
A Formal Security Analysis of an OSA/Parlay
Authentication Interface

R. Corin1, G. Di Caprio3, S. Etalle1, S. Gnesi2, G. Lenzini1,4, and C. Moiso3

1 Department of Computer Science, University of Twente
7500 AE Enschede, The Netherlands

{corin,etalle,lenzinig}@cs.utwente.nl
2 Istituto di Scienza e Tecnologie dell’Informazione, ISTI-CNR
Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy

gnesi@isti.cnr.it

3 Telecom Italia Lab
Via G. Reiss Romolo 274, 1048 Torino, Italy

{corrado.moiso,gaetano.dicaprio}@tlab.com
4 Istituto di Informatica e Telematica, IIT-CNR

Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
gabriele.lenzini@iit.cnr.it

Abstract. We report on an experience in analyzing the security of the
Trust and Security Management (TSM) protocol, an authentication pro-
cedure within the OSA/Parlay Application Program Interfaces (APIs)
of the Open Service Access and Parlay Group. The experience has been
conducted jointly by research institutes experienced in security and in-
dustry experts in telecommunication networking. OSA/Parlay APIs are
designed to enable the creation of telecommunication applications out-
side the traditional network space and business model. Network opera-
tors consider the OSA/Parlay a promising architecture to stimulate the
development of web service applications by third party providers, which
may not necessarily be experts in telecommunication and security. The
TSM protocol is executed by the gateways to OSA/Parlay networks; its
role is to authenticate client applications trying to access the interfaces of
some object representing an offered network capability. For this reason,
potential security flaws in the TSM authentication strategy can cause
the unauthorized use of the network, with evident damages to the oper-
ator and the quality of services. We report a rigorous formal analysis of
the TSM specification, which is originally given in UML. Furthermore,
we illustrate our design choices to obtain the formal model, describe the
tool-aided verification and finally expose the security flaws discovered.

Keywords: Formal Verification of Security, OSA/Parlay API, Industrial
Test Case.

1 Introduction

OSA/Parlay 1 Application Program Interfaces (APIs) [9] are designed for an easy
interaction between traditional IT applications and telecommunication networks.
OSA/Parlay APIs are abstract building blocks of network capabilities that de-
velopers, not necessarily expert in telecommunications but perhaps with more
expertise in the enterprise market, can quickly comprehend and use to generate
new applications. Concisely, OSA/Parlay APIs proposes an attractive framework
where programmers can develop innovative resources or design new services.

An example of such a service is the retrieval and purchase of goods via a
mobile phone. The service could be provided by a third party, different from the
mobile operator. In this case, the provider could develop the service by assem-
bling components that control network capabilities and functions, for example,
sending/receiving a SMS. These components (in particular, their APIs) are pro-
vided by the telecom’s operator. For example, the sending/receiving of a SMS
could be realized in the following SOAP body that, in XML notation where
namespace and encoding descriptors are omitted, appears as follows:

<sendSMS>
<dest_address>
tel:1234567

</dest_address>
<send_address>
tel:0123456

</send_address>
<message>
Could you please reserve
two seats for 9 o’clock?

</message>
</sendSMS>

OSA/Parlay APIs can also be used in the development of new web-based services.
To this end, the Parlay community has designed specific APIs, called Parlay X
APIs, based on web service principles and oriented to the Internet community.

When network resources are broadly accessible, it becomes crucial to define
and enforce appropriate access rules between entities offering network capabil-
ities and service suppliers, so that an operator can maintain full control over
the usage of her resources and on the quality of service. For instance, it is im-
portant that the use of services is guided by a set of rules defining the supply
conditions and the reciprocal obligations between the client and the network
operator. Service Level Agreements (SLAs) are commonly used to formalize a
detailed description of all the aspect of the deal. To avoid that unauthorized en-
tities can sign an agreement and use the network illegally, on-line authentication
checks are of primary importance.

1 See http://www.parlay.org

2

Authentication in a distributed setting is usually achieved by the use of cryp-
tographic protocols. Experience teaches that these protocols need to be carefully
checked, before being fielded (e.g., [2, 5, 8, 11, 12, 15, 16]), and nowadays devel-
opers have access to libraries of reliable protocols for different security goals. For
example the Secure Socket Layer (SSL) by Netscape, is widely used to ensure
authenticity and secrecy in Internet transactions. Unfortunately, the use of re-
liable, plugged-in, protocols is not sufficient to ensure security, just like the use
of reliable cryptography is not sufficient to ensure secrecy in a communication.
As we shall see formal methods can help to validate the correct use of security
procedures.

