
A Dynamic Class Construct
for Asynchronous Concurrent Objects

Einar Broch Johnsen1, Olaf Owe1, and Isabelle Simplot-Ryl2

1 Department of Informatics, University of Oslo, Norway
email:{einarj,olaf}@ifi.uio.no

2 LIFL, CNRS-UMR 8022, University of Lille I, France
email:ryl@lifl.fr

Abstract Modern applications distributed across networks such as the Internet
may need to evolve without compromising application availability. Object sys-
tems are well suited for runtime upgrade, as encapsulation clearly separates in-
ternal structure and external services. This paper considers a mechanism for dy-
namic class upgrade, allowing class hierarchies to be upgraded in such a way that
the existing objects of the upgraded class and of its subclasses gradually evolve
at runtime. The mechanism is integrated in Creol, a high-level language which
targets distributed applications by means of concurrent objects communicating
by asynchronous method calls. The dynamic class construct is given a formal
semantics in rewriting logic, extending the semantics of the Creol language.

1 Introduction

For critical distributed applications, which are long lived and have high availability
requirements, it is important that system components can be upgraded in response to
new requirements that arise over time without compromising application availability.
Requirements that necessitate component upgrade may be additional features and im-
proved performance, as well as bugfixes. Examples of such applications are found in
banks, air traffic control systems, aeronautics, financial transaction processes, and mo-
bile and Internet applications. For these systems, manual reconfiguration and recom-
pilation of components are both impractical, due to component distribution, and un-
satisfactory, due to the high availability requirements. Instead, upgrades and patches
should be applicable at runtime. Early approaches to software distribution and upgrad-
ing [2, 4, 6, 14, 16, 21, 26] do not address the need for continuous availability during
upgrades. More recently, the issue of runtime reconfiguration and upgrade has attracted
attention [1, 3, 5, 7, 11, 13, 15, 22, 25, 27]. For large distributed systems, it seems de-
sirable to perform upgrades in an asynchronous and modular way, such that upgrades
propagate automatically through the distributed system. An automatic upgrade system
should [1,27]: propagate upgrades automatically, provide a means to controlwhencom-
ponents may be upgraded, and ensure the availability of system services even in the
course of an upgrade process, when components of different versions coexist.

In this paper, we propose and formalize a solution to these issues, taking an object-
oriented approach. Our solution is based on a dynamic class construct, allowing class
definitions to be upgraded at runtime. Upgrading a class affects all future instances of

the redefined class and of its subclasses. Further, allexistingobject instances of the class
and its subclasses are upgraded. In contrast to e.g. [1], our approach is completely dis-
tributed, and no centralized versioning repository is required. No specific measures are
needed by the programmer to anticipate and prepare for future upgrades, as the upgrade
process itself is handled transparently by the runtime system. Whereas [5, 9, 10, 29]
present formal systems for upgrades of sequential languages or modifications to sin-
gle objects, we are not aware of any formalization of modular upgrades for concurrent
object systems. In contrast to all the cited works, our approach addresses and exploits
inheritance, supports synchronous as well asasynchronouscommunication, and allows
bothnonterminating, active, and reactive processes in objects to be upgraded.

This paper considers dynamic class upgrades in the Creol language [17–19], which
specifically targets open distributed systems with concurrent objects, has multiple inher-
itance, and supports both asynchronous and synchronous invocation of object methods.
Creol has an operational semantics defined in rewriting logic [23] and an interpreter run-
ning on the Maude platform [8,23]. In this paper, a dynamic class construct is proposed
and formalized in rewriting logic through integration in Creol’s operational semantics.

Paper overview.Sect. 2 summarizes the Creol language and presents the dynamic
class construct, Sect. 3 provides two examples, Sect. 4 presents the operational seman-
tics, Sect. 5 discusses related work, and Sect. 6 concludes the paper.

2 A Language for Asynchronously Communicating Objects

This section briefly reviews the basic features of Creol [17–19], a high-level language
for distributed concurrent objects. We distinguish data, typed by data types, and objects,
typed by interfaces. The language allows both synchronous and asynchronous invoca-
tion of methods, based on a uniform semantics. Attributes (object variables) and method
declarations are organized in classes, which may have data and object parameters. Con-
current objects have their own processor which evaluates local processes, i.e. program
code withprocessor release points. Processes may beactive, reflecting autonomous
behavior initiated at creation time by therun method, orreactive, i.e. in response to
method invocations. Due to processor release points, the evaluation of processes may
be interleaved. The values of an object’s program variables may depend on the non-
deterministic interleaving of processes. Therefore a method instance may have local
variables supplementing the object variables, in particular the values of formal param-
eters are stored locally. An object may contain several (pending) instances of the same
method, possibly with different values for local variables.

2.1 Asynchronous and Synchronous Method Invocations

All object interaction happens through method calls. A method may be invoked ei-
ther synchronously or asynchronously [17]. When a process invokes a method asyn-
chronously, the process may continue its activity until it requests a reply to the call or
it is suspended by arriving at a processor release point in its code. In the asynchronous
setting method calls can always be emitted, as a receiving object cannot block commu-
nication.Method overtakingis allowed: if methods offered by an object are invoked in
one order, the object may start evaluation of the method instances in another order.

An asynchronous method call is made with the statementt!x.m(E), wheret ∈ Label
provides a locally unique reference to the call,x is an object expression,m a method
name, andE an expression list with the actual parameters supplied to the method. Labels
identify invocations and may be omitted if a reply is not explicitly requested. Return val-
ues from the call are explicitly fetched, say in a variable listV, by the statementt?(V).
This statement treatsV as a list of future variables [30]: If a reply has arrived, return val-
ues are assigned toV and evaluation continues. In the case of a local call, i.e. when the
value ofx is the same asthis object, the processor is released to start evaluation of the
call. Otherwise, process evaluation is blocked. In order to avoid blocking in the asyn-
chronous case,processor release pointsare introduced for reply requests (Sect. 2.2): If
no reply has arrived, evaluation issuspendedrather than blocked.

