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Abstract. Based on our experience in implementing a type-checker for
the Object Constraint Language (OCL), we observed that OCL is not
suitable for constraining a system under development, because changes
in the underlying class diagram unnecessarily invalidate the type cor-
rectness of constraints, while their semantic value does not change. Fur-
thermore, the type system of OCL does not support templates.

To alleviate these problems, we extended the type system of OCL with in-
tersection and union types and bounded operator abstraction. The main
advantage of our type system is that it allows more changes in the con-
textual class diagrams without adapting the OCL constraints.

1 Introduction

The Object Constraint Language (OCL) is a formal specification language that
enables a developer to specify class invariants and pre- and postconditions for
operations in UML models. It is designed to be a query language, like SQL, and
specification language, like Z. Its latest version, OCL 2.0, is described in [1],
to which we refer as OCL 2.0 proposal. It aims at a tight integration with the
diagrammatic notations of UML 2.0, which are documented in [2] and [3].

In order to be used widely, OCL has to support the following:

1. A precise syntax which allows writing specifications in a concise and read-
able way, but which is also machine readable, and therefore also machine
checkable.

2. A precise semantics which allows evaluation or verification of the model.

3. A type system which is compatible with the well-formedness constraints of
UML 2.0 class diagrams.

4. A type system which is robust with respect to model transformations like
refactoring or other changes in class diagrams.

Influenced by our experience in implementing a standard-conforming type-checker
for OCL, we have come to the conclusion that OCL does not adequately imple-
ment these requirements so far:
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The first item is not satisfied, because in the UML 2.0 and OCL 2.0 standards
OCL constraints in different syntactical styles are used (compare the constraints
in [2] to the ones in [1]).

The second item is not satisfied, because even though the semantics of OCL is
precise enough for evaluating constraints [4, 5], it is not convenient for verification
purposes, because the semantics of OCL is operational, and not declarative, as
argued in [6], which leads, a.o., to the three-valuedness of the logic.

Items three and four represent the main problem of using OCL for writing
constraints on models during different stages of design: the type system of OCL
appears to be designed for languages which only use single inheritance and no
templates (parameterized classes).! UML 2.0 introduces a new model for tem-
plates, which allows classifiers to be parameterized with classifier specifications,
value specifications, and operation specifications. The OCL 2.0 proposal does
not specify how those parameters can be used in constraints, how they can be
constrained, or how these parameters are to be used in constraints and what
their meaning is supposed to be. Furthermore, OCL constraints are fragile un-
der the operations of refactoring of class diagrams, package inclusion and package
merging. These operations, which often do not affect the semantic value of a con-
straint, can render constraints ill-typed. This essentially limits the use of OCL
to a-posteriori specification of class diagrams.

To solve these problems, we have implemented a more expressive type system
based on intersection types, union types, and bounded operator abstraction.
Such type systems are already well-understood [7] and solve the problems we
encountered elegantly. Our type system supports templates and is more robust
under refactoring and package merging than the current type system.

The adaption of the type system to OCL was straight forward. The specifi-
cation of the OCL standard library had to be changed to make use of the new
type system. We have implemented this type system in a prototype tool and all
constraints of the OCL 2.0 standard library have been shown to be well-typed
with respect to our type system.

This paper is organized as follows: In Sect. 2, we survey the current type
system for OCL. In Sect. 3, we describe our different extensions to the type
system. In Sect. 4, we summarize the most important results. In Sect. 5 we
compare our results with other results and draw some conclusions.

2 State of the Art

In this section, we recall the current type system used for OCL, which has been
derived from the OCL 2.0 standard. It is similar to the one presented in [8].

! For example Java before version 5.0.



We start with a description of abstract OCL, a simple core language, into
which almost all OCL expression can be translated. The grammar is defined by

t = true | false |-+ | =10 |1]|---|self |v]|t.a|tm(ty,... tn)
| t— m(t1,...,tn) | t — iterate(vg : To,...,vn : Tn;a =1t tp)
| t— flatten(t) | if t then t’ else t” endif
| let vo(vo.0s---,V0me) : T =tos-- s Un(Vn,0se s Unmy,) : T =1tp in t

We do not use @Qpre and qualifiers in our language, because these constructs
do not add anything to the type system. We define the operation flatten, which
flattens collections, as a primitive to OCL, like iterate. The reasons for this are
discussed in Sect. 3.5.

