. Figure 2(a) shows the stall
breakdown with each bar representing a 1 second analysis period. In each second
there are a total of 10 billion processor cycles executed by 4 processors running
at 2.5GHz. Figure 2(b) shows the average over time of the data in Figure 2(a),
separated for cycles in user mode, kernel mode, and total.

Instructions complete on only 20% of the cycles. Because instructions in the
PowerPC 970 complete in bundles, multiple instructions can complete per cycle.
The number of instructions executed per second (10 billion cycles/second + 1.7
cycles per instruction = 5.9 billion instructions/second), shows that the average
bundle size is approximately 3 instructions (out of a maximum of 5). The non-
stall CPI for query, computed by dividing the number of non-stall (completed)
cycles by the number of instructions is 0.34. Again, this is similar to the non-stall
CPI for SPECcpu2000 where we observed a CPI of 0.35.

The data shows that for a significant number of cycles (25%), the processor
is idle. In principle, we should be able to reduce that idle time by increasing the
load on the node. This is accomplished by increasing the number of tasks on
the node. There is of course a balance, because an excessive number of threads
causes a slowdown. In more extensive experiments, we found that we could keep
the idle time down to between 10-15%, and are investigating how to drive this
even lower.

Finally, we observe that the number of cycles wasted on the I-cache or on
branch mispredictions is relatively small, stalls due to the fixed-point units ac-
count for 10% of the cycles, and stalls because of the memory hierarchy (D-cache,
reject, ERAT, and other LSU) represent approximately 20% of the cycles. The
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Fig. 2. Hardware performance counter data

fraction of cycles wasted in the memory hierarchy is similar to the fraction of
cycles doing useful work. Thus, a perfect memory system would at most dou-
ble the performance of the existing processors. Alternatively, for an equivalent
amount of chip area, a commensurate benefit could be obtained by doubling the
number of processors and maintaining the memory hierarchy per processor.

Using LTT to sample this workload at various points throughout its execu-
tion we determined that its behavior characteristics are stable over time. The
following figures (Figures 3-4) are taken over a ten second snapshot during the
portion of query running on a JS21 back-end blade as described earlier. Each of
the data points was sampled several times and the below figures represent the
median point. Figure 3(a) shows an overall breakdown of time in the system.
As shown, the application (user mode) takes 70% of the CPU time, the system
20%, and 10% remains idle. One of our goals was to find bottlenecks in the
system stack and to optimize for those. Thus, we examined the system closer
with LTT. Figure 3(b) shows the breakdown into the major categories of system
time. Figure 3(a) indicates that system call time dominates system activity for
this application.

Dsyscall time
muser mtrap time
| system Elirq time
oidle
Osoftirg time
(a) (b)

Fig. 3. Time breakdown for overall system (a) and for kernel (b).



As system call time was critical to this application, we wanted to ascertain
which system call was having the greatest impact on system performance. We
thus used LTT to breakdown the system call time into its various components. As
seen in Figure 4(a) read () is one of the largest components of system time. Based
on the impact of read () time, we optimized the read () system call in our 1libOS
environment. The optimization targeted for read () was to perform a specialized
caching. We were able to achieve this because the libOS environment can be
tailored to a specific application. This capability demonstrates the strength of a
libOS environment [7]. Figure 4(b) shows a comparison of the modified read ()
libOS versus original Linux system. Using performance monitoring as provided
by LTT, we were able to identify system calls having the significant impact on
performance and target them for optimization. After optimizing read () we were
able to improve the overall performance of our Nutch/Lucene search application.

average time per read() in usecs

kemel system call time

@ read
mIseek
owite
O open
& socketeall
O execve
mtex
oclone
mstatsd
= poll

O other

linux resel) lioos readi)

(a) (b)

Fig. 4. Time breakdown for system calls (a) and comparison between original Linux
and modified 1ibOS (b).

5 Lessons learned and future tools requirements

The first trace data for our commercial scale-out system revealed a much larger
than expected number of processes and threads simultaneously active on each
processor. This was a stark contrast to scientific computing systems where on
each processing element there is a single, or small number of, executing threads.
We started questioning the plausibility of using a trace-based analysis for this
environment.

We tried using other techniques such as log (as generated by the application
of interest) analysis, and aggregated statistics such as provided by top. The log
based approach applies just to the application. It does not help significantly with
system understanding, and there is a tremendous amount of data generated by



the logs. In tracking down one particular problem we could not use the logs
because they perturbed the system too much and generated so much data we
could not store it. There was no tool, other than grep and split (the files were
too big to load into any editor) designed to process the logs.