Synchronous (RPC) method calls, immediately blocking the processor while wait-
ing for a reply, are writtenp(E; V); this is shorthand fort!p(E); t?(V), wheret is a
fresh label variable. The language does not support monitor reentrance (except for local
calls), mutual synchronous calls may therefore lead to deadlock. In order to evaluate
local calls, the invoking process must eventually suspend its own evaluation. In partic-
ular, the evaluation of synchronous local calls will precede the active process. Local
calls need not be prefixed by an object identifier, in which case they may be identified
syntactically as internal. The keywordthis is used for self reference in the language.

2.2 Processor Release Points

Guardsg in statementsawait g explicitly declare potential processor release points.
When a guard which evaluates tofalse is encountered during process evaluation, the
process is suspended and the processor released. After processor release, any pending
process may be selected for evaluation. The typeGuard is defined inductively:

– wait∈ Guard (explicit release),
– t?∈ Guard, wheret ∈ Label,
– b∈ Guard, whereb is a boolean expression over local and object state,
– g1∧g2 andg1∨g2, whereg1,g2 ∈ Guard.

Use ofwait will always release the processor. The reply guardt? is enabled if a reply
to the call with labelt has arrived. Evaluation of guard statements is atomic. We let
await g∧ t?(V) abbreviateawait g∧ t?; t?(V) and we letawait p(E; V), wherep is a
method call (external or internal), abbreviatet!p(E); await t?(V) for some fresh labelt.

Statements can be composed to reflect requirements to the internal object control
flow. Let S1 and S2 denote statement lists. An unguarded statement list is always en-
abled. Sequential composition may introduce guards:await g is a potential release point
in S1;await g; S2. Nondeterministic choiceS1�S2 may selectS1 onceS1 is enabled orS2

onceS2 is enabled, and suspends if neither branch is enabled. Nondeterministic merge
S1|||S2 evaluates the statementsS1 andS2 in some interleaved and enabled order. In addi-
tion there are standard constructs for if-statements and internal method calls, including
recursive calls. Note that for the purposes of dynamic upgrades, recursive calls replace
while-loops in the language. Assignment to local and object variables is expressed as
V := E for a disjoint list of program variablesV and an expression listE, of matching
types. In-parameters as well asthis, label, andcaller are read-only variables.

Syntactic categories. Definitions.
g in Guard
p in MtdCall
s in Stm
t in Label
v in Var
e in Expr
x in ObjExpr
b in Bool
m in Mtd

g ::= wait |b| t?|g1∧g2 |g1∨g2

p ::= x.m|m@classname |m
S ::= s|s; S

s ::= skip | (S) | S1�S2 | S1|||S2

| V := E |v := new classname(E)
| if b then S1 elseS2 fi
| t!p(E) | !p(E) | p(E; V) | t?(V)
|await g|await g∧ t?(V) |await p(E; V)

Figure 1. An outline of the language syntax for method definitions, with typical terms for each
category. Capitalized terms such asS,V, andE denote lists, sets, or multisets of the given syntactic
categories, depending on the context.

With release points, the object need not block while waiting for replies. This ap-
proach is more flexible than future variables: suspended processes or new method calls
may be evaluated while waiting. If the called object never replies, deadlock is avoided
as other activity in the object is possible. However, when the reply arrives, thecontinu-
ationof the process must compete with other pending and enabled processes.

2.3 Multiple Inheritance and Virtual Binding

The Creol language provides a mechanism for multiple inheritance [18] where all at-
tributes and methods of a superclass are inherited by the subclass, and where superclass
methods may be redefined. Class inheritance is declared by a keywordinherits which
takes as argument aninheritance list; i.e., a list of class namesC(E) whereE provides
the actual class parameters. We say that a method or attribute is definedabovea class
C if it is declared inC or in at least one of the classes inherited byC. Internal calls are
executed on the caller and may therefore take advantage of the statically known class
structure to invoke specific method declarations. We introduce the syntaxt!m@C(E) for
asynchronous andm@C(E; V) for synchronous internal invocation of a method above
C in the inheritance graph fromC or a subclass ofC. These calls may be bound without
knowing the exact class ofthis object , so they are calledstatic. In contrast calls without
@, calledvirtual, need to identify the actual class of the callee at runtime in order to
bind the call. We assume that attributes have unique names in the inheritance graph; this
may easily be enforced at compile time and implies that attributes are bound statically.
Consequently, a method declared in a classC may only access attributes declared above
C. In a subclass, an attributex of a superclassC is accessed by the qualified reference
x@C. The language syntax is given in Fig. 1.

Virtual binding. When a method is virtually invoked in an objecto of classC, a
method declaration is identified in the inheritance graph ofC and bound to the call.
For simplicity, the call is bound to the first matching method definition aboveC in
the inheritance graph, in a left-first depth-first order. Assume given a nominal subtype
relation as a reflexive partial ordering≺ on types, including interfaces. A data type may

only be a subtype of a data type and an interface may only be a subtype of an interface.
If T ≺ T ′ then any value ofT may masquerade as a value ofT ′. Subtyping for type
tuples is the pointwise extension of the subtype relation:T ≺ T ′ if the tuplesT andT ′

have the same lengthl andTi ≺ T ′
i for everyi (0≤ i ≤ l) and typesTi andT ′

i in position
i in T andT ′. To explain the typing and binding of methods, subtyping is extended to
function spacesA→ B, whereA andB are (possibly zero-length) type tuples:

A→ B≺ A′ → B′ = A≺ A′∧B′ ≺ B.

