
Property-Driven Development of a Coordination
Model for Distributed Simulations ?

Rolf Hennicker and Matthias Ludwig

Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstr. 67, D-80538 München, Germany

Abstract. The coordination of time-dependent simulation models is an
important problem in environmental systems engineering. We propose a
solution based on a rigorous formal modelling of the participating pro-
cesses. Methodologically, our approach is driven by property processes
which are used for the formal specification of the coordination prob-
lem. Property processes are supported by the CSP-like language FSP of
Magee and Kramer which will be used throughout this paper for mod-
elling the system requirements and the system design. The heart of our
design model is a global time controller which coordinates distributed
simulation models according to their local time scales. We will show
with model checking techniques that all safety and liveness requirements
are guaranteed by the timecontroller design.

The strong practical relevance of the approach is ensured by the fact
that our strategy is used to produce a formally verified design for the
kernel of the integrative simulation system DANUBIA developed within
the GLOWA-Danube project.

1 Introduction

In the last decade environmental systems engineering became an important ap-
plication area for information and software technology. Setting out from geo-
graphical information systems and GIS-based expert systems nowadays one is
particularly interested in the development of integrative systems with a multi-
lateral view of the world in order to understand better the mutual dependencies
between environmental processes. Of particular importance are water-related
processes which have an impact on the global change of the hydrological cycle
with various consequences concerning water availability, water quality and water
risks like water pollution, water deficiency and floods.

There are several projects dealing with methods, techniques and tools to sup-
port a sustainable water resource management, for instance within the European
research activity EESD (Energy, Environment and Sustainable Development,

? This work is partially supported by the GLOWA-Danube project (07GWK04) spon-
sored by the German Federal Ministry of Education and Research.

cf. [3]) or within the German initiative GLOWA (Global Change in the Hy-
drological Cycle; cf. [4]). Within the GLOWA framework the project GLOWA-
Danube [8] deals with the Upper Danube watershed as a representative area
for mountain-foreland regions. The principle objective of GLOWA-Danube is to
identify, examine and develop new techniques of coupled distributed modelling
for the integration of natural and socio-economic sciences. For this purpose the
integrative simulation system DANUBIA is developed which supports the anal-
ysis of water-related global change scenarios. DANUBIA is designed as an open,
distributed network integrating the simulation models of all socio-economic and
natural science disciplines taking part in GLOWA-Danube. Actually seventeen
simulation models are integrated in the DANUBIA system covering the disci-
plines of meteorology, hydrology, remote sensing, ground- and surface water re-
search, glaciology, plant ecology, environmental psychology, environmental and
agricultural economy, and tourism. As a result of coupled simulations transdisci-
plinary effects of mutually dependent processes can be analysed and evaluated.

An important characteristics of DANUBIA is the possibility to perform in-
tegrative simulations where the single simulation models run concurrently and
exchange information at run time. Since any simulation models water-related
processes over a specific period of time (usually some years) a global time con-
trol is necessary which coordinates the distributed models to work properly to-
gether. This is a non-trivial task since each simulation model has an individual
time step in which computations are periodically executed ranging from hours,
like in meteorology, to months, like in social sciences. To ensure that an integra-
tive simulation provides reliable results it must be guaranteed that during the
simulation run

– all values accessed through model interfaces are in a stable state (which
corresponds to the usual read/write exclusion) and, moreover, that

– every simulation model is supplied with valid data, i.e. with data that fits
to the local model time of the importing simulation model.

This informal description of the synchronization conditions provides only an
intuitive idea of the coordination problem to be considered. For a full under-
standing it is necessary to clarify several issues, like the notion of time and the
precise timing conditions for correct data exchange on the basis of the local
time scales of the cooperating models. Taking into account that a distributed
simulation is an open system where in principal arbitrarily many models (with
different time scales) can participate it is obvious that the coordination problem
soon becomes untractable without the use of formal specification techniques.

