
Accelerate Data Sharing in a Wide-Area

Networked File Storage System?

Kun Zhang, Hongliang Yu, Jing Zhao, and Weimin Zheng

Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China

Abstract. Up to now, more and more people use Internet storage ser-
vices as a new way of sharing. File sharing by a distributed storage
system is quite different from a specific sharing application like BitTor-
rent. And as large file sharing becomes popular, the data transmission
rate takes the place of the response delay to be the major factor influenc-
ing user experience. This paper introduces strategies used to accelerate
file sharing with low bandwidth consumptions in a deployed wide-area
networked storage system - Granary. We use a popularity and locality
sensitive replication strategy to put files closer to users that request it
frequently. The Hybrid server selection scheme and the Remote Boost-

ing replication mechanism are also presented. Experimental results show
these methods offer better sharing speed and cost less network bandwidth
than conventional caching schemes.

1 Introduction

The improvement of computer hardware and network infrastructure is offering
more bandwidth and storage spaces, making it possible to distribute files as large
as gigabytes via the Internet. While people storing more data through network,
the need for sharing data like music, home video or picture albums is growing
too. Email was used as a sharing tool before, which was inconvenient for its
notable delay and limitation on file sizes.

Up to now, more and more people use Internet storage services as a new way
of sharing. For example, commercial on-line storage services like Box.net and
Omnidrive is offering more than 1GB storage space for each user. Sharing based
on a storage system is quite different from specific file-sharing applications like
BitTorrent and eMule. By uploading the file to storage servers, users does not
need to keep on-line to share the data. The quality of service is also guaranteed
by the infrastructure of the storage system, not end users. This lead to different
choices of data replication and caching schemes.

As audio and video sharing becomes usual and popular, the data transmission
rate takes the place of the response delay to be the major factor influencing user
experience. From another aspect, as the file size grows, bandwidth consumption

? This work is supported by the National Natural Science Foundation of China under
Grant No. 60603071 and 60433040



is becoming more critical than before. OceanStore [1] propose a introspection
mechanism that can be used for cluster recognition or replica management, which
could be a potential solution to this issue, but unfortunately there is not any
further study or implementation for this mechanism. As OceanStore’s prototype,
Pond [2] uses a simple caching mechanism to accelerate archive data retrieval.
Similarly, when a PAST node routes a file for a insertion or retrieval operation, it
caches the file on its local storage [3]. However, caching is a passive scheme and is
confined by the routing path of the original file. In Pangaea [4], nodes that have
low network latency to each other are clustered into groups, and an aggressive
replication mechanism is used to put replicas in the client’s local nodes. However,
it is not explained how nodes are clustered or how a client find a local node, which
is very important. Moreover, the systems above do not tackle the performance
problem of sharing large files sizing megabytes or even gigabytes, especially the
transfer rate of downloading them. Therefore, it is still challenging to accelerate
sharing speed with low bandwidth consumption in such systems.

In this paper, we introduce a distributed storage system which provides re-
liable storage service to over 500 users at present. Users backup their files and
share some of them with others. We implement a replication mechanism to solve
the problems brought by file sharing. It evaluates the popularity of files, clusters
clients that are close to each other, makes more copies of popular files on the
nodes that are closest to the most demanding users, thus decreases unneces-
sary network traffic, reduces network congestion on the critical links and finally
improves download speed. It has two characteristics:

– It’s popularity sensitive. It records the requests for every file, analyzes pop-
ularity, and propagates more replicas for more popular files. Popularity sen-
sitivity can help relieve the impact of requests for popular files.

– It’s locality sensitive. It detects and analyzes the location of storage nodes
and clients, places file replicas closer to the users that request it frequently,
thus decrease unnecessary inter-domain traffics and reduce network conges-
tion on the critical links.