We now define the abstract syntax of OCL types. We have essentially two
kinds of types: elementary types and collection types. The elementary types are
classifiers from the model and the elementary data types like Boolean, Integer,
and so on. The collection types are types which are generic, i.e., they construct
a type by applying the collection type to any other type.? This distinction is
formalized with a kinding system (a type system for types). Kinds are defined
by the language K ::= x | K — K’. The kind * denotes any type which does not
take an argument. Type constructors have a kind K — K’, which means that
such a constructor maps each type of kind K to a type of kind K’. For example,
the elementary data type Integer is of the kind x. The collection type Set is of
the kind * — * and the type Set(Integer) is of the kind x. The language of types
is defined as follows:

Tu=type | T(Ty) | Tox - xTp, =T

Here, a type is any classifier or template appearing in the contextual class di-
agram or the OCL standard library. The expression T'(7}) expresses the type
which results from instantiating a template parameter of the type T with T7.
The type Tp X --- x T,, — T is used to express the type of properties. The type
T, is the type of the classifier which defines the property, the types T1,...,T,
are the types of the parameters of the property. We identify attributes with
operations that do not define arguments.

Observe that our language of types does not contain constructs for operator
abstraction or universal types. The reason for this is, that you cannot define new
types in OCL. Instead all types are defined in class diagrams and are used like
constants in the type system.

The kinding of a type states whether a type is an elementary type or a
template and is formally defined by the system shown in Fig. 1. We write the
rules in the usual style: a rule consists of an antecedent and a consequence, which
are separated by a line. The antecedent contains the properties that need to be
proved in order to apply the rule and conclude its consequence. Each rule has a
name, which is stated right of the line in small capitals.

2 In Sect. 4 we discuss the presence of dependent types in class diagrams.



T : % For any type or property type T' K-ELEM

T: K S:K— K’

ST K K-INsT

T : * — x For any parameterized class T' K-CoONS

Fig. 1. Kinding System

It is an important property of the type system for OCL that new types
cannot be defined through OCL expressions (except for tuples, which are out
of the scope of this paper). This simplifies the type checking rules a lot. OCL
expressions are checked in a context, which contains the information on variable
bindings, operation declarations, and the subtype relation encoded in a class
diagram. A context I" maps variable names v to their type, or to undefined
if that variable is not declared in this context. We write I,v : T to denote
the context extended by binding the variable v to T', provided that v does not
occur in I'. We write I'(v) = T to state that v has type T in context I'. The
context also contains the information on type conformance, i.e. clauses of the
form T < S derived from the generalization hierarchy, where T and S are types
and < denotes that T is a subtype of S. We write I,T < S to extend a context
with a statement that T is a subtype of S. Any context contains T' < T for every
type T occurring in the model, since the conformance relation is reflexive. If the
context I' contains the declaration T' < S we denote this with I' =T < 5. We
write I' -t : T to denote that t is a term of type T in the context I'. Contexts
which only differ in a different order of their declarations are considered equal.
If the context is clear, we omit it in the example derivations. Finally, we assume
that the context contains all declarations mandated by the OCL standard library.
The subtype relation is transitive and function application is covariant in its
arguments and contravariant in its result type. These rules are shown in Fig. 2.
In rule S-CoLL the notation I' = C' < Collection means that C' ranges over
every type which is a subtype of Collection. OCL defines Bag, Set, and Sequence
as subtypes of Collection. Note that Collection is a parameterized type, but the
rule S-COLL-2 is not sound for classes which define operations which change the
contents of the collection [9]. In OCL operations defined on collections do not
alter the content, but we cannot assume this in general, therefore we defined
these particular assumptions. The typing rules for terms are presented in Fig. 3,
except for the typing rule for flatten. The type of flatten is actually a dependent
type, because it depends on the type of its argument. We present the rule in
Sect. 3.5.