An example of a formalization of the coordination problem on a meta level
using purely mathematical notations is given in [2]. Here we will use as a spec-
ification formalism the language FSP (Finite State Processes) of Magee and
Kramer [9] which provides an appropriate basis for applying model checking
techniques. Moreover, FSP allows us to follow a property-oriented approach
where first the system requirements are specified by means of so-called prop-
erty processes. The use of property processes has several advantages which are

essential for our application. First, a requirements specification can be developed
piecewise by collecting single property processes which focus on one aspect of
the system at a time. This is particularly useful for the coordination problem
where it is sufficient to consider the cooperating simulation models pairwise and
under different roles, one model acting (only) as a provider and the other one
acting (only) as a user of information. In this way the complexity of the problem
can be drastically reduced. Also the exclusion condition for providing and re-
trieving data can be specified by a seperate property process. However, as usual,
there is still a danger that the requirements are not adequately met by the single
property processes. To deal with this issue FSP assigns to each property process
a finite labelled transition system which can be animated with the LTSA tool
(Labelled Transition System Analyzer; cf. [7]). Thus we can reveal the legal and
illegal execution paths which is indeed helpful to analyse and validate whether
the single property processes reflect correctly the desired time dependent coordi-
nation constraints. In addition to the property processes which represent safety
conditions we also specify liveness conditions stating that each simulation model
must repeatedly provide data during the whole simulation period according to
its local time scale.

The requirements specification developed in this paper is a good example
of a highly non-constructive formal specification in the sense that it cannot be
directly transformed into an executable program. In the next step we will focus
on the design of a constructive solution for the coordination problem. For this
purpose we define a global timecontroller process which stores the current status
of all simulation models in order to coordinate them appropriately. The design
of the whole simulation system is then given by the parallel composition of the
timecontroller and all concurrent simulation models. It is shown with model
checking techniques that the design model indeed satisfies the desired safety
and liveness properties. All processes occurring in the system design are also
represented in terms of FSP notation and model checking is performed with
the LTSA tool. The separation of property specifications from design is of great
methodological value for our application. This approach is well supported by
FSP but not e.g. by SPIN [6] or related model checkers where it is necessary to
integrate the assertions into a given design model.

The proposed approach can be applied to all kinds of systems where con-
currently executing components must be coordinated in accordance with some
discrete order. Within the GLOWA-Danube project the approach is of high prac-
tical relevance for the development of the DANUBIA system because integrative
simulations are the heart of all current and future features of DANUBIA and
hence the reliability of the whole system depends on the correctness of the co-
ordination implementation.

2 A Brief Introduction to FSP

The language FSP has been introduced by Magee and Kramer as a formalism
for modelling concurrent processes. An elaborated description of the syntax and

semantics of FSP can be found in [9]. Syntactically FSP resembles CSP [5].
Frequently used constructs for building FSP processes are

STOP process termination
(a → P) action prefix
(a → P | when (cond) b → Q) choice (involving a guarded action)
P + {a1, . . . , an} alphabet extension
(P ||Q) parallel composition
P \ {a1, . . . , an} hiding
P@{a1, . . . , an} interface definition

Each process P has an alphabet, denoted by αP , consisting of those actions in
which the process can be engaged. If we build the parallel composition (P ||Q)
then actions that are shared by P and Q (i.e., belong to αP and αQ) must
be performed simultaneously. For the non-shared actions interleaving semantics
of parallel processes is used. The hiding operator allows to hide certain actions
which are then invisible and represented by τ . The construction of an interface
is the complement of hiding.

Processes can be defined by process declarations of the form P = E or, in the
case of parallel processes, by ||P = (E||F). A (non-parallel) process declaration
can be recursive and can involve local, indexed processes of the form

P = Q[value],
Q[i : T] = E.

where T is a (finite) type and i is an index variable of type T .
Often we will use indexed actions of the form a[i]. A shorthand notation for

a choice over a finite set of indexed actions is (a[T] → P), which is equivalent
to (a[x] → P | . . . | a[y] → P), where range T = x..y. We will also use labelled
actions of the form [label].a and choice over a finite set of labelled actions [T].a
with T as above. To obtain several copies of a process P we use process labelling
[label] : P which denotes a process that behaves like P with all actions labelled
by [label] .