In light of these issues, we decided to make modifications to our trace-based
analysis to make it more useful for commercial scale-out. The first capability
added was process branding to identify how and why a process is created. We
could now identify processes that were started to create other worker JVMs
upon receiving requests from the master node. This clarified one of the puzzles
as to why some Java processes did nothing but wake up occasionally and go
back to sleep without doing anything. We now had a good indication that it
was not because they were blocked waiting for some resource, rather they just
didn’t have anything to do and were waiting for work. This highlights another
difference in programming models from scientific to commercial computing. It
is important that tools be able to recognize why a process is not computing,
even when the reason occurred outside the time window over which the trace
was collected. Another feature we added was the ability to only view a single
process tree. This allowed us to examine threads of execution that were related
to a particular higher-level computation. These few features made a meaningful
difference in the understanding we could get from a trace-based analysis of a
commercial workload, but still much more could be done. While there are some
commercial workloads that behave similar to scientific workloads, and vice-versa,
the experiences described above represent general tendencies for scientific and
commercial computing.

Based on our experience, we have developed a set of recommendations for
future performance tools:

— Process branding: An automatic way to determine how and why processes
were started. For example, for a daemon that forks processes in response to
requests from a master or other cooperating processes, we need the ability
to track that relationship.

— Time synchronization: Add events into the trace generation and put anal-
ysis capability into the post-processing tools allowing timestamps collected
on different machines to be adjusted on a fine granularity table-based man-
ner. This would allow all events in a CSO system to have consistent times-
tamps and be displayed on a single timeline.

— Automatic idle thread determination: The inability to overlap 1/0,
poor use of synchronization primitives, etc., causes performance loss because
the processor becomes idle. We need the ability to identify why the processor
is not fully utilized, and in particular, to understand why a thread is unable
to run at a given time.

— Cross-machine logical causality: Allow tools to display on a single time-
line processes from one machine that have been created as a result of a
process running on a different machine. This requires time synchronization
and thread branding.



— Tree-based causality: Provide the ability to select a given process and see
all processes that have been created because of actions taken by this process.
Should work across machines.

— Selective aggregation of different performance data: Currently tools
such as LTT can provide statistical information about how much time a
processor spent executing particular system calls. This capability is provided
on a process by process basis. What is needed is the ability to provide it on
a tree-based causality basis.

6 Related Work

Barroso et. al. [6] describe Google’s search architecture. This is similar to Nutch
distributed query in partitioning data and designating web servers (front-ends)
and index and document servers (back-ends). However, the former maintains
separate index and document servers, while in the Nutch architecture, back-
ends are responsible for both searching the index and providing the relevant
snippets from the document data partitions.

The original LTT project [8] has been followed by LTTng [9]. The latter
project reused work done in IBM’s K42 [10, 11] on atomic tracing algorithms. The
current work on with LTTng targets the Xen hypervisor and supports analysis
of the interactions between the hypervisor and operating system.

Software multiplexing of HPCs is implemented for PAPI [12] at user-level us-
ing OS signals [13, 14]. Due to the large overhead of switching HPCs at user level
(signal delivery plus kernel /user context switches), the granularity of multiplex-
ing must be large which in turn results in high sampling error. DCPI [15] uses
statistical sampling of the HPCs to identify system-wide hot spots and pipeline
stalls at the instruction level. A major simplifying assumption in DCPI is that
there is a fixed distance between the instructions that causes HPCs to overflow
and the overflow exception. However, this assumption has been shown not to
be realistic in modern processors with deep and wide pipelines. A simpler alter-
native for stall breakdown is to use fixed penalties for long-latency operations
such as cache misses [16]. This approach though, significantly overestimates the
actual penalties as it does not take potential overlapping of concurrent opera-
tions into account. Our approach is more accurate because it exploits existing
hardware support to measure the stalls that actually occur.

7 Conclusions

In this paper we described the challenges a commercial scale-out environment
poses for performance understanding, including a complex execution stack with
multiple loosely related processes executing concurrently and the requirement
for a large number of threads of execution per single processing element. We
used LTTng and hardware performance counters to investigate performance in
such an environment. This process was enlightening in terms of what the needs
are for performance tools in the commercial scale-out space. We shared the

10



lessons we learned as part of going through this process and then provided a
set of recommendations for future performance tools for commercial scale-out
environments.
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