In this paper we discuss the validation of the authentication mechanism in the
Trust and Security Management (TSM) protocol in OSA/Parlay APIs [1]. This
protocol is designed to protect telecommunication capabilities from unauthorized
access and it implements an authentication procedure. TSM is specified in the
UML [14], where its composing messages, its interfaces towards the client and the
server, and the methods implementing security-critical procedures, are described
at different levels of abstraction. The formal validation experiment, conducted
within a joint project between research Institutes and Telecom Italia Lab, has
revealed some security flaws of the authentication mechanism. From the analysis
of the traces showing the attacks, we were able to suggest possible solutions
to fix the security weaknesses discovered, and to state a general principle of
prudent engineering (in the style of [4]) for improving the security in web-service
applications.

2 The OSA/Parlay Architecture

The OSA/Parlay architecture enables service application developers to make use
of network functionality through an open standardized interface. OSA/Parlay
APIs [1] provide an abstract and coherent view of heterogeneous network capa-
bilities, and they allow a developer to interface its applications via distributed
processing mechanisms. The OSA/Parlay architecture, shown in Figure 1, con-
sists of:

– a set of Client Applications accessing the network resources;
– a set of Service Interfaces, or Service Capability Features (SCFs), that rep-

resent interfaces for controlling the network capabilities provided by network
resources (e.g., controlling the routing of voice calls, sending/receiving SMSs,
locating a terminal, etc.);

– a Framework, that provides a modular and “controlled” access to the SCFs.
– Network Resources, in the telecommunication network, implementing the

network capabilities.

A Parlay Gateway includes the framework functions and the Service Capa-
bility Services (SCSs), that is the modules implementing the SCFs: it is a logical
entity that can be implemented in a distributed way across several systems.

3

TSM protocol

Parlay/OSA Gateway

C
lie
n
t
1

C
lie
n
t
2

C
lie
n
t
n

Framework
Functions

Framework
Interfaces

Service
Interface

Service
Object

Service
Interface

Service
Object

Network Capabilities

1 4

3

API

42

Fig. 1. The OSA/Parlay Architecture. The Trust and Security Management protocol
runs between the Framework Interfaces and the Clients.

Since the target applications could be deployed in an administrative domain dif-
ferent from the one of the Parlay Gateway, the secure and controlled access to
the SCFs is a predominant aspect for the Parlay architecture. To get the refer-
ences of the required SCFs, an application must interact several times with the
framework interfaces. For example, the application must carry out an authenti-
cation phase before selecting the SCFs required, as described in Section 2.1. In
this phase the framework verifies whether the application is authorized to use
the SCFs, according to a subscription profile. Finally, an agreement is digitally
signed, and the framework gives to the application the references to the required
SCFs (e.g., as CORBA interface reference). These references are valid only for
a single session of the application. When the framework has to return an SCF
reference to an application, it contacts the SCS which implements it, by passing
all the configuration parameters, for instance the Service Level Agreement con-
ditions, stored in the subscription profile of the application. The SCS creates a
new instance of the SCF, configured with the received parameters, and returns
its reference to the framework. Each time the application invokes a method on
the SCF instance, the SCS executes it by taking into account the configuration
parameters received at instantiation time.

Gateways based on the OSA/Parlay framework here presented have been
implemented by, for instance, Ericsson, Alcatel, Lucent, AePONA, and Incomit
(though they have not been deployed yet).

4

2.1 Trust and Security Management protocol

One of the critical steps for guaranteeing controlled access to the SCFs is the
authentication phase between the gateway and the application. It is supported by
the protocol implemented by the Trust and Security Management (TSM) API.
We focuses on the analysis of the properties of this security protocol, whose
behavior is summarized by the message sequence chart in Figure 2. The main
steps of the protocol are:

– Initiate Authentication: the client invokes “initiateAuthenticationWith-
Version” on the framework’s public interface (e.g., an URL) to initiate the
authentication process. Both the client and the framework provide a refer-
ence to their own access interfaces.

– Select Authentication Mechanism: the client invokes “selectAuthentica-
tionMechanism” on the framework authentication interface, to negotiate
which hash function will be used in the authentication steps.

– The client and the framework authenticate each other. The framework could
authenticate the client before (or after) the client authenticates the frame-
work, or the two authentication processes could be interleaved. However,
the client shall respond immediately to any challenge issued by the frame-
work, as the framework might not respond to any challenge issued by the
client until the framework has successfully authenticated the client. Each
authentication step is performed following a one-way Challenge Handshake
Authentication Protocol (CHAP) [10], that is by issuing a challenge in the
“challenge” method, and checking if the partner returns the correct response.
An invocation of the method “authenticationsucceeded” signals the suc-
cess of the challenge.