The semantics of a process is given by a finite labelled transition system
(LTS) which can be pictorially represented by a directed graph whose nodes are
the process states and whose edges are the state transitions labelled with actions.
Since FSP is restricted to a finite number of states one can automatically check
safety and progress properties of processes. This will be essential for checking
the correctness of our design model for distributed simulations. FSP is equipped
with a model checking tool LTSA [7] which will be used for this purpose.

3 Simulation Models

Before we can specify the system requirements we have to analyse the problem
domain. Let us first consider single simulation models and provide a formal de-
scription of their general behaviour. A simulation model simulates a physical or

social process for a certain period of time which we call simulation time. The
simulation time is finite which means that there is always a start and an end
time. The whole simulation period is represented by a strictly ordered, discrete
set of points in time (denoted by natural numbers), at which data is provided by
a simulation model. Each model has an individual time step which determines
the distance between two subsequent simulation points. For instance, a meteo-
rological model provides the air temperature every hour, while a groundwater
model provides the amount of groundwater withdrawal only once a day. We
assume that the time step of a model remains fixed during the whole simulation.

A simulation model provides data for other models via export ports and gets
data from other models (needed for its own computations) via import ports.

3.1 Lifecycle of a Simulation Model

After a simulation model has been started it provides first some initial data.
Then it performs periodically the following steps until the end of the simulation
is reached:

1. Get required data from other models (via the import ports).
2. Compute new data which are valid at the next simulation point.
3. Provide the newly computed data (via the export ports).

Since any simulation model has the same lifecycle we can model its general
behaviour by the following (generic) FSP process which is parameterized w.r.t.
the individual time step of a simulation model. Note that in the process defin-
tion we have to provide a default time step (e.g. Step = 1) which is necessary
according to the finite states assumption of FSP. For the same reason it is nec-
essary to model the simulation start and the simulation end by some predefined
constants.

const SimStart = 0
const SimEnd = 6
range Time = SimStart..SimEnd

MODEL(Step = 1) = (start -> INIT),
INIT = (prov[SimStart] -> M[SimStart]),
M[t:Time] =

if (t+Step <= SimEnd)
then (get[t] -> compute[t] -> prov[t+Step] -> M[t+Step])
else STOP.

In the above process description the (indexed) actions prov[x] represent
providing of export data which are valid at time x, the actions get[x] represent
getting of import data which are valid at time x and the actions compute[x]
represent the computation of new data based on import data which are valid at
time x. Indeed the choice of the time dependent indices of the actions is crucial
for the behaviour of the whole system to be developed. To explain our choice let

us assume for the moment that the simulation time is a multiple of the model’s
time step. Then, according to the above process description, the last data that
a model gets is valid at time SimEnd−Step and the last data a model provides
is valid at time SimEnd. For the whole simulation, this means that imported
data is considered to be last recently valid for the computation of new export
values to be valid at time t if the imported data is valid at time t− Step.

Of course, there are other choices for the definition of last recently valid data.
For instance, the intuitively best choice would be to require that the imported
values used for the computation of exported values to be valid at time t are also
valid at time t (instead of being valid at time t−Step). But then the analysis of
any attempt to construct a design model for the coordination problem will show
that there is no deadlock-free solution (whenever there are, as usual, mutually
dependent export and import data). Exactly for this kind of problem analysis,
which is not further elaborated here, the use of formal models is indispensable.

To represent a particular instance of a simulation model we have to pro-
vide a model name (model identifier) and the particular time step of the model
under consideration. For specifying model identifiers we use process labels (cf.
Section 2) and the time step of a model is determined by an actual parameter.
For instance, the FSP processes [1] : MODEL(2) and [2] : MODEL(3) represent
two simulation models, one with number 1 and time step 2 and the other one
with number 2 and time step 3, resp. The behaviour of model 2 is illustrated by
the following LTS.