The static analysis of an internal callm(E; V) will assign unique types to the in-
and out-parameter depending on the textual context. Say that the actual parameters are
textually declared asE : TE and V : TV . The call istype correctif there is a method
declarationm : A → B above the classC such thatTE → TV ≺ A → B. The binding
of an asynchronous callt!m(E) with a reply t?(V) or await t?(V), is handled as the
corresponding synchronous callm(E; V).

At runtime the object making the internal callm : TE → TV will be of a subclassC′

of C and the virtual binding mechanism will bind to a declaration ofm : A′ → B′ such
thatTE → TV ≺ A′→ B′, taking the first suchmaboveC′. BecauseC is inherited byC′,
the virtual binding is guaranteed to succeed. External callst!o.m(E) are virtually bound
in the graph above the dynamically identified class ofo. Provided that the declared
interface ofo supports the method signature, successful binding is guaranteed for any
instance of a type-correct class implementing the interface.

2.4 System Evolution through Class Upgrade

System change is addressed through a mechanism for class upgrade, which allows ex-
isting and future objects of the upgraded class and of its subclasses to evolve. A class
may be subjected to a number of upgrades. In an upgrade, new attributes, methods, and
superclasses may be added to a class definition, and old methods may be modified. In
order to allow old method instances to evaluate safely and avoid runtime type errors,
no attributes, methods, or inherited classes may be removed as part of a class upgrade.
Although more restrictive, empirical studies suggest that addition and redefinition of
services are far more common forms of software evolution than removal [29].

Attributes may be added.New attributes may be added to a class. The addition of a
new attribute with the same name as another attribute already defined in the class is not
allowed. The addition of an attribute having the same name as an inherited attribute is
allowed. The instance of the class will then have both attributes, which are accessed by
qualified names (see Sect. 2.3). As attribute names are statically expanded into qualified
names, old code will continue to use the same attributes as before the upgrade.

Methods may be added or redefined.We consider the effect of adding or redefining
a method in a classC with respect to the sub- and superclasses ofC. If a method is
redefinedin C, the method’s code is replaced in all instances ofC and the old method
definition is no longer available. This leads to asubtyping disciplinefor method re-
definitions in order to ensure that virtual binding succeeds. Consequently, we allow
a method’s internal data structures to be replaced, but for redefinition covariance and
contravariance is required for the method’s in- and out-parameters, respectively.

If a method isaddedto a class, virtual binding guarantees that old calls are type
correct without placing any restrictions on the new method. All kinds of overloading
of inherited methods are allowed, including overloading with respect to the number
of in- or out-parameters. For method declarations with the same number of in- and
out-parameters overloading may be with respect to parameter types, possibly only for
out-parameters. If a methodm is added toC andm is previously defined in a superclass
C′ of C, the new definition inC will override (and hide) the inherited methodm of C′

in the sense that a call which matches both definitions will be bound differently after
the upgrade. The superclass method is still available by the static callm@C′. Virtual
binding ensures that calls that were type correct before the class upgrade remain type
correct. If a methodm is added toC andm is previously defined in a subclassC′′ of C,
a new override relationship will be introduced. However, virtual binding preserves the
type correctness of old calls as well as the virtually bound calls of the upgraded class.
The addition of a method to a classC does not need to be restricted by definitions in the
sub- or superclasses ofC.

Superclasses may be added.If a classC is added as a superclass during a class
upgrade, the attributes and methods defined inC and its superclasses become available.
The binding mechanism works in a left-first depth-first order, so the order of the list
of inherited classes is crucial: to minimize the effect of new superclasses on the virtual
binding mechanism, the new superclasses are added at the end of the inheritance list.

In order to avoid runtime errors in the case when old code contains calls to thenew
method with the old parameter list, we do not allow the formal parameter list of a class
to be extended. (It is straightforward to avoid this restriction using default values.) In
addition we do not allow the types of formal parameters to change; wider types could
create errors for old code operating on new objects whereas narrower types could create
errors for new code operating on old objects. Consequently, the actual parameters to the
new superclasses must be expressed by means of the old class parameters and attributes.

3 Examples

Two examples of dynamic upgrade are considered. Upgrade is used to add a new service
to an existing class, with visible effects to users of this class, and to change a communi-
cation protocol at runtime, to increase the system performance in a transparent manner.

3.1 Example: A bank account

Consider a bank account of interfaceAccount, with methods for deposit and transfer of
funds, such that a transfer must wait until the account has sufficient funds.

classBankAccountimplementsAccount --- Version 1
begin var bal : Int = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc :Account) ==

await bal≥ sum ; bal := bal−sum; acc.deposit(sum)
end

Dynamic class upgrade allows the addition of new services to such an application
without stopping the system. Let us consider the addition of overdraft facilities. The
upgrade of theBankAccount class will add a methodoverdraft_open such that an object
supporting theBanker interface may set a maximal overdraft amount for the account.
Thetransfer method will be upgraded to take this new facility into account.

upgrade classBankAccount --- Version 2
begin var overdraft : Nat = 0
with Any

op transfer (in sum : Nat, acc : Account) ==
await bal≥ sum−overdraft; bal := bal−sum; acc.deposit(sum)

with Banker
op overdraft_open (in max : Nat) == overdraft := max

end

An overdraft variable is added during upgrade. Pending transfer processes in an object
await the old guard, whereas new transfer calls to the object get the new guard.

3.2 Example: Broadcast in ad hoc networks

Consider a wireless broadcast mechanism for ad hoc networks, using theblind-flooding
protocol: When a node receives a message with a previously unseen sequence number,
the message is sent to all neighbors and the sequence number is recorded.

classNode (neighbors :List[Oid]) --- Version 1
begin var set : NatSet = emptySet
with Any

op broadcast (in msg : Data, seqNbr : Nat) ==
if seqNbr6∈ setthen !neighbors.broadcast(msg, seqNbr); set := set∪ {seqNbr} fi

end

The statement !neighbors.m(. . .) expands to a list of asynchronous calls to all elements
in theneighborslist.