Rules T-TRUE, T-FALSE, and T-LIT assign to each literal their type. Espe-
cially, T-LIT is an axiom scheme assigning, e.g. the literal 1 the type Integer and
the literal 1.5 the type Real. Rule T-CoOLL defines the type of a collection literal.
The type of a collection is determined by the declared name C' and the common
supertype of all its members. Rule T-CALL states that if the arguments match
the types of a method or a function, then the expression is well-typed and the
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Fig. 2. Definition of Type Conformance

'+ true : Boolean T-TRUE I' - false : Boolean T-FALSE
I'(vy=T

F'_lj—‘l T-LiT W

T-VAR

I'teir:T -+ I'kFe,:T
Cler,...,en}: C(T)
FFto:S FFhISh---,FFthSn
I'tn:SxS x---xS, =T TI'kS< Collection T-CALL

FFto.’rL(t1,...7tn):T
I'tt:C(S) I'kFti:51,-,'Fity:Sn
I'tn:CS)xS1x--x8, =T TIHFC< Collection T-CCALL
F"toﬂn(th...,tn):T
I'teg:Boolean I'kei:T ['kex:T
if eo then ey else ez endif : T
I'tte:C(T) I'tt:S @INv:T,a:Ske:S I'HC < Collection
I'tty — iterate(v;a=t|e): S
F}_toiTo F,U()ZT()'_tZT
I'Fletvg:To=toint : T

I"=T,00:To1 X XTomg = ThyeroyVn:Tng X X Tnm, — Tn
/
I , V0,0 - TO,O,-4~7’UO,m0 :To}mo = to . T()

if C € {Bag, Set, OrderedSet, Sequence} T-COLL

T-CoND

T-ITERATE

T-LET

: T-LET
T Um0 : Tnoy -« s Unymn : Tnymn Ftn 2 Th
I''+t:T

I'F et vo(v0,0,- -+, V0,mg) : 10 =0y -« s Vn(Vn,0y -y Unymp) i T =tn int : T

Fig. 3. Typing rules for OCL



result has the declared type. The antecedent I' - C' £ Collection denotes that
in context I" type C' is not a subtype of Collection. A similar rule for collection
calls is given by T-CCALL. Recall that the antecedent I' - C' < Collection states
that the type of ¢y has to be a collection type. Rule T-COND defines the typing
of a condition. If the condition ey has the type Boolean and the argument ex-
pressions e; and es have a common supertype 7', then the conditional expression
has that type T. Rule T-ITERATE gives the typing rule for an iterate expres-
sion. First, the expression we are iterating over has to be a collection. Then the
accumulator has to be initialized with an expression of the same type. Finally,
the expression we are iterating over has to be an expression of the accumulator
variables type in the context which is extended by the iterator variable and the
accumulator variable. Rule T-LET defines the rule for a let expression of the
OCL 2.0 standard. Rule T-LET’ allows a let-expression where the user can de-
fine functions and use mutual recursion. There we add all variables declared by
the let expression to context I' in order to obtain context I''. Each expression
defined has to be well typed in the context extended by the formal parameters
of the definition. Finally, the expression in which we use the definitions has to
be well-typed in the context I".

This type system is a faithful representation of the type system given in [1],
but we have omitted the typing rules for the boolean connectives, as they are
given by Cengarle and Knapp in [5], because each expression using a boolean
connective can be rewritten to an operation call expression, e.g., a and b is equiv-
alent to a.and(b). We do not have a rule for the undefined value, as presented
in [5], because the OCL 2.0 proposal does not define a literal for undefined [1,
pp. 48-50].3

Within the UML 2.0 standard [3] and the OCL 2.0 standard [1] methods are
redefined covariantly. We assume that some kind of multi-method semantics for
calls of these methods is intended. These redefinitions are not explicitly treated
in the OCL 2.0 type system, they can, however, be treated as overloading a
method, and hence, be modeled with union-types in our system (see Sec. 3.2),
as suggested in, e.g., [7, p. 340].

Also note that our type system makes use of the largest common supertype
only implicitly, whereas it is explicitly used in other papers. It is hidden in the
type conformance rules of Fig. 2. An example of where we use the largest common
supertype can be found in Sect. 3.1. The rules presented here are not designed
for a type-checking algorithms, but for deriving well-typedness. Therefore, the
type system presented here lacks the unique typing property, but it is adequate
with respect to the operational semantics defined in [1] and decidable.

Proposition 1. The type system is adequate, i.e.for any OCL expression e if
e: T can be derived in the type system, then e is evaluated to a result of a type
conforming to T'.

3 Note that OclUndefined is the semantic value of any undefined expression and the
“only instance