– Request an access session: when authenticated by the framework, the client
is permitted to invoke “requestAccess” to start an access session. The client
provides a reference to its own Access interface, and the framework returns
a reference to Access interface, unique for this client.

– The access interface is used to negotiate the signing algorithm to be used in
the session and to obtain the references to other framework interfaces (we
will call them, service framework interfaces), such as service discovery and
service agreement management.

Having obtained the reference to a service framework interface the TSM
finishes. Note that the references to the interfaces must remain secret: if an
intruder got hold of them, it would be able to (abusively) access the services.
For this reason our analysis will mainly concentrate on the secrecy of these
references.

In fact, after the TSM ends, the client selects the required SCFs by invoking
the “selectService” method on the service agreement management interface.
The client obtains a service token, which can be signed as part of the service
agreement by the client and the framework, through the “signServiceAgree-
ment” and the “signAppServiceAgreement” methods. Generally the service to-
ken has a limited lifetime: if the lifetime of the service token expires, a method

5

Client : IpInitial : IpAPILevelAuthentication Framework: IpAccess: IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion()

2: selectAuthenticationMechanism()

3: challenge()

7: requestAccess()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

Fig. 2. Message sequence chart describing the steps of the TSM protocol [1]

receiving the service token will return an error code. If the sign service agreement
phase succeeds, the framework returns to the client a reference to the selected
SCF, personalized with the client configuration parameters.

3 Security Formal Analysis

This section explains in detail the formal analysis of the security of the TSM pro-
tocol that we have done. To carry out the verification phase we used CoProVe [6]
a constraint-based system for the verification of cryptographic protocols 2. Co-
ProVe has been developed at the University of Twente (NL); it is an improved
version of the system designed by Millen and Shmatikov [13]. CoProVe is based
on the strand spaces model [17]; it enjoys an efficient implementation, a mono-
tonic behavior which allows to detect flaws associated to partial runs, and an
expressive syntax in which a principal may also perform explicit checks for de-
ciding whether to continue or not with the execution. All these features make
2 Freely accessible via the web at http://wwwes.cs.utwente.nl/24cqet/coprove.html

6

CoProVe quite efficient in practice. The intruder model is that of Dolev-Yao [7],
where the malicious entity is identified with the communication infrastructure.
Protocols are written in Prolog-lake style, and properties are expressed as reach-
ability predicates. In case a security flaw is discovered, CoProVe can show one
or all the traces showing the attack.

3.1 Modelling Choices

One of the challenges in applying tools of automatic analysis to industrial archi-
tectures lies in translating the (usually less formal) specification into a rigorous
formal model. In our experience, translating a complex system design into a for-
mal protocol specification involves many non-trivial steps: software technology
concepts such as method invocation and object interfaces have to be “encoded”
into an algebraic protocol specification. This encoding phase also forces the en-
gineer to reason about the security implication of using these constructs.

The OSA/Parlay framework APIs specification consists of many pages of
UML specification; at this level of abstraction it is difficult to have a good
overview of its security mechanisms. In the APIs specification, for instance, there
is no explicit transmission of messages: the exchange of one (sometimes even
more) messages happens exclusively by the mechanism “invocation of a method
over an object interface”. Moreover, different levels of abstraction are mixed: for
example, the same mechanism of “method invocation” is used both to describe,
in one step, the whole set of critical steps of the CHAP handshake and the
single message starting of the protocol. More critically, “method invocation”
does not specify the confidentiality of the input/output parameters involved.
Innocent acknowledgment messages are treated in the same way as references to
confidential object interfaces.

The application of clear modeling choices encourages the design of a formal
model without the previous ambiguities. In translating the TSM specification in
a model we define and apply the following modeling choices.

Modelling Choice 1 A reference to a (new) private interface, F , is modeled
by a (new) shared encryption key, KF .

Choice 1 reflects the fact that an intruder who does not know the private in-
terface reference cannot infer anything from any method invocation over that
interface. This simple, but essential observation will make our security analysis
straightforward, as we explain in Section 3.

Modelling Choice 2 Calling a method, with parameter M , over a private in-
terface F is modeled as sending the message {M}KF i.e., , M encrypted with
KF . Dually, getting the result is translated as receiving a message encrypted with
the same KF ;

In Choice 2 we treat a reference to an object interface as a communication
port; consequently calling a method equates transmitting a message through
that port. Moreover, we model the transmission of a message through F , as

7

the transit of a message encrypted with the key KF . In other words, calling
a method over an interface is modeled as a communication encrypted with the
interface key. This choice reminds of an observation by Abadi and Gordon [3],
who suggest the use of cryptographic keys to model mobility. Our situation
is indeed much simpler: the only form of “mobility” we have, is the dynamic
creation of a “channel”, that is an interface reference.