This protocol is “localized”: a node communicates with its direct neighbors and may
ignore the overall network topology. However, there is a significant number of message
collisions. Recently theNeighbor Elimination Schemeprotocol has been introduced,
which improves performance by reducing the total number of transmissions [28]. In the
new protocol, a node knows both its neighbors and their neighbors. Intuitively, when
a node receives a message it observes the communications for a certain time (using a
timeout) and then decides not to resend the message if all of its neighbors have already
received it. The system will now be upgraded to the new protocol at runtime.

We introduce a data typeAssocfor sets of pairs to record the sequence numbers
and sets of neighbors for the active broadcasts, with constructorsempty:→ Assocand
add : Assoc×Nat×NatSet→ Assoc. Define functionsisEmpty: Assoc×Nat→ Bool,
rem: Assoc×Nat×Oid→ Assoc, andremAll : Assoc×Nat→ Assocby the equations

isEmpty(empty,n) = true
isEmpty(add(a,n,s),n′) = if n = n′ then s= /0 elseisEmpty(a,n′) fi
rem(empty,n,o) = empty
rem(add(a,n,s),n′,o) = if n = n′ then add(a,n,s\{o}) elseadd(rem(a,n′,o),n,s) fi
remAll(empty,n) = empty
remAll(add(a,n,s),n′) = if n = n′ then remAll(a,n′) elseadd(remAll(a,n′),n,s) fi

TheNode class may now be upgraded:

upgradeNode --- Version 2
begin var a : Assoc = empty;
with Any

op broadcast (in m : Data, n : Nat) ==if n∈ setthen rem(a,n,caller)
elseset := set∪ {n}; add(a,n,neighbors); rem(a,n,caller);

await wait∨ isEmpty(a,n);
if ¬ isEmpty(a,n)then !neighbors.broadcast(m,n)elseremAll(a,n)fi fi

end

Here theset andneighbors attributes are reused from the previous class version. The
wait guard is used for delay, suspending the process for some amount of time. After the
class upgrade, activeNode objects are upgraded independently and at different times.
There is a transitory period during which system performance gradually improves.

4 An Operational Semantics for Dynamic Class Upgrade

The operational semantics of Creol is defined in rewriting logic (RL) [23]. A rewrite
theory is a 4-tupleR = (Σ,E,L,R) where the signatureΣ defines the function symbols,
E defines equations between terms,L is a set of labels, andR is a set of labeled rewrite
rules. Rewrite rules apply to terms of given sorts. Sorts are specified in (membership)
equational logic(Σ,E), the functional sublanguage of RL which supports algebraic
specification in the OBJ [12] style. When modeling computational systems, different
system components are typically modeled by terms of the different sorts defined in the
equational logic. The global state configuration is defined as a multiset of these terms.

RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules supplementing the equations which
define the term language. From a computational viewpoint, a rewrite rulet −→ t ′ may
be interpreted as alocal transition ruleallowing an instance of the patternt to evolve
into the corresponding instance of the patternt ′. When auxiliary functions are needed
in the semantics, these are defined in equational logic, and are evaluated in between the
state transitions [23]. Rewrite rules apply to local fragments of a state configuration.
If rewrite rules may be applied to nonoverlapping subconfigurations, the transitions
may be performed in parallel. Consequently, concurrency is implicit in RL. Conditional
rewrite rules are allowed, where the condition can be formulated as a conjunction of
rewrites and equations which must hold for the main rule to apply:

subconfiguration −→ subconfiguration if condition

A number of concurrency models have been successfully represented in RL [8,23], in-
cluding Petri nets, CCS, Actors, and Unity, as well as the ODP computational model [24].
RL also offers its own model of object orientation [8], but inheritance in this model does
not easily allow method overloading and redefinition. Rules in RL may be formulated at
a high level of abstraction, closely resembling a compositional operational semantics.

System configurations.A Creol method call will be reflected by a pair of messages,
and object activity will be organized around amessage queuewhich contains incoming
messages and aprocess queuewhich contains pending processes, i.e. remaining parts of
method instances. In order to increase parallelism in the RL model, message queues will
be external to object bodies. A state configuration is a multiset combining Creol objects,
classes, messages, and queues. The associative constructor for lists is represented by ‘;’,
and the associative and commutative constructor for multisets by whitespace.

Objects in RL are commonly written as terms〈O : C |a1 : v1, . . . ,an : vn〉 whereO
is the object’s identifier,C is its class, theai ’s are the names of the object’s attributes,
and thevi ’s the corresponding values [8]. Adopting this form of presentation, we define
Creol objects, classes, and external message queues as RL objects [17]. Omitting RL
sorts, a Creol object is represented by an RL object〈Ob |Cl,Pr,PrQ,Lvar,Att,Lab〉,
whereOb is the object identifier,Cl the class name andversion number, Pr the active
process code,PrQ a multiset of pending processes with unspecified queue ordering, and
Lvar andAtt the local and object state, respectively. Let a sortτ be partially ordered by
<, with least element 1, and letNext : τ → τ be such that∀x.x < Next(x). Lab is used
to generate label values, which are terms of sortτ. Thus, the object identifierOb and
the generated local label value provide a globally unique identifier for each method call.
A Creol object’s message queue is represented as an RL object〈Qu |Ev〉, whereQu is
the queue identifier andEv a multiset of unprocessed messages. Each message queue is
associated with one specific Creol object. The statementnew C(E) creates a new object
(and associated queue) with a unique object identifier, object variables as listed in the
class parameter listE and inAtt, and places an instance of therun method inPr.