0 1 2 3 54 6 7 8

[2].start [2].prov[0] [2].get[0] [2].compute[0] [2].prov[3] [2].get[3] [2].compute[3] [2].prov[6]

3.2 Integrative Simulations

In an integrative simulation various simulation models work together by mutually
exchanging data via their import and export ports.

Model 1 Model 2 Model 3
E

I

I

E E

EI

I

IEE I

Each of the participating models performs a local simulation for the same
overall time period (the global simulation time) but has usually a different local
time step. It is crucial for integrative simulations that each model gets, whenever
needed, the last recently valid data from partner models. A first attempt to

model an integrative simulation could be to simply combine the processes which
represent the single simulation models by parallel composition. For instance, for
the two simulation models from above we would obtain the following composite
process:

const NrModels = 2
range Models = 1..NrModels

||SYS = ([1]:MODEL(2)||[2]:MODEL(3))/{start/[Models].start}

The relabelling clause {start/[Models].start} ensures that the processes
synchronize on the start action. Let us now consider some possible execution
traces of the composite process which illustrate three characteristic problems
that we have to take into account when we want to specify the desired safety
properties for the system.

1. Missing import data

start→ [1].prov[0] → [1].get[0] → . . .

Model 1 gets data while model 2 has not yet provided data.

2. Obsolete import data

start→ [2].prov[0] → [1].prov[0] → [1].get[0] → [1].compute[0]
→ [1].prov[2] → [1].get[2] → [1].compute[2] → [1].prov[4]
→ [1].get[4] → . . .

Model 1 gets data expected to be valid at time 4 while the last data provided
by model 2 was valid at time 0 and model 2 has not yet provided data valid
at time 3 (which would be the last recently valid data according to the time
step of model 2).

3. Overwritten import data

start→ [2].prov[0] → [1].prov[0] → [2].get[0] → [2].compute[0]
→ [2].prov[3] → [1].get[0] → . . .

Model 1 gets data expected to be valid at time 0 while model 2 has already
provided data that is valid at time 3.

4 Formalization of the Coordination Problem

In this section we provide a formalization of the coordination problem in terms
of safety and liveness conditions.

4.1 Safety Properties

In Section 3 we have pointed out the essential difficulties concerning the validity
of exchanged data when simulation models cooperate concurrently with different
time scales. We start by formalizing the corresponding synchronization condi-
tions by means of FSP property processes. The crucial idea is that the problem
can be simplified if we consider only two simulation models at a time and, more-
over, if we consider each of the two models only under one particular aspect,
either as a provider or as a user of information. In the following let U denote a
user model and let P denote a provider model. From the user’s point of view we
obtain the following condition (1), from the provider’s point of view we obtain
condition (2).

(1) U gets data expected to be valid at time tU only if the following holds:
P has last provided data valid at time lastP with lastP ≤ tU and the next
data that P provides is valid at time tP with tU < tP .

(2) P provides data valid at time tP only if the following holds:
The next data that U gets is expected to be valid at time tU with tU ≥ tP .

An execution trace w of an integrative simulation with an arbitrary number
of simulation models [1] : MODEL(Step1), . . . , [n] : MODEL(Stepn) is called
legal w.r.t. a user U and a provider P , if w meets the above requirements (1)
and (2). We model the legal execution traces by a generic FSP property process
which is parameterized w.r.t. the model number and the time step of the user
and the provider model respectively.

property VALIDDATA(User=1,StepUser=1,Prov=1,StepProv=1) =
VD[SimStart][SimStart],

VD[nextGet:Time][nextProv:Time] =
(when (nextProv-StepProv<=nextGet & nextGet<nextProv)

[User].get[nextGet] -> VD[nextGet+StepUser][nextProv]
|when (nextGet>=nextProv)

[Prov].prov[nextProv] -> VD[nextGet][nextProv+StepProv]).

The first alternative of the property process formalizes condition (1) from
above where the index variable nextUser corresponds to tU , nextProv corre-
sponds to tP and hence nextProv-StepProv corresponds to lastP . The second
alternative formalizes condition (2) from above. For the sake of simplicity we did
not take into account the end of a simulation in the above process definition. For
this purpose the process can be appropriately extended in order to avoid index
overflow when the simulation end is reached and to ensure that the user and the
provider have a clean termination.