3.2 Formal Models

We apply Choices 1 and 2 to design the TSM formal abstract model written in
the usual representation of cryptographic protocols. The obtained model is as
follows:

* initiate *
step 1. C−→F : C,KC
step 2. F−→C : KF

* select authentication methods *
step 3. C−→F : {[h, h′, h′′]}KF

step 4. F−→C : {h}KF

* challenge *
step 5. F−→C : {F,N}KC

step 6. C−→F : {C, h(N,SCF)}KC

step 7. F−→C : {ok/fail}KC

* request access *
step 8. C−→F : {req}KF

step 9. F−→C : {KA/fail}KF

* select signing methods *
step 10. C−→F : {[s, s′, s′′]}KA

step 11. F−→C : {s}KA

* request for service interface *
step 12. C−→F : {req ′}KA

step 13. F−→C : {KS/fail}KA

In this abstract model, C represents a client and F the framework, while
C −→ F : M denotes C sending message M to F . With {M}K we indicate
the plain-text M encrypted with a key K, while h(M) denotes the result of
applying a hash function h to M . In step 1 the client initiates the protocol over
the public interface of the framework, by providing its name and a reference to
its interface, KC. In step 2 the framework replies by sending a reference, KF ,
to its own interface.

Remark 1. It may seem odd that despite modelling choice we transmit references
to interfaces (represented as keys) in clear. The expectation here is that the
challenge response protocol of steps 5-7 would avoid intrusion anyway.

In steps 3 and 4 the client asks the framework to choose an authentication
method among h, h′ and h′′. In steps 5 and 6 the actual CHAP protocol is
carried out, using the hash function selected in step 4. Here, SCF represents
a shared secret between C and F , required by CHAP [10]. Indeed the UML
specification did not provide the details about the CHAP implementation; here
we use the version of CHAP where the client and the framework already share
the secret SCF . In steps 8 and 9 the client asks for an interface where to invoke

8

% Initiator role specification

client(C,F,Kc,Kf,N,Req,Ka,Scf,[

send([C,Kc]),

recv(Kf),

recv([F,N]+Kc),

send([C,sha([N,Scf])]+Kc),

send(Req+Kf),

recv(Ka+Kf)]).

% Responder role specification

framewk(C,F,Kc,Kf,N,Req,Ka,Scf,[

recv([C,Kc]),

send(Kf),

send([F,N]+Kc),

recv([C,sha([N,Scf])]+Kc),

recv(Req+Kf),

send(Ka+Kf)]).

% Secrecy check

%(it is a singleton role)

secrecy(N, [recv(N)]).

% scenario specification

% pairs [name, Name]

% [label for the role; actual role]

scenario

([[c,Client1],

[f,Framew1],

[sec,Secr1]]):-

client(c,f,kc,_,_,req,_,scf,Client1),

framewk(c,f,_,kf,n,_,ka,scf,Framew1),

secrecy(ka, Secr1).

% The initial intruder knowledge

initial_intruder_knowledge([c,f,e]).

% specify which roles we want

% to force to finish

%(only sec in this example)

has_to_finish([sec]).

Fig. 3. The “CoProVe” specification (in two columns) used to check the secrecy of
KA. To reduce the search space here we implemented only steps 1-2, 5-6 and 8-9. In
other words we assumed: (a) a constant hashing function h; (b) that the framework
does not reply (instead of replying “false”) if the client answer wrongly to the CHAP
challenge.

the request access for a service. In steps 10 and 11 the framework chooses the
interface. Finally in steps 12 and 13 the client sends a request for a service and
receives back the reference to the relative framework interface.

The abstract model has been translated into the language required by Co-
ProVe. The result of this translation is a concrete formal model; in addition, we
encode (in the language of CoProVe) the security properties that we want to
check. In Figure 3 we report one of the concrete models we used for checking
whether KA remains secret or not.

The specification in Figure 3 involves three principals: one client (c), one
framework (f) and eavesdropping agent (sec). Each role is specified by a se-
quence of send or receive actions that mimic exactly the steps of the abstract
model. Symbol “+” is used to denote symmetric encryption using shared keys.
Formal parameters (e.g., in the client roleC,F,Kc,Kf,N,Req,Ka,Scf) are used
to denote all the objects used in the role specification. In a scenario these pa-
rameters are instantiated with actual constants representing real objects (i.e.,
c,f, ,kf,n, ,ka,scf). Here “ ” is used when no instantiation is required, that
is when a free variable is involved. The intruder is assumed to know only the

9

client and framework names plus its own name “e”. Verification of secrecy con-
sists in asking if there is a trace leading the eavesdropper to know a secret.