Creol classes are represented by RL objects〈Cl | Inh,Att,Mtds, Tok〉, whereCl is
the class name and version number,Inh the inheritance list,Att a list of attributes,Mtds
a multiset of methods, andTok an arbitrary term of sortτ. Versionn of a class namedC
will conventionally be denotedC # n. The rules for the static language constructs may
be found in [17,18]. We shall here focus on the rules for dynamic class constructs.

4.1 Implicit Inheritance Graphs and Virtual Binding

In order to define dynamic reconfiguration mechanisms, the inheritance graph will not
be statically given. Rather, the binding mechanism dynamically inspects the class hi-
erarchy as present in the global state configuration. Abind message is sent from a
class to its superclasses, resulting in abound message returned to the object gener-
ating thebind message. This way, the inheritance graph is unfolded dynamically and
as far as necessary when needed. This approach is used for virtual binding, and for
collecting and instantiating the class variables of an object instance. We here present
the virtual binding mechanism (see [18] for attribute collection). When the invocation
invoc(o,m,Sig, In) of a methodm is found in the message queue of an objecto of class

C, a messagebind(o,m,Sig, In,C) is generated whereSig is the method signature as
provided by the caller andIn is the list of actual in-parameters. Virtual calls are handled
by the following rule:

〈o:Ob |Cl : C # n〉 〈o:Qu |Ev : Q invoc(o,m,Sig, In)〉
−→ 〈o:Ob |Cl : C # n〉 〈o:Qu |Ev : Q〉 bind(o,m,Sig, In,C # n)

Static method calls are generated by means of the same mechanism but without inspect-
ing theactualclass of the callee, thus surpassing local definitions:

〈o:Qu |Ev : Q invoc(o,m@C,Sig, In)〉 −→ 〈o:Qu |Ev : Q〉 bind(o,m,Sig, In,C # 0)

If m is defined locally in a classC with a matching signature, a process with the
declared method code and local state is returned in abound message. The object state is
not upgraded at this point, so a match between the version numbers ofC is not required
for method binding. Otherwise, thebind message is retransmitted to the superclasses
of C in a left-first depth-first order:

bind(o,m,Sig, In,ε)−→ bound(o,none)
bind(o,m,Sig, In,(C # n); I ′) 〈C # n′ :Cl | Inh : I,Mtds : M〉
−→ if match(m,Sig,M) then bound(o,get(m,M, In)) elsebind(o,m,Sig, In, I; I ′) fi

〈C # n:Cl | Inh : I,Mtds : M〉

The auxiliary predicatematch(m,Sig,M) is true if m is declared inM with a signature
Sig′ such thatSig≺ Sig′, and the functionget fetches methodm in the method multiset
M of the class, and returns a process with the method’s code and local state. Values of
the actual in-parametersIn, the callero′ and the label valuen are stored in the local
state. The resulting processw is loaded into the internal process queue of the callee, as
defined by the rule:

bound(o,w) 〈o:Ob |PrQ : W〉 −→ 〈o:Ob |PrQ : w; W〉

4.2 Upgrading Class Definitions

In order to control the upgrade propagation, class representations include a version
number; i.e., a counter which records the number of times the class has been upgraded.
Class upgrade may be direct or indirect through the upgrade of one of the superclasses.
When a class is upgraded, its version number is incremented. Each time a (direct) super-
class of a classC is upgraded, the version number of the class is incremented: although
the definition ofC itself has not changed, the class may have more attributes or methods
by the way of inheritance. To propagate the upgrades properly, each class will record
the version number of each of its inherited classes. Therefore the inherited classes are
represented as a list of class names and version numbers:

〈C # n:Cl | Inh : (C1 # n1);(C2 # n2); . . . ,Att : _,Mtds : _,Tok : _〉

Semantically a class upgrade is realized through the insertion of a new RL object
upgrade(C, I,A,M) in the global state configuration at runtime, whereC is the identifier

of the class to be upgraded,I is an inheritance list,A is a state, andM is a multiset of
method definitions. The effect of the upgrade is that new inherited classes and attributes
are added. Likewise new methods are added, but redefined methods must be treated
differently: when a redefined method is added, the old version of the method must
be removed. After the upgrade, the version number of the class is incremented. Let
〈m,Sig,Body〉 ∈ M denote that a methodmwith signatureSig and bodyBody is defined
in a method multisetM. DefineM ⊕M ′ asM ′ ∪{〈m,Sig,Body〉 | 〈m,Sig,Body〉 ∈ M ∧
¬∃Body′.〈m,Sig,Body′〉 ∈ M ′}. The mechanism fordirect class upgradeis captured in
Creol’s operational semantics by the following rule, which performs the upgrade using
⊕ to overwrite methods:

upgrade(C, I ′,A ′,M ′)〈C # n:Cl | Inh : I,Att : A,Mtds : M,Tok : T〉
−→ 〈C # (n+1) :Cl | Inh : I; I ′,Att : A; A ′,Mtds : M⊕M ′,Tok : T〉

When a class is upgraded by addition of some elements, its subclasses are also up-
graded: although the definitions of the subclasses do not change, these classes indirectly
acquire new attributes or methods by the way of inheritance. It is therefore necessary to
propagate upgrade information to subclasses. The mechanism forindirect class upgrade
is captured by the following equation:

〈C # n:Cl | Inh : I;(C′ # n′); I ′〉 〈C′ # n′′ :Cl | 〉
= 〈C # (n+1) :Cl | Inh : I;(C′ # n′′); I ′〉 〈C′ # n′′ :Cl | 〉 if n′′ > n′

Note that the use of equations enables the version number update to execute in zero
rewrite steps, which corresponds to locking the upgraded class object.