2 Background

Our distributed storage system is named as Granary.It is composed of dedicated
nodes at a global scale and provides paid storage services to end users. It uti-
lizes PeerWindow [5] as the node collection algorithm and Tourist [6] to route
messages to proper nodes, on top of which a highly available DHT [7, 3] is built.
The DHT stores DHT objects. A DHT object consists of a key and a value, and
comes with a 128-bit hash value, which is the MD5 hash of its key. Every node
is assigned a unique 128-bit key called nodeId, which can be the hash value of
a per-machine signature such as MAC address. A DHT object is replicated and
stored on the closest nodes in terms of nodeId, which are probably disperse in
terms of physical location. This provides high availability to DHT objects.

Unlike PAST, Granary doesn’t directly store files in DHT. Instead, it stores
and replicates files in the upper layer and puts only the locations of replicas

2



(which is called the replica list) and the meta data of files in the DHT. The high
availability of DHT guarantees that the meta data can be accessible despite
of network disconnections or node failures. A Granary server acts not only as
a DHT node, which routes messages for other nodes and stores DHT objects
that are mapped to it, but also as an upper-level storage server which clients
access directly for file uploading and downloading. This choice of design allows
us to develop a more flexible replication algorithm that are not constrained by
the binding of nodeIds and objectIds in the DHT. Since trivial operations like
message transmission and meta data read/write are all handled by the DHT
layer, we are able to focus on the replication strategy itself.

Most contributive systems [7, 3, 1, 2] divide files into smaller blocks and
spread blocks among nodes. The client connects to the closest node, which routes
queries and data for it. This is a reasonable choice because they are made of con-
tributive and weak nodes which tend to go off-line at any time. Dividing files
into blocks and replicating these blocks ensures the availability of file even if
some nodes become unavailable. However, Granary stores full copies of files on
dedicated nodes. These nodes are more powerful and stable, but much less in
quantity, compared with contributive systems. So Granary doesn’t need to divide
files to ensure availability. Additionally, storing full copies eliminates the need
to communicate with many nodes simultaneously for file retrieval, thus reduces
the traffic for block searching overhead.

Files in Granary are immutable, but a user can upload a new version of his file
with the same file name. Different versions of a file are distinguished by version
number. The servers do not delete the older versions immediately after a new
version has been uploaded, because some other clients may be downloading the
old one at the moment. The coexistence of older and newer versions will only long
for a while, because only the newest version is visible to newly arriving clients,
so that the older versions can be deleted after remaining download sessions have
finished. When the user deletes a file, its meta data is removed from DHT,
and the accommodating servers will delete their local replicas after remaining
download sessions have finished.

In following sections, we will first describe some fundamental designs which
will be later used. Then, strategies to accelerate sharing in Granary are pre-
sented. Furthermore, experimental results of these strategies will be shown at
last.

3 Fundamental design

3.1 Caching vs replication

Both caching and replication are widely used to improve the performance of
distributed systems [8, 7, 3]. Although they are very similar to each other, they
do have differences. Firstly, caching passively retains data that may be used for
the next time, while replication may actively create copies of data; Secondly, the
data cached is volatile while replica is persistent; Finally, caching usually intro-
duces no extra cost besides space occupation, while replication may bring extra

3



cost, e.g. network traffic. We choose replication to accelerate the file retrieval in
Granary for the following reasons:

– Replication is active, so we can do predictions and make copies proactively;

– Even if we use a caching method, replication is still needed to provide avail-
ability, and it would be a waste of space to keep both replicas and cache;

– Caching is used in systems where the data is transmitted via more than
one nodes before reaching the client. Although caching does not bring extra
network traffic, data routing and forwarding do. In Granary, clients down-
load data directly from servers. If properly designed, it will not cause more
network traffic with replication than a routing-and-forwarding system with
caching.

3.2 Network distance

Sharing in Granary is boosted by the optimal placement of data replicas. To
achieve it, we must know network distances in the system first. Usually, network
distance between two hosts can be measured by round-trip time (RTT), trace-
route hops, DNS name and IP address.