3.3 Formal Analysis and Detected Weakness

The analysis performed on the model of TSM protocol, pointed out weaknesses
in the security mechanism. In the following we will describe the flaws discovered
as a commented list of items. Where significant, we show the output produced
by CoProVe and we interpret the output.

Flaw 1. An intruder can impersonate a client and start an authentication chal-
lenge with the framework.

An intruder can obtain the reference to the interface used by the client to start
the authentication challenge (key kf). This happens, unsurprisingly, because the
reference kf is transmitted in clear, as the following trace of CoProVe confirms:

1. [c,send([c,kc])]
1’. [f,recv([c,kc])]
2. [c,recv(_h325)]
2’. [f,send(kf)]

Each row represents a communication action. For example, c,send[c,kc] repre-
sents the action “send” that “c” executes with message “[c,kc]”; c,recv(h325)
represents the results of a “receive” where the client “c” receives the name (in
this case generated by the intruder) “ h325”. The sequence of actions reveal
the attack. It can be visualized in the conventional notation of security pro-
tocol (where, we also write h325 as KE, the intruder key, because this is its
understood meaning.):

1. C −→ I(F) : C,KC
1’. I(C) −→ F : C,KC

2. I(F) −→ C : KE
2’. F −→ I(C) : KF

This run comprises two parallel runs of the protocol, in which the intruder plays,
respectively, the role of the client against the framework (I(C) in steps 1′ and
2′) and the framework against the client (I(F) in steps 1 and 2).

This flaws is not serious in itself (provided the authentication procedure is
able to detect an intruder and close the communication), but it becomes serious
when combined with the next weaknesses in the security; by knowing kf an
intruder is able to grab other confidential information.

Flaw 2. An intruder can impersonate a client, authenticate itself to the frame-
work and obtain the reference to the interface used to request access to a
service (key ka).

10

This is a serious flaw that compromises the main goal of the protocol itself.
Informally, a malicious application can pass the authentication phase instead of
an honest client, and it can obtain a reference to the interface used to request
a service (key ka). The study of the output of CoProVe (here depicted in two
columns) shows the existence of an “oracle” attack, where the intruder uses the
client to get the right answer to the challenge:

1. [c,send([c,kc])]
1’. [f,recv([c,kc])]
2. [c,recv(_h325)]
2’. [f,send(kf)]
5’. [f,send([f,n] + kc)]
5. [c,recv([f,n] + kc)]

6. [c,send([c,sha([n,scf])] + kc)]
6’. [f,recv([c,sha([n,scf])] + kc)]
8. [c,send(req + _h325)]
9. [c,recv(_h391 + _h325)]
8’. [f,recv(req + kf)]
9’. [f,send(ka + kf)]

[sec,recv(ka)]

Using the standard informal notation for describing protocols, the above trace
is read as follows:

1. C −→ I(F) : C,KC
1’. I(C) −→ F : C,KC

2. I(F) −→ C : KE
2’. F −→ I(C) : KF
5’. F −→ I(C) : {F,N}KC

5. I(F) −→ C : {F,N}KC

6. C −→ I(F) : {C, h(N,SCF)}KC

6’ I(C) −→ F : {C, h(N,SCF)}KC

8. C −→ I(F) : {req}KE

9. I(F) −→ C : {fail}KE

8’. I(C) −→ F : {req}KF

9’. F −→ I(C) : {KA}KF

This run comprises two parallel runs of the protocol, in which the intruder plays,
respectively, the role of the framework against the client and the role of the client
against the framework. Searching among the set of attacks returned by CoProVe,
we find also the following, straightforward, man-in-the-middle, attack:

1. [c,send([c,kc])]
1’. [f,recv([c,kc])]
2’. [f,send(kf)]
2. [c,recv(kf)]
5’. [f,send([f,n] + kc)]
5. [c,recv([f,n] + kc)]

6. [c,send([c,sha([n,scf])] + kc)]
6’. [f,recv([c,sha([n,scf])] + kc)]
8. [c,send(req + kf)]
8’. [f,recv(req + kf)]
9’. [f,send(ka + kf)]
9. [c,recv(_h325)]

[sec,recv(ka)]

This trace shows that the intruder can eavesdrop first the key kf, passed in clear,
and then steal the message ka+kf. At this point key ka can be obtained by a
simple decryption. This attack is obviously straightforward at this point of the
analysis, but it became clear as soon as we applied Choice 1.