All system requirements concerning the validity of data are now obtained
by pairwise instantiations of the generic property process VALIDDATA. As an
example let us consider model 1 with time step 2 as a user and model 2 with
time step 3 as a provider. The corresponding safety property is then given by the

0 1 2 3 4 5 6−1

[1].get[2][1].get[0][2].prov[0] [2].prov[3] [1].get[4] [2].prov[6]

{[1].get[0..4],
[2].prov[1..6]}

{[1].get[1..6], [2].prov[0..6]}

{[1].get.{[0..1], [3..6]}, [2].prov[0..6]}

{[1].get[0..6], [2].prov.{[0..2], [4..6]}}

{[1].get.{[0..3], [5..6]}, [2].prov[0..6]}

{[1].get[0..6], [2].prov[0..5]}

{[1].get[0..6], [2].prov[0..6]}

Fig. 1. LTS of the property process VALIDDATA(1,2,2,3)

property process VALIDDATA(1,2,2,3). The labelled transition system of this
process is shown in Figure 1.

Labelled transition systems assigned to property processes have an error
state, pictorially represented by −1, and are complete in the sense that for
any action and any state (apart from the error state) there is always an out-
going transition. This transition leads to the error state if it is not properly
defined in the property process definition. Thus the legal and illegal execu-
tion traces determined by a property process are revealed. For instance, the
three example traces considered in Section 3.2 are illegal w.r.t. the property pro-
cess VALIDDATA(1,2,2,3), because their restrictions to the alphabet of VALID-
DATA(1,2,2,3) lead to the error state.

Besides the requirements concerning the validity of exchanged data we have
to cope also with data access. Since, in reality, getting and providing data are
non-atomic actions we have to ensure that a model gets data only if no other
model provides data at the same time and vice versa.

To formalize mutual exclusion we first enclose the critical regions, which in
our case are represented by the get and prov actions, by corresponding enter
and exit actions. For this purpose the process definition for simulation models
of Section 3.1 is slightly adapted in the following way.

MODEL(Step=1) = (start -> INIT),
INIT = (enterProv[SimStart] -> prov[SimStart] ->

exitProv[SimStart] -> M[SimStart]),
M[t:Time] =
if (t+Step <= SimEnd)
then (enterGet[t] -> get[t] -> exitGet[t] -> compute[t] ->

enterProv[t+Step] -> prov[t+Step] ->

exitProv[t+Step] -> M[t+Step])
else STOP + {Labels}.

where

set GetProvs = {{get,prov}[Time]}
set EnterExits = {{enterGet,exitGet,enterProv,exitProv}[Time]}
set Labels = {GetProvs,EnterExits}

Note that the alphabet extension by Labels is necessary for technical reasons
because the alphabet of property processes must be included in the alphabet of
processes to be checked. By means of the enter and exit actions the desired
exclusion conditions can now be expressed by a further property process, called
EXCLUSION, which follows a standard scheme; cf. [9].

const NrModels = 2
range Models = 1..NrModels
range CountModels = 0..NrModels

property EXCLUSION =
([Models].enterGet[Time] -> GET[1]
|[Models].enterProv[Time] -> PROV[1]),

GET[i:CountModels] =
([Models].enterGet[Time] -> GET[i+1]
|when (i>1) [Models].exitGet[Time] -> GET[i-1]
|when (i==1) [Models].exitGet[Time] -> EXCLUSION),

PROV[i:CountModels] =
([Models].enterProv[Time] -> PROV[i+1]
|when (i>1) [Models].exitProv[Time] -> PROV[i-1]
|when (i==1) [Models].exitProv[Time] -> EXCLUSION).

4.2 Liveness Properties

In contrast to the safety properties it is easy to identify the required liveness
properties for integrative simulations. Obviously, we want that each simulation
model provides data during the whole simulation period at any time that fits
to its local time step. More formally, this means that for all execution traces
w of an integrative simulation, for all models m ∈ Models and for each time
t ∈ Time with t%Stepm = 0 we have [m].prov[t] ∈ w.