Trace-route reveals the underlying topology of the routers. However, it will
brings too much extra traffic if we trace-route every requesting client. M. An-
drews [9] grouped hosts into different autonomous systems (ASes) that have
similar round-trip time (RTT) between them. He organized all known hosts by
an IP tree, in which each node represents an IP prefix. With each server logs
every file transmission to and from any other hosts, the similarities of RTT be-
tween leaf nodes are calculated. If the difference is below a threshold, these leaf
nodes are merged and folded up to their parent. The result is a tree with its
leaves representing different autonomous systems.

This method only considered IP address which may encountered a problem
when an autonomous system includes several IP prefixes. For example, our cam-
pus network includes two network prefixes: (59.66.0.0/16) and (166.111.0.0/16),
but they will never be clustered in such an IP tree. However, they are both
assigned to the same DNS name suffix (.ip.tsinghua.edu.cn). To solve it, we in-
troduce another data structure called the domain tree, with a similar structure
as the DNS system. The domain tree records the DNS names of every clients.
Except for using DNS name suffixes instead of IP prefixes, the domain tree is
the same as the IP tree. Therefore the same clustering process can be applied to
it.

In Granary, The IP distance d1,2
ip between hosts H1 and H2 is defined as the

height of the smallest subtree that contains both the cluster leaf of H1 and that
of H2. The height is zero based, and if the cluster leaf of a host doesn’t exist,
the default distance will be set to 24, as if a leaf is created for the host. If H1

and H2 both have DNS names, the domain distance d1,2
domain is defined in the

same way in the domain tree. Otherwise, d1,2
domain will be set to the height of the

domain tree. We divide dip and ddomain by 24 and the height of the domain tree

4



respectively, and get the normalized distances d̂ip and d̂domain which are in the
range [0, 1]. We define the network distance d1,2 between H1 and H2 as:

d1,2 = d̂1,2
ip × d̂1,2

domain (1)

If H1 and H2 are in the same group, either from the IP tree or the domain
tree, d1,2 will be zero. Because transmissions between servers are also logged, we
are able to evaluate the distance between two servers or between a server and a
client.

4 Accelerate sharing

4.1 Replica generation

To accelerate sharing in a distributed storage system, it is very important to
decide the number of data replications. In Granary, we use a simple thought
that more replicas should be allocated for data that is more popular. Then
the problem here is how we decide the replication number according to the
popularity.

Researches on web caching reveal that the query frequency follows a Zipf-
like distribution [10]. Researches on video-on-demand systems also show that
replication distribution should follow the Zipf-like distribution [11]. Zipf-like dis-
tribution claims that the query frequency qi of the ith popular object is propor-
tional to 1/iα, where α is a distribution-dependent constant. Based on Zipf-like
distribution, we estimate the required number of replicas qi for the ith popular
file by

qi =
βM

iα
(2)

where M is the total query frequency of all files on all servers, and β is a constant
configured according to the expected disk usage of the system. We assume that
the servers are evenly loaded, so that M can be estimated by the total query
frequency on a server (m) and the number of servers (N).

M = N × m (3)

Granary stores the logs of file access for a duration (e.g., 6 hours), and keeps a
list of files sorted by request frequency. When a file is being requested, the server
updates the list. Let ri be the number of replicas of this file, if ri < qi, a new
replica will be generated automatically.

However, the composition of the queries on a node in a distributed system
is different from that in a single-server system. Since a client may have multiple
servers to choose, the topological distribution of clients will influence the query
distribution on a certain server.

For a certain client, we define a server as a local server if the network dis-
tance between them is below a predefined threshold (e.g. 0.5). To the opposite,
we get a remote server. Then, requests sent to local/remote server can be named

5



as local/remote requests. Although the server selection scheme described in Sec-
tion 4.3 tends to choose a local server, a server may receive remote requests in
two cases:

– Local servers are overloaded and the client have to choose a remote server;
– Local servers don’t have a copy of the requested file.