Flaw 3. An intruder can impersonate a client, authenticate itself to the frame-
work, send a request for a service and obtain the reference to a service
framework interface (key ks).

11

This is also a serious flaw that compromises the main goal of the protocol. An
intruder can obtain the reference to a service framework interface (key ks). It is
easy to understand, that this is possible, for example, as a consequence of flaw
1 and 2: once an intruder has authenticated itself instead of the client, it can
easily obtain the reference.

% Initiator role specification

client(C,F,Kc,Kf,N,Req,Scf,

Ka,A1,A2,A,[

recv([C,F]),

send([C,Kc]),

recv(Kf),

send([A1,A2]+Kf),

recv([A,A]+Kf),

recv([F,N]+Kc),

send([C,sha([N,Scf])]+Kc)

send(Req+Kf),

recv(Ka+Kf)]).

% Responder role specification

framewk(C,F,Kc,Kf,N,Req,Scf,

Ka,A1,A2,[

recv([C,Kc]),

send(Kf),

recv([A1,A2]+Kf),

send([A1,A1]+Kf),

send([F,N]+Kc),

recv([C,sha([N,Scf])]+Kc),

recv(Req+Kf),

send(Ka+Kf)]).

framewk2(C,F,Kc,Kf,N,Req,

Ka,A1,A2,[

recv([C,Kc]),

send(Kf),

recv([A1,A2]+Kf),

send([A2,A2]+Kf),

recv(Req+Kf),

send(Ka+Kf)]).

% secrecy check (singleton role)

secrecy(N, [recv(N)]).

% Scenario

scenario([

[c,Client1],

[f,Framew1],

[f,Framew2],

[sec,Secr1]

]) :-

client(c,f,kc,_,_,req,scf,_,a1,

a2,a1,Client1),

framewk(c,f,_,kf,n,_,scf,ka,_,_,

Framew1),

framewk2(c,f,_,kf2,n2,_,ka2,_,_,

Framew2),

secrecy(ka2, Secr1).

% Set up the intruder knowledge

initial_intruder_knowledge([c,f,e]).

% specify which roles we want

% to force to finish

% (only sec in this example)

has_to_finish([sec]).

Fig. 4. The “CoProVe” code used to discover flaw 4 (in two columns). The model of the
framework includes the “select authentication method” phases of the abstract model
and implements steps 1–9 of the abstract model. Step 7 is omitted, i.e., the framework
does not reply (instead of sending “fail”) in case of failure of the challenge phase. The
second instance of the framework models only steps 1–4 and steps 8–9, that is those
steps strictly necessary to discover the attack.

12

Further checks with CoProVe, show that the intruder can even retrieve this
reference with a man-in-the-middle attack, for instance, by listening to the com-
munication between the client and the framework and stealing the reference
when it is passed in clear. In our model this attack can be explained as follows:
the intruder intercepts, by eavesdropping, the message {KS}KA and it decrypts
it. This is possible because the encryption key KF is passed in clear and, by
eavesdropping, the intruder can easily obtain {KA}KF , and hence KA (flaw 2).

Flaw 4. An intruder can force the framework to use an authentication mecha-
nism of her choice.

This flaw has been discovered using the specification in Figure 4, with two in-
stances of the framework. When a client offers a list of authentication methods,
the first instance selects the first method at the head of a list (here consisting
of only two items), whereas the second instance chooses the second. In this way
we model different choices made by the framework.

The attack is shown by the following CoProVe trace; an intruder can force
the framework to select a particular authentication mechanism, by the use of a
replay attack.

a.1. [c,send([c,kc])]

a.1’. [f,recv([c,kc])]

a.2. [c,recv(_h320)]

a.2’. [f,send(kf)]

a.3. [c,send([a1,a2] + _h320)]

a.3’. [f,recv([a1,a2] + kf)]

a.4’. [f,send([a1,a1] + kf)]

a.4. [c,recv([a1,a1] + _h320)]

a.5’. [f,send([f,n] + kc)]

a.5. [c,recv([f,n] + kc)

a.6. [c,send([c,sha([n,scf])] + kc)

a.6’. [f,recv([c,sha([n,scf])] + kc)

a.8. [c,send(req + _h320)]

a.9. [c,recv(req + _h320)]

a.8’. [f,recv(_h404 + kf)]

a.9’. [f,send(ka + kf)]

b.1’. [f,recv([c,_h487])]

b.2’. [f,send(kf2)]

b.3’. [f,recv([a1,a1] + kf2)]

b.4’. [f,send([a1,a1] + kf2)]

b.8’. [f,recv(_h488 + kf2)]

b.9’. [f,send(ka2 + kf2)]