An example illustrates the effect of class upgrades at the semantic level. Let〈C#1:
Cl | Inh : (C1 # 1), Att : x;y; A, . . .〉 be the RL representation of a classC with param-
etersx and y, and attributesA. Let ε denote the empty list. The class will be up-
graded with an additional ancestor classC2 with an actual parameterx, by inserting
the termupgrade(C,(C2(x) # 1),ε,ε) into the global state of the running system. Later,
the upgrade rule applies, resulting in the modified class representation〈C # 2:Cl | Inh :
(C1 # 1);(C2(x) # 1),Att : x;y; A, . . .〉. If the classC2 has been upgraded from its ini-
tial version, the equation reapplies, upgrading the version number ofC2 to the current
version and incrementing the version number of the classC.

The example shows that we do not need knowledge of the actual version number of
a class in the running system to add it as a superclass to the class we are upgrading, it
suffices to use the initial version number. Consequently multiple upgrades do not cause
upgrades to be forgotten, although the results of multiple (simultaneous) upgrades may
vary due to the distributed topology reflected by the asynchronous upgrade rule.

The proposed class upgrade mechanism has some advantages. First, upgrade propa-
gations are locally managed and classes need not know about their instances. Moreover,
the version number recalls the number of changes applied to a class but old versions of
a class are removed. Finally, there are no upgrade conflicts: one upgrade is performed
at a time. If several upgrades redefine the same method the result may depend on the
order in which the upgrades are performed, but the final result is stable. In order to en-
force this discipline in a distributed setting where multiple copies of the class exist on
different physical sites, there would typically be one master copy from which upgrades
propagate to the other copies (the issue of duplicate classes is not treated here).

4.3 Upgrading Object Instances

In order to control the upgrades of object instances of an upgraded class, an object will
include information about its current class version in its class attributeCl. At initial-
ization, the class attribute will store the name and current version of its class. When a
class has been upgraded new object instances automatically get the new class attributes,
due to the dynamic mechanism for collecting class variables (Sect. 4.1). However the
upgrade of existing object instances of the class must be closely controlled.

Recall that the binding mechanism is dynamic: each time an object needs to evalu-
ate a method, it requests the code associated with this method name. The code of sus-
pended methods has already been loaded, and will be able to complete their evaluation.
Problems may arise when calling new methods or new versions of methods using new
attributes that are not presently available in the object.The upgrade of an object has to
be performed after the upgrade of its class and before new code which may rely on new
class attributes is evaluated.As processes may be recursive and even nonterminating,
objects cannot generally be expected to reach a state without pending processes, even
if the loading of processes corresponding to new method calls from the environment is
postponed as in [1,9]. Consequently, it is too restrictive to wait for the completion of all
pending methods before applying an upgrade. However, Creol objects may reachquies-
centstates when the processor has been released and before a pending process has been
activated. In the case of process termination or an inner suspension point,Pr is empty.
Any object which does not deadlock is guaranteed to eventually reach a quiescent state.
In particular nonterminating activity is implemented by means of recursion, which en-
sures at least one quiescent state in each cycle. The mechanism forobject upgrade,
applied to quiescent states, is captured by the following equation:

〈o:Ob |Cl : C # n,Pr : ε〉〈C # n′ :Cl |Att : A〉
= 〈o:Ob |Cl : C # n′,Pr : ε〉 〈C # n′ :Cl |Att : A〉 getAttr(o,C,A) if n′ > n

A similar equation handles local synchronous calls.
Due to the implicit inheritance graph, upgrade of attributes is handled as standard

object instantiation; this is given by the equations forgetAttr, which recursively com-
pute an object state from provided values for class parameters. For object upgrade the
present object stateA replaces the initial values, thus only new attributes get values
computed while inspecting the inheritance graph starting at classC. The use of equa-
tions corresponds to locking the object. Evaluation results in a termgotAttr(o,A ′) where
A ′ is the resolved attribute list with values. The mechanism forstate upgrade, replacing
the old object state by the the new one, is captured by the following equation:

gotAttr(o,A ′) 〈o:Ob |Att : A〉= 〈o:Ob |Att : A ′〉

The described runtime mechanism allows the upgrade of active objects. Attributes are
collected at upgrade time while code is loaded “on demand”. A class may be upgraded
several times before the object reaches a quiescent state, so the object may have missed
some upgrades. However a single state upgrade suffices to ensure that the object, once
upgraded, is a complete instance of the present version of its class. The upgrade mech-
anism ensures that an object upgrade has occurred before new code is evaluated.

After an upgrade the object is in a transitional mode, where its attributes are new but
old code may still occur in the process queue. This explains why attributes may neither
be removed nor change types during class upgrade. With this restriction, the evaluation
of old code can be completed without errors. Notice that if a call to a redefined method
mappears in remaining old code, the call will nevertheless be bound to the new version
of m. This does not cause difficulties provided that the restrictions to covariance for
in-parameters and contravariance for out-parameters are respected. This way, the use of
recursion rather than while-loops allows a smooth upgrade of nonterminating activity.

4.4 Example: Analysis of a Bank Account Upgrade

The bank account example of Sect. 3.1 is now reconsidered to illustrate the operational
semantics and its executable aspect, in order to provide some insight into the behavior
of the asynchronous update mechanism. We define an initial configuration consisting
of the original bank class and two new bank accountsb andc together with a deposit
invocation, say !b.deposit(100), followed by a transfer !b.transfer(200,c). The transfer
will be suspended since the balance is not large enough. We then augment the initial
configuration with the class upgrade

upgrade(BankAccount,ε, overdraft : Nat=100,
op transfer (in sum : Nat, acc : Account)==

await bal≥ sum−overdraft; bal := bal−sum; acc.deposit(sum))

In order to see the effect of executing the operational semantics, we use Maude’s search
facilities to search for all possible final states. The search results in two solutions: Both
have succeeded in upgrading the bank account objects. In one solution theb account
has a final balance of 100 and a pending transfer invocation which cannot be completed,
whereas the other solution has a final balance of -100 and no pending code. In the
the first solution the transfer invocation is bound before bank accountb is upgraded,
with the result that the transfer is suspended and cannot be completed (since it awaits
bal ≥ sum). In the second solution, the bank account is upgraded before the transfer
invocation is bound, with the result that the transfer is completed (since the upgraded
transfer awaitsbal≥ sum−overdraft).