Therefore, remote requests usually imply a misplacement of replicas and that we
need to create a closer replica for these clients, while local requests better comply
to the popularity distribution in the server’s local domain.

For example, suppose Tom, a user at CampusA, has uploaded a video to
Granary, and shares it to his friends. Then he notifies his friends about it by
Email. It is possible that the friends in CampusA get Tom’s message first and
become the first client to download it. If the storage system finds out that this
file is popular near CampusA, it will place all replicas near CampusA. Some
days later, his friends in CampusB, which is far from CampusA, get Tom’s
Email and try to download the data. Because this file doesn’t get more popular,
based on the replication distribution strategies above, no more replicas will be
generated. So there will never be replicas near CampusB, even though it’s quite
slow for the friends in CampusB to download from servers near CampusA.

In Granary, the problem is fixed by a mechanism called Remote Boosting
(RB). We compare these two kinds of requests. If a file has more remote re-
quests than local requests, even if its replica number is enough according to
its popularity, the node will create a new replica for it. The replica placement
scheme described in Section 4.2 will ensure that the new replica to be created
near CampusB. After the new replica has been successfully created, the initial
replica in CampusA will be deleted to accord with the file’s popularity. This
deletion does not actually remove the replica from the storage server. Instead,
it is just removed from the file’s replica list and marked as deleted (trashed) on
the storage server. A trashed replica will be really deleted when the server needs
to spare disk space for new replicas, but if the file is decided to replicate on this
server again, the trashed replica (if survived) could be recycled so that the cost
of replica propagation would be saved.

4.2 Replica propagation

The optimal placement of a new replica is to place it near users demanding it.
We quantize the benefit of placing a replica of file f on a certain server a by the
average transmission distance D̄(a).

D̄(a) =

∑
j dj,a

× qj
∑

j qj

(4)

where dj,a is the network distance from client j to server a, and qj indicates
the request frequency from client j for file f . We will select the server with the
minimal D̄(a) as the destination server, on which we make a new replica.

6



The data of new replicas is distributed in a pulling manner. Let’s suppose
an initiating server A has decided to propagate file f to destination server B.
Firstly, server A adds the ID of B in the replica list of file f . In Granary, the
replica list is stored in its DHT layer which ensures consistency and availability,
and can be globally accessed. Then server A sends a message to B to notify about
it. After that, server B downloads the file content from some server, which is
not necessarily A, but is chosen by the server selection scheme described in the
next section.

This method ensures the replicas to be propagated as soon as possible. Ad-
ditionally, since the replica list is already updated, clients can start to download
from server B even before the replica propagation is finished. In fact, they of-
ten complete the download almost simultaneously with the propagating process.
This is because that the network speed from a client to a server is often slower
than that between two servers in Granary. Apparently, the effect is the same as
setting up a proxy server on B. It is just another benefit from our strategies.

If there is no enough space on destination server to store the new replica,
some file on the node will be deleted to spare the storage space. We use the least
recently used (LRU) scheme to decide which file to delete. However, it means a
reduce of replicas for some file. To ensure data availability, a minimal number
replicas (e.g. 2) is persisted for every file. If the node is unable to allocate enough
disk space for the file content, it will remove itself from the replica list in the
meta data thus cancels this replication. However, if such kind of things happens
frequently, what we really need to do is put more servers in this area.

4.3 Selecting a proper server

In Granary, a client logs in to a server he knows first, which is called the portal.
The portal can be selected from the server list stored on the client, which will be
updated every time he logs in. With this design, client can get the latest portal
list, and access the system even when portal list update is unavailable.

After accessing the selected portal, a list of available servers will be sent back
to the client. It includes nodes with enough disk space when uploading. As for
downloading, it is composed of those accommodating the file’s replicas, which
can be learned from the meta data stored in the DHT layer. After that, the
client broadcasts a request message to all available servers. Thus each server will
send back a reply message, including an estimated weighted mean data rate (R̄)
and the network distance between the server and the client.