[sec,recv(ka2)]

The attack can represented in the following abstract steps:

a.1 C −→ I(F1) : C,KC
a.1’ I(C) −→ F1 : C,KC

a.2 I(F) −→ C : KE
a.2’ F1 −→ I(C) : KF

a.3 C −→ I(F1) : {[a1, a2]}KE

a.3’ I(C) −→ F1 : {[a1, a2]}KF

a.4’ F1 −→ I(C) : {[a1]}KF

[. . .]
b.1’ I(C) −→ F2 : C,KE
b.2’ F2 −→ I(C) : KF2
b.3’ I(C) −→ F2 : {[a1, a1]}KF2

b.4’ F2 −→ I(C) : {[a1]}KF2

In the trace the intruder acts as a men-in-the-middle in a communication between
the client and the first instance of the framework F1 and it learns what method
the framework is able to use (sequences a.i). In the second run, the intruder acts
as a client, and it offers to the second instance of the framework F2 the choice
that the framework is able to accept (sequences b.i). The structure of the attack

13

is such that it can be applied also for forcing the selection of a signing methods,
that is steps 10 and 11 of the abstract model.

4 Discussion

The analysis performed so far shows some weaknesses of the protocol, and gives
also useful indications on how to improve the robustness of the protocol. This
section discusses the weaknesses here presented, and suggests possible solutions
to increase the overall security. We start with some preliminary considerations.

The security is weak is because some references to interfaces are passed in
the clear. This is because the role of those references has been misunderstood, or
under-evaluated, or more probably not recognized in the UML, high-level, object
specification. A rigorous, synthetic, formal specification and precise modeling
choices helps in giving each object its right role. In our case we were able to
identify in the role of some references to object interface the same role that
session keys have. This observation can be quoted as a principle:

Independently of their high-level representation, data that directly or
indirectly gives access to a secret, must be thought of (hence, modeled)
as encryption keys.

This principle plays a role also in fixing the protocol. In fact, the common
practice in protocol engineering [4] suggests the use of (other) session keys to
protect the confidentiality of sensitive information, which in the case of TSM
are the references to interfaces. According to the TSM model, session keys are
indeed missing completely from the present implementation3 while their use
could prevent the intruder from gaining a reference to an interface (as shown,
by a men-in-the-middle attack).

An additional point of discussion concerns the correct use of a CHAP-based
authentication. From the OSA/Parlay documentation ([1] page 19) we read that
security can be ensured if the “challenge” is frequently invoked by the framework
to authenticate the client that, in turn, must reply “immediately”:

Our analysis proves that not only the intruder can act as a client with respect
to the framework, but also that it can passively observe, as man-in-the-middle,
the framework and a client authenticating each other as many times as they
want, and then steal the reference to the service framework interfaces when they
are transmitted in clear. At this point the intruder can substitute itself for the
client.

Generally speaking TSM confidentiality improves if the framework encrypts
all the messages containing a reference to an interface. Encryption requires that
the framework authenticates the client, and later that it agrees upon a session
key with the authenticated client. This can be done, for example by ”running a
Secure Sockets Layer (SSL) protocol at the beginning of the TSM session. The

3 Do not confuse them with the session keys that appear in the abstract model. Those
are part of the model and represent private references to interfaces.

14

SSL allows two entities, a client and a server, to authenticate each other and to
establish session keys. Session keys are then used to ensure confidentiality and
integrity in any, next, exchange of messages. As a consequence, the SSL can sub-
stitute the CHAP authentication procedure required by the TSM specification.
The common use of the SSL sees the client to authenticate the server (i.e., , the
framework in our case); in the context of the TSM security, is mandatory that
the server authenticates the client as well.

Flaw 4 is different in nature, and it teaches that particular care must be
paid to the choice of the encryption algorithms or digital signature procedures
offered by the framework: for example, the intruder can force the system to use
the encryption algorithm that is easier to crack.

5 Conclusions

This paper discusses an industrial experience of formal analysis applied to the
security aspects of the OSA/Parlay Trust and Security Management protocol.
The protocol is devised to authenticate clients before granting them access to
network services. Our experience confirms that formal methods are an invaluable
tool for discovering serious security flaws which may be overlooked otherwise.
This is true in two respects. First, the use of a formal model, where only the rel-
evant security features are expressed, helps at pointing out what are the critical
security component. In an informal description, on the other hand, this informa-
tion is usually dispersed and difficult to gather. Second, the use of an automatic
tool allows one to identify dangerous man-in-the middle attacks, which are no-
toriously difficult to see on high-level specifications.