5 Design Model for Integrative Simulations

5.1 Design of the Timecontroller

The specification of the system requirements of the last section is highly non-
constructive. In this section we focus on a solution of the coordination problem

which can be easily transformed into an executable program. The basic idea is to
introduce a global timecontroller that coordinates appropriately all simulation
models participating in an integrative simulation. More precisely, we want to
design an FSP process, called TIMECONTROLLER, such that for n simulation
models the composite process

||SYS = ([1] : MODEL(Step1)|| . . . ||[n] : MODEL(Stepn)||
TIMECONTROLLER(Step1, . . . , Stepn))/{start/[Models].start}

restricts the execution traces of the uncontrolled simulation models to the legal
ones. The composite process SYS is then considered as the design model for the
system. The (static) structure of SYS is represented by the diagram in Figure 2
which indicates the required communication links.

[n]:MODEL(Step)

TIMECONTROLLER(Step , ..., Step)

[1].EnterExits [n].EnterExits

start

1 n

n

[1]:MODEL(Step)

1

...

Fig. 2. Structure diagram of the design model

The communication links show that each simulation model m communicates
with the timecontroller via the shared enter and exit actions in the (labelled)
set [m].EnterExits (see Section 4.1 for the definition of EnterExits). This
means that the simulation models synchronize with the timecontroller on actions
of the form [m].enterGet[t] etc., where m ∈ Models and t ∈ Time. It is then
the task of the timecontroller to guarantee that synchronization can only occur
if the constraints determined by all property processes (given in Section 4) are
satisfied. For this purpose the enter actions of the timecontroller are guarded
by appropriate conditions which monitor the validity of the safety properties.
To express the necessary conditions the timecontroller is equipped with a local
state (modelled by index variables) which records the execution status of all
simulation models to be coordinated. More precisely, the timecontroller stores
for each model the time for which it gets the next import data (represented
by the index nextGet) and the time for which the model will provide the next
export data (represented by the index nextProv).

The following time controller definition is formulated for the case of two sim-
ulation models where the time steps of the two models are given by parameters.

It is obvious that this description provides a general pattern which can be easily
applied to an arbitrary number of simulation models. For a timecontroller defi-
nition which is generic w.r.t. the number of simulation models one would need
array types which are not available in FSP (but would be available in SPIN [6]).
Let us still remark that the guards of the enter actions are inferred from the
requirements specification by building the conjunction of the guards occuring in
the property processes for the validity of data. Moreover, note that model check-
ing shows that the exclusion property for get and prov is already guaranteed
by these conditions and therefore does not need a special treatment.

TIMECONTROLLER(Step1=1,Step2=1) =
(start -> TC[SimStart][SimStart][SimStart][SimStart]),

TC[nextGet1:Time][nextProv1:Time][nextGet2:Time][nextProv2:Time] =
(dummy[t:Time] ->
//enterGet
(when (nextProv1-Step1<=t & t<nextProv1 &

nextProv2-Step2<=t & t<nextProv2)
[Models].enterGet[t] ->
TC[nextGet1][nextProv1][nextGet2][nextProv2]

//exitGet
|[1].exitGet[t] -> TC[t+Step1][nextProv1][nextGet2][nextProv2]
|[2].exitGet[t] -> TC[nextGet1][nextProv1][t+Step2][nextProv2]
//enterProv
|when (nextGet1>=t & nextGet2>=t)

[Models].enterProv[t] ->
TC[nextGet1][nextProv1][nextGet2][nextProv2]

//exitProv
|[1].exitProv[t] ->

if (t+Step1<=SimEnd)
then TC[nextGet1][t+Step1][nextGet2][nextProv2]
else TC[SimStart][SimStart][SimStart][SimStart]

|[2].exitProv[t] ->
if (t+Step2<=SimEnd)
then TC[nextGet1][nextProv1][nextGet2][t+Step2]
else TC[SimStart][SimStart][SimStart][SimStart]

|dummy[t] -> TC[nextGet1][nextProv1][nextGet2][nextProv2])
)\{dummy[Time]}.