The R̄ is calculated from the logs recorded in the requesting client’s cluster
leaf in the IP tree or domain tree, as indicated below. In such formula, j is
the index of the log; sizej indicates the size of the file transmitted; and agej

shows how many hours it has been since the transmission finished; while timej

describes the time the transmission takes.

R̄ =

∑
j sizej × 0.5agej

∑
j timej × 0.5agej

(5)

7



The R̄ reflects the most recent transfer speed to and from the requesting
client or other clients near it. We use it to prevent the convergence of client’s
selection. If every client simply chooses the closest server, it may happen that
most clients converge to a small fraction of servers and thus overload them, while
other servers are still idle [12]. The client picks half of the available servers with
higher R̄, from which it then selects the one with the shortest distance. Because
an overloaded server concedes a low R̄, it will be rejected in the first step. This
server selection scheme is named as the Hybrid selection.

5 Evaluation

Granary has been deployed in 5 universities across China. It has attracted about
500 registered users to use it. Each user stores about 800 megabytes data in aver-
age in the system. The scale of the current system is still too small for a strategy
evaluation, so we use two kinds of experiments to demonstrate the effectiveness
of our replication schemes. The first one is a network simulation using logs from
two heavy loaded sharing systems. And the second is an emulation carried out
on PlanetLab.

5.1 Simulation results

In this section, two simulations were done for evaluating the effectiveness of the
strategies used under heavy workload. The first one was carried using a transfer
log from a FTP server mainly used for multimedia file sharing in our campus,
and the other was finished with request logs from a large scale wide-area network
video on demand(VoD) system [13]. Apparently, FTP is a traditional way of file
sharing. As for VoD, it can be looked as a kind of real time sharing method. Both
systems are used for multimedia sharing, which is also targeted by Granary. The
details of these two workloads are shown in Table 1. We developed a simulation
program that simulates a Granary system running in a bandwidth-limited wide-
area environment. We ran simulations on a network topology generated by GT-
ITM1. The network consisted of 9 transit domains, each of which owned 12
transit nodes in average. A transit node was connected with 1 stub domain
which had 10 stub nodes commonly. Thus in total there were 108 transit nodes
and 1080 stub nodes. The bandwidth of inter-domain links was 1Gbps and that
of intra-domain links was 100Mbps. Each client got a bandwidth of 10Mbps.
Finally, forty stub nodes were chosen randomly to be the storage servers, while
the others would be assigned as client hosts.

We have evaluated several combinations of techniques in the simulations.
Before introducing the experimental results, we firstly explain the terminology
that would be used below.

– Caching – the caching scheme used by Pond [2] and PAST [3]. The client
requests the nearest server for a file, which retrieves the file from the accom-
modating servers, sends it to the client and keeps it in its local cache.

1 GT-ITM project, http://www-static.cc.gatech.edu/projects/gtitm/

8



Table 1. Characteristics of the simulation workloads

FTP VoD

Duration 136 days 30 days
Number of files 8,540 7,525
Average file size 56MB 125MB
Number of requests 97,239 3,021,401
Requests per hour 30 4,196
Size of downloaded data 12,573GB 264,562GB

Table 2. The average transmission rate of downloads (Avg. rate) and the average traffic

on network links (Avg. traffic) in the simulations using the FTP and VoD workloads

Avg. rate (byte/s) Avg. traffic (MB)

FTP VoD FTP VoD

Caching 773,588 634,381 13,220 191,400
Granary (C) 773,338 828,779 13,280 163,700
Granary (C + RB) 773,655 830,062 13,260 163,000
Granary (H) 773,728 838,942 13,250 162,200
Granary (H + RB) 774,172 840,365 13,220 161,400
Full mirror 900,269 892,462 5,997 120,700

– Granary – the replication scheme described in this paper and used in the
Granary system. It may come with one or two of the following strategies:
• Closest (C) – the client always choose the server with the shortest dis-

tance, using the network distance metric defined in Section 3.2.
• Hybrid (H) – the client choose half of the available servers with higher

weighted mean data rate (R̄), from which it chooses the one with the
shortest distance. It is explained in Section 4.3.