Can we guarantee that an upgrade will succeed? In order to illustrate this problem,
we introduce a nonterminating activity: Let an object recursively make asynchronous
calls !b.deposit(0) (which have no effect on the state ofb). In this case a search for final
states does not succeed, but we can search for all solutions forN deposit calls. Ignoring
pending calls, there are two solutions for every fixedN: one solution has an upgraded
class and the other does not. The analysis suggests that there is a race condition between
the evaluation ofbind andupdatemessages with regard to the class representation in
the global configuration. As the update rule is continuously enabled, weak fairness is
needed to guarantee that the update will succeed. For simulation Maude’s predefined
fair rewrite strategy ensures that class updates will eventually be applied. In contrast
the update rule for the object state is only enabled in quiescent states. Unless the object
deadlocks quiescent states occur regularly, which suggests that strong fairness is needed
to ensure that the update is applied. This problem is circumvented by using equations
in RL; state updates have priority and will always be selected if enabled.

5 Related Work

Although many approaches to reconfigurable distributed systems [2,4,6,14,16,21,26]
do not address availability requirements during reconfiguration, availability is an es-
sential feature of many modern distributed applications. Dynamic or online system up-
grade considers how running systems may evolve. Recently, several authors have inves-
tigated type-safe mechanisms for runtime upgrade of imperative [29], functional [5],
and object-oriented [10] languages. The latter paper considers object instance evolution
(reclassification) in Fickle, based on a type system which guarantees type safety when
an object changes its class. These approaches consider the upgrade of single type dec-
larations, procedures, objects, or components in the sequential setting. Fickle has been
extended to multithreading [9], but restrictions to runtime reclassification are needed;
e.g., an object with a nonterminating (recursive) method will not be reclassified.

Work on version control for modular systems aims at more generic upgrade sup-
port. Some approaches allow multiple versions of a module to coexist after an up-
grade [3,5,11,13,15], while others keep only the latest version by performing a global
update or “hot-swapping” [1,7,22,25]. Another important distinction between different
approaches is their treatment of active behavior. Upgrade of active behavior may be dis-
allowed [7, 13, 22, 25], delayed [1, 9], or supported [15, 29]. Most approaches favoring
global updates do not support the upgrade of an active module running the old version.
A system which addresses the upgrade of active code is proposed in [29] for the set-
ting of type declarations and procedures in (sequential) C. However, the approach is
synchronous in the sense that upgrades which cannot be applied immediately will fail.

Dynamic class constructs may be considered as a form of version upgrade. Hjálmtýs-
son and Gray [15] propose an approach for C++ based on proxy classes through which
the actual class is linked (reference indirection). Their approach supports multiple ver-
sions of each class. Because existing objects of the class are not upgraded, activity in
existing objects is uninterrupted. Dynamic class upgrade in Java has been proposed us-
ing proxy classes [25] and by modifying the Java virtual machine [22]. Both approaches
are based on global upgrade, but the approaches are not applicable to active objects.

Automatic upgrade based on lazy global update is addressed in [1] for distributed
objects and in [7] for persistent object stores. Although the object instances of upgraded
classes are upgraded in these works, inheritance is not addressed which limits the ef-
fect of class upgrade. Further, these approaches cannot handle (nonterminating) active
code. Our approach supports multiple inheritance, but restricts upgrades to addition and
redefinition and may therefore avoid these limitations. Only one version of an upgraded
class is kept in the system but active objects may still be upgraded. Upgrade is asyn-
chronous and distributed, and may therefore be temporarily delayed.

6 Conclusion

Many critical distributed systems need to be modified without compromising availabil-
ity requirements. This paper exploits the class structure of object-oriented programs
to introduce evolution of the inheritance graph at runtime. We have presented a novel
construct for dynamic class upgrade in distributed object-oriented systems and formal-
ized its operational semantics in rewriting logic. Upgrading a class has an effect on all

its subclasses and all object instances of these classes. The construct allows classes to
be extended with new attributes, new methods, and new ancestor classes, while exist-
ing methods may be redefined. A subtype relationship is needed for the redefinition of
methods, while extension is not restricted. Active and nonterminating code may be up-
graded. The mechanism ensures that virtual binding will still succeed after an upgrade.

Our formalization uses equations to update class version numbers for indirect class
upgrade and to upgrade individual objects. This seems natural at a high level of ab-
straction. At a lower level of abstraction this semantics may lead to temporary locks on
objects, since equations apply between rewrite steps. It is therefore of interest to investi-
gate how these equations may be replaced by rules. In particular the equations for object
upgrade could be reformulated as rules. However this would require the messages con-
trolling method binding and attribute updating to include version number information,
using conditional rules to ensure consistent version numbering.

In future work, we plan to study how dynamic class constructs as proposed in
this paper may be improved through type analysis and provide formal proof that such
upgrade mechanisms preserve strong typing. Furthermore it is interesting to consider
upgrade mechanisms addressing several (hierarchies of) classes simultaneously. Such
mechanisms could probably allow a more flexible notion of upgrade. In particular mu-
tual and cyclic dependencies between objects could be addressed directly in the same
upgrade. It seems probable that such package upgrades may require a more synchro-
nized upgrade mechanism than the mechanism proposed here, resulting in considerably
more overhead in the distributed concurrent setting.