From this experience, conducted within a joint project between industry and
research institutes, we state a general principle for security in web-services: it is
essential to identify clearly the security role of each object involved in service
specification. It is vital especially for those objects that abstractly represent
encryption keys. This principle helps at simplifying the security analysis. With
the application of this principle we discover serious weaknesses more easily, and
we are able to discuss how the security of the TSM protocol can be generally
improved.

The results of this work has been presented to the join standardization group
3GPP/ETSI/Parlay. They have decided to open a study on how to strengthen
the security of OSA/Parlay in the next future.

6 Acknowledgment

S. Gnesi and G. Di Caprio, and C. Moiso were supported by the MIUR-CNR
Project SP4. R. Corin was supported by the IOP GenCom project PAW; S.
Etalle was partially supported by the BSIK project BRICKS; G. Lenzini was
supported by SP4, PAW and by the IIT-CNR project “Trusted e-services for
Dynamic and Mobile Coalitions”.

15

References

[1] Open Service Access (OSA) - Application Programming Interface (API) Mapping
for OSA. http://www.3gpp.org/ftp/Specs/archive/29 series. Release 5.

[2] M. Abadi and A. D. Gordon. Reasoning about Cryptographic Protocols in the
Spi Calculus. In A. W. Mazurkiewicz and J. Winkowski, editors, Proc. of 8th
Int. Conf. on Concurrency Theory (CONCUR 97), Warsaw, Poland, July 1997,
LNCS 1243, pages 59–73. Springer-Verlag, 1997.

[3] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols. The Spi
Calculus. TR 149, Digital Equipment Corporation Systems Research Center, Palo
Alto, CA, USA 1998.

[4] M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Transactions on Software Engineering, 22(1):6–15, 1996. IEEE
Computer Society.

[5] E. M. Clarke, S. Jha, and W. Marrero. Verifying security protocols with Brutus.
ACM Trans. Software Engineering and Methodology, 9(4):443–487, 2000. ACM .

[6] R. Corin and S. Etalle. An improved constraint-based system for the verification
of security protocols. In M. Hermenegildo and G. Puebla, editors, Proc. of the
International Static Analysis Symposium (SAS), Madrid, Spain, Sep. 2002, LNCS
2477, pages 326–341. Springer-Verlag, 2002.

[7] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Trans. In-
formation Theory, 29(2):198–208, 1983. IEEE Computer Society.

[8] R. Gorrieri, F. Martinelli, M. Petroocchi, and A. Vaccarelli. Formal analysis of
some timed security properties in wireless protocols. In Proc. of the 6th IFIP WG
6.1 Formal Methods for Open Object-Based Distributed Systems (FMOODS 2003)
Paris, France, Nov. 2003, LNCS 2884, pages 139–154. Springer Verlag, 2003.

[9] Parlay X Working Group. Parlay apis 4.0: Parlay x web services - white paper.
The Parlay Group, 2002. http://www.parlay.org.

[10] G. Leduc. Verification of two versions of the challenge handshake authentication
protocol (CHAP). Annals of Telecommunications, 55(1-2):18–30, 2000. Hermes-
Lavoisier.

[11] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol using
FDR. Software Concepts and Tools, 3(17):93–102, 1997. Springer-Verlag.

[12] C. A. Meadows. Formal verification of cryptographic protocols: A survey. In
J. Pieprzyk and R. Safavi-Naini, editors, Proc. of the Int. Conf. on the Theory
and Application of Cryptology Advances in Cryptology and Information Security,
(ASIACRYPT 94), LNCS 917, pages 135–150. Springer-Verlag, 1994.

[13] J. Millen and V. Shmatikov. Constraint Solving for Bounded-Process Crypto-
graphic Protocol Analysis. In P. Samarati, editor, Proc. of the 8th ACM Conf. on
Computer and Communication Security, pages 166–175. ACM , 2001.

[14] UML Resource Page. Unified Modeling Language. http://www.uml.org.
[15] A. W. Roscoe. Modelling and Verifying Key-Exchange Protocols using CSP and

FDR. In Proc. of The 8th Computer Security Foundations Workshop (CSFW 95),
Kenmare, Ireland, Mar. 1995, pages 98–107. IEEE Computer Society, 1995

[16] S. Schneider. Verifying Authentication Protocols in CSP. IEEE Trans. Sofware
Engineering, 24(8):743–758, 1998. IEEE Computer Society .

[17] J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Why is a security protocol
correct? In Proc. of the 19th IEEE Computer Society Symposium on Research in
Security and Privacy (SSP 98), Oakland, CA, USA, May 1998, pages 160–171.
IEEE Computer Society, 1998.

16