• Remote Boosting (RB) – the server propagates extra replicas for files that
are not very popular but have more remote requests than local requests.
See Section 4.2 for details.

– Full mirror – all files have already been mirrored on every server. It gets the
optimum performance at the cost of maximum disk usage.

Table 2 shows that with the VoD workload the average download rate under
Granary (H + RB) is 32.5% higher than under Caching, while the improvement
is not so obvious with the FTP workload. After further analysis, we found that
in FTP workload the requests for a single file is evenly scattered over a long
period of time, so that every file is requested at a rather low frequency. Cache
and replication are usually ineffective when files are not frequently requested.
This can explain why the result of FTP workload is not as good as that of the
VoD’s.

From Figure 1, we can find that Granary (H + RB) has reduced the fraction
of downloads with transfer rate below 700KB/s from 20% to 10%, which is an
obvious improvement of user experience.

9



600 700 800 900 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

transfer rate (KB/s)

CD
F

Caching
Granary (H + RB)
Full mirror

Fig. 1. The CDF of transmission rate of
downloads (VoD workload)

1000 2000 3000 4000 5000 6000

0.
96

0.
97

0.
98

0.
99

1.
00

link traffic (GB)

CD
F

Caching
Granary (H + RB)
Full mirror

Fig. 2. The CDF of link traffic on the most
critical links (VoD workload)

Then let’s have a look at the bandwidth consumption. We recorded the to-
tal throughput on every network link that connects two hosts. Table 2 demon-
strates that Granary replication schemes consume less network bandwidth than
Caching. It is clear from Figure 2 that network traffic on the most critical links,
which are the ones with the biggest throughput, has been notably reduced by
Granary.

5.2 Experiment results on PlanetLab

PlanetLab2 is an Internet-scale testbed for distributed systems. To test the per-
formance of Granary in a wide-area network, we deployed Granary on 40 nodes of
PlanetLab, which are located dispersively in different countries all over the world
including China, Singapore, US, Poland, UK, Spain, Denmark and Germany, and
carried out two experiments: the REPLAY experiment and the SHARE experi-
ment.

The REPLAY experiment is based on a request log from the Granary system
that has been running as a public service in our campus for a few months. The
log includes 746 download requests for 448 different files, from 60 different IP
addresses. We doubled the density of the requests and assigned them to client
simulators deployed on 120 PlanetLab nodes. The client simulators replayed the
requests, and recorded the transmission rate of every download.

The SHARE experiment is to simulate a typical scenario of sharing, that a
user uploads a file and tells his friends all over the world to download it. We set
up client simulators on 193 randomly selected PlanetLab nodes, and made them
download a 5MB-sized file one by one.

Four replication configurations are tested. The naive replication places 2 repli-
cas on random servers and keeps them unmoved; the near replication places repli-
cas close to the requesters; the popular replication decides the number of replicas
by the file’s popularity; the near and popular replication is the combination of

2 PlanetLab, http://www.planet-lab.org/

10



Fig. 3. Comparison of average transmis-
sion rate of downloads from experiments
on PlanetLab

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

transfer rate (MB/s)

CD
F

naive
near
popular
near and popular
max_bw

Fig. 4. CDF of transmission rate of down-
loads from the SHARE experiment on
PlanetLab

the two, which is the default setting of Granary. In addition, we measure the
maximal bandwidth of every client, and refer it as max bw in the results.

The average transmission rate of downloads can be found in Figure 3. We
can see that after applying near and popular replication, downloads have been
accelerated by nearly 60% in the REPLAY experiment, and more than 100% in
the SHARE experiment. The SHARE often performed better than the REPLAY,
because a file is shared by more users in the SHARE than in the REPLAY.

Finally, we can have a further look to the SHARE experiment in Figure 4.
The performance gap between different replication method is clearly shown. The
CDF of near and popular is quite close to that of the max bw, indicating it as a
very optimized method.