Let us still comment the role of the actions dummy[t:Time] in the above
process description. In fact, we would not need these actions if we could write

TC[nextGet1:Time][nextProv1:Time][nextGet2:Time][nextProv2:Time] =
//enterGet
(when (nextProv1-Step1<=t & t<nextProv1 &

nextProv2-Step2<=t & t<nextProv2)
[Models].enterGet[t:Time] ->

TC[nextGet1][nextProv1][nextGet2][nextProv2]
...

This would make perfect sense expressing that for any m ∈ Models and for
any t ∈ Time the action [m].enterGet[t] can only happen if the guard is
satisfied for t. Unfortunately FSP does not support this possibility since the
index variable t is considered to be undefined in the guard. However, if we first
introduce the (non-sense) actions dummy[t:Time] then the index variable t is
known where necessary. The dummy actions are made invisible by applying the
hiding operator.

As an example, the design model of a distributed simulation with two simu-
lation models having time steps 2 and 3 resp. is given by the following composite
process.

const StepModel1 = 2
const StepModel2 = 3
||SYS =

([1]:MODEL(StepModel1)||[2]:MODEL(StepModel2)||
TIMECONTROLLER(StepModel1,StepModel2))/{start/[Models].start}.

We cannot visualize the labelled transition system of the process SYS because
it has too many states and transitions. However, for an analysis of the behaviour
of the design model we can consider different views on the system which can be
formally defined by means of the interface operator. For instance, if we want to
focus only on the get and prov actions executed by the system we can build the
process SYS@{[Models].GetProvs} where the set GetProvs has been defined in
Section 4.1. The corresponding LTS, after minimalization w.r.t. invisible actions,
is shown in the following diagram.

2

1

14 13

3

4 5

11

12

10 9 8

7

6

0

15

[2].get[0] [1].get[0]

[1].get[0] [2].get[0]
[1].prov[2]

[1].get[2]

[2].prov[3]

[2].get[3]

[1].prov[4][1].get[4][2].prov[6]

[1].prov[6] [2].prov[6]

[1].prov[6]

[1].prov[0] [2].prov[0]

[1].prov[0]
[2].prov[0]

5.2 Checking the Safety Properties

In order to check that the design model indeed satisfies the required safety
properties we apply standard model checking techniques. For this purpose we
construct for each property process the parallel composition with the design
model. If in the resulting LTS the error state is not reachable then the safety
property is fulfiled, otherwise it is violated. For instance, if the two simulation
models from above are involved in an integrative simulation we construct the
following processes.

||CHECK_VALIDDATA_USER1_PROV2 =
(SYS||VALIDDATA(1,StepModel1,2,StepModel2)).

||CHECK_VALIDDATA_USER2_PROV1 =
(SYS||VALIDDATA(2,StepModel2,1,StepModel1)).

||CHECK_EXCLUSION = (SYS||EXCLUSION).

The analysis with the LTSA tool shows that no errors occur, i.e. the design
model satisfies the coordination requirements for the validity of data and for
get/provide exclusion. For more complex configurations more efficient model
checkers like SPIN [6] should be used. Several runs with SPIN have shown that
the efficiency of model checking the design of the timecontroller depends strongly
on the distribution of the individual model steps whereby it is beneficial if their
greatest common divisor is as small as possible. Otherwise one may run out
of memory and therefore appropriate abstraction techniques have still to be
investigated.

5.3 Checking the Liveness Properties

In section 4 we have stated a liveness property which requires that each simula-
tion model provides data during the whole simulation period at any time that
fits to its local time step. To check this condition with LTSA we can define a
collection of progress properties of the form

progress PROV_Modelm_t = {[m].prov[t]}

for each m ∈ Models and t ∈ Time with t%Stepm = 0. With this approach,
however, two difficulties arise. First, we obtain quite a lot of progress properties
to be considered and, more seriously, none of the properties will be fulfilled
because simulations are finite but progress properties assume infinite execution
traces.