References

1. S. Ajmani, B. Liskov, and L. Shrira. Scheduling and simulation: How to upgrade distributed
systems. In9th Workshop on Hot Topics in Operating Systems (HotOS-IX), pages 43–48.
USENIX, May 2003.

2. J. P. A. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwenhuis. Transparent dynamic
reconfiguration for CORBA,Proc. 3rd Intl. Symp. on Distributed Objects and Applications
(DOA), pages 197–207. IEEE CS Press, Sep. 2001.

3. J. L. Armstrong and S. R. Virding. Erlang - an experimental telephony programming lan-
guage. InXIII Intl. Switching Symposium, June 1990.

4. C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dynamic reconfiguration service for
CORBA. In4th Intl. Conf. on Configurable Dist. Systems, pages 35–42. IEEE, May 1998.

5. G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software updating. In
Proc. of the 2nd Intl. Workshop on Unanticipated Software Evolution (USE), Apr. 2003.

6. T. Bloom.Dynamic Module Replacement in a Distributed Programming System. PhD thesis,
MIT, 1983. Also available as MIT LCS Tech. Report 303.

7. C. Boyapati, B. Liskov, L. Shrira, C.-H. Moh, and S. Richman. Lazy modular upgrades
in persistent object stores. In R. Crocker and G. L. S. Jr., editors,Proc. ACM Conf. on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA’03), pages
403–417. ACM Press, 2003.

8. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. F. Quesada.
Maude: Specification and programming in rewriting logic.Theoretical Computer Science,
285:187–243, Aug. 2002.

9. F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Re-classification and multithreading:
FickleMT . In Proc. Symp. on Applied Computing (SAC’04), pages 1297–1304. ACM, 2004.

10. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dynamic object
re-classification: FickleII . ACM Trans. on Prog. Lang. and Systems, 24(2):153–191, 2002.

11. D. Duggan. Type-Based hot swapping of running modules. In C. Norris and J. J. B. Fenwick,
editors,Proc. of the 6th Intl. Conf. on Functional Programming(ICFP 01), volume 36, 10 of
ACM SIGPLAN notices, pages 62–73, New York, Sept. 2001. ACM Press.

12. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing OBJ.
In J. A. Goguen and G. Malcolm, editors,Software Engineering with OBJ: Algebraic Speci-
fication in Action, Advances in Formal Methods, chapter 1, pages 3–167. Klüwer, 2000.

13. D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software version change.
IEEE Trans. Software Eng., 22(2):120–131, 1996.

14. R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf. An architecture for post-
development configuration management in a wide-area network. InIntl. Conf. on Dist. Com-
puting Systems, pages 269–279. IEEE CS Press, May 1997.

15. G. Hjálmtýsson and R. S. Gray. Dynamic C++ classes: A lightweight mechanism to update
code in a running program. InProc. 1998 USENIX Technical Conf. USENIX, May 1998.

16. C. R. Hofmeister and J. M. Purtilo. A framework for dynamic reconfiguration of distributed
programs. Technical Report CS-TR-3119, University of Maryland, College Park, 1993.

17. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed concur-
rent objects. InProc. 2nd IEEE Intl. Conf. on Software Engineering and Formal Methods
(SEFM’04), pages 188–197. IEEE CS Press, Sept. 2004.

18. E. B. Johnsen and O. Owe. Inheritance in the presence of asynchronous method calls. In
Proc. 38th Hawaii Intl. Conf. on System Sciences (HICSS’05). IEEE CS Press, Jan. 2005.

19. E. B. Johnsen, O. Owe, and E. W. Axelsen. A run-time environment for concurrent objects
with asynchronous methods calls. InProc. 5th Intl. Workshop on Rewriting Logic and its
Applications (WRLA’04), Electr. Notes Theor. Comput. Sci. 117: 375–392, Jan. 2005.

20. A. Ketfi and N. Belkhatir. A metamodel-based approach for the dynamic reconfiguration of
component-based software. In J. Bosch and C. Krueger, editors,Proc. Intl. Conf. on Software
Reuse 2004, LNCS 3107, pages 264–273. Springer, 2004.

21. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic change manage-
ment. IEEE Trans. Software Eng., 16(11):1293–1306, Nov. 1990.

22. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support for type-
safe dynamic Java classes. In E. Bertino, editor,14th European Conf. on Object-Oriented
Programming (ECOOP’00), LNCS 1850, pages 337–361. Springer, June 2000.

23. J. Meseguer. Conditional rewriting logic as a unified model of concurrency.Theoretical
Computer Science, 96:73–155, 1992.

24. E. Najm and J.-B. Stefani. A formal semantics for the ODP computational model.Computer
Networks and ISDN Systems, 27:1305–1329, 1995.

25. A. Orso, A. Rao, and M. J. Harrold. A technique for dynamic updating of Java software.
In Proc. Intl. Conf. on Software Maintenance (ICSM 2002), pages 649–658. IEEE CS Press,
Oct. 2002.

26. T. Ritzau and J. Andersson. Dynamic deployment of Java applications. InJava for Embedded
Systems Workshop, London, May 2000.

27. C. A. N. Soules,et al. System support for online reconfiguration. InProc. 2003 USENIX
Technical Conf., pages 141–154. USENIX, 2003.

28. I. Stojmenovíc, M. Seddigh, and J. Zunic. Dominating sets and neighbor elimination based
broadcasting algorithms in wireless networks.IEEE Trans. on Parallel and Distributed Sys-
tems, 13:14–25, 2002.

29. G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu.Mutatis Mutandis: Safe and
flexible dynamic software updating. InProc. of the Conf. on Principles of Programming
Languages (POPL’05), pages 183–194. ACM Press, Jan. 2005.

30. A. Yonezawa.ABCL: An Object-Oriented Concurrent System. The MIT Press, 1990.