6 Conclusion

More and more people store and share their files, including large files such as
audio and video, on the Internet. There has been a lot of work improving spe-
cific file sharing systems such as BitTorrent, but improving the performance of
file sharing on a distributed storage system still remains a challenge. In this pa-
per, we introduced how we tried to accelerate the sharing of files on Granary, a
distributed file storage system deployed in several campuses across China. Gra-
nary replicates popular files near to the users that request it for reducing its
bandwidth consumption and improving the transmission rate of file downloads.
Combined with the Hybrid server selection scheme and the Remote Boosting
mechanism, our replication scheme performs notably better than conventional
caching schemes in file sharing according to the experimental results.

References

1. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D., Gum-
madi, R., Rhea, S., Weatherspoon, H., Wells, C., Zhao, B.: Oceanstore: an architec-

11



ture for global-scale persistent storage. In: ASPLOS-IX: Proceedings of the ninth
international conference on Architectural support for programming languages and
operating systems, ACM Press (2000) 190–201

2. Rhea, S., Eaton, P., Geels, D., Weatherspoon, H., Zhao, B., Kubiatowicz, J.: Pond:
the oceanstore prototype. In: FAST ’03: Proceedings of the 2nd USENIX Confer-
ence on File and Storage Technologies, ACM Press (2003)

3. Rowstron, A., Druschel, P.: Storage management and caching in past, a large-scale,
persistent peer-to-peer storage utility. In: SOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, ACM Press (2001) 188–201

4. Saito, Y., Karamanolis, C., Karlsson, M., Mahalingam, M.: Taming aggressive
replication in the pangaea wide-area file system. In: OSDI ’02: Proceedings of
the 5th symposium on Operating systems design and implementation, Boston,
Massachusetts, ACM Press (2002) 15–30

5. Hu, J., Li, M., Yu, H., Dong, H., Zheng, W.: Peerwindow: An efficient, hetero-
geneous, and autonomic node collection protocol. In: Proceedings of the 2005 In-
ternational Conference on Parellel Processing (ICPP-05), IEEE Computer Society
(2005)

6. Zheng, W., Hu, J., Li, M.: Granary: Architecture of object oriented internet storage
service. In: CEC-EAST ’04: Proceedings of the E-Commerce Technology for Dy-
namic E-Business, IEEE International Conference on (CEC-East’04), IEEE Com-
puter Society (2004) 294–297

7. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area coopera-
tive storage with cfs. In: SOSP ’01: Proceedings of the eighteenth ACM symposium
on Operating systems principles, ACM Press (2001) 202–215

8. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. In: Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and Unobserv-
ability, Berlin/Heidelberg, Springer-Verlag (2001) 46–66

9. Andrews, M., Shepherd, B., Srinivasan, A., Winkler, P., Zane, F.: Clustering and
server selection using passive monitoring. In: INFOCOM ’02: Proceedings of the
21th Annual IEEE Conference on Computer Communications, IEEE Computer
Society (2002) 1717–1725

10. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: INFOCOM ’99: Proceedings of the
18th Annual IEEE Conference on Computer Communications, IEEE Computer
Society (1999) 126–134

11. Chervenak, A.L., Patterson, D.A., Katz, R.H.: Choosing the best storage system
for video service. In: Multimedia ’95: Proceedings of the third ACM international
conference on Multimedia, San Francisco, California, United States, ACM Press
(1995) 109–119

12. Mogul, J.C.: Emergent (mis)behavior vs. complex software systems. In: EuroSys
’06, Proceedings of the 1st EuroSys Conference, Leuven, Belgium, ACM Press
(2006) 293–304

13. Yu, H., Zheng, D., Zhao, B.Y., Zheng, W.: Understanding user behavior in large
scale video-on-demand systems. In: EuroSys ’06, Proceedings of the 1st EuroSys
Conference, Leuven, Belgium, ACM Press (2006) 333–344

12