The first difficulty can be easily solved by using indexed progress properties.
In our case we define for each model a family of progress properties indexed by
the time for which the model should provide data. This means that for each
m ∈ Models we obtain an (indexed) progress property of the following form:

progress PROV_Modelm[i:0..(SimEnd-SimStart)/StepModelm] =
{[m].prov[SimStart + i * StepModelm]}

To overcome the second problem the idea is to introduce artificial cycles
such that after a simulation is finished it is automatically restarted. We will not
further detail here the necessary, straightforward modifications of the processes
occurring in the design model. It should be obvious that for checking the required
liveness property for integrative simulations it is now (necessary and) sufficient
to check that the modified design model satisfies all progress properties from
above. Indeed a progress analysis with LTSA shows that no progress property is
violated. Thus, in summary, we have shown that the timecontroller-based design
model is a correct solution of the coordination problem.

6 Conclusion

We have demonstrated the usefulness of a rigorous formal modelling approach for
the development of a solution for a non-trivial coordination problem occurring,
for instance, in environmental systems engineering. The general strategy of this
approach which is driven by property processes can, however, be applied in all
situations where single components run concurrently with local time scales but
must cooperate according to some predefined global order. We believe that the
incremental specification of system requirements by using property processes is
methodologically very useful. This method is supported by the language FSP [9]
but not by SPIN [6] or related model checking approaches. On the other hand we
have seen that FSP has also some technical deficiencies (concerning array types
and guarded indexed actions) which is not the case for SPIN. Also for checking
complex models the performance of the SPIN tool is much better than the one
of the FSP tool LTSA. To check complex configurations, however, we still need
appropriate abstraction techniques to overcome the problem of state explosion.

For lack of space we have not shown in this paper how to construct an imple-
mentation of the timecontroller-based design model. Indeed for this purpose we
can apply a general translation scheme which transforms the design model into
a Java implementation realizing the single simulation models by concurrently
executing threads and the timecontroller by a monitor object with appropriate
synchronized methods which implement the enter and exit actions of the time-
controller.

Acknowledgement

We are grateful to Alexander Knapp for carefully reading a draft of this paper
and for valuable suggestions. Many thanks also to Michael Barth for in-depth
discussions on the coordination problem and for a timecontroller implementation
and its integration in the DANUBIA system.

References

1. Barth M., Hennicker R., Kraus A., Ludwig M.: DANUBIA: An Integrative Simu-
lation System for Global Research in the Upper Danube Basin. Cybernetics and
Systems, Vol. 35, Nr. 7–8, pages 639–666, 2004.

2. Barth M., Knapp A.: A Coordination Architecture for Time-Dependent Com-
ponents. Proc. 22nd Int. Multi-Conf. Applied Informatics. Software Engineering
(IASTED SE’04), pages 6–11, 2004.

3. EESD, http://www.cordis.lu/eesd (last visited 2005/03/17)
4. GLOWA, http://www.glowa.org (last visited 2005/03/17)
5. Hoare, C. A. R.: Communicating Sequential Processes, Prentice-Hall, 1985.
6. Holzmann, G., The SPIN Model Checker — Primer and Reference Manual,

Addison-Wesley, 2004.
7. LTSA, http://www-dse.doc.ic.ac.uk/concurrency/ (last visited 2005/03/17)
8. Ludwig R., Mauser W., Niemeyer S., Colgan A., Stolz, R., Escher-Vetter H.,

Kuhn M., Reichstein M., Tenhunen J., Kraus A., Ludwig M., Barth M., Hen-
nicker R.: Web-based Modeling of Water, Energy and Matter Fluxes to Sup-
port Decision Making in Mesoscale Catchments - the Integrative Perspective of
GLOWA-Danube. Physics and Chemistry of the Earth, Vol. 28, pages 621–634,
2003.

9. Magee J., Kramer J.: Concurrency — State Models and Java Programs, John
Wiley & Sons, 1999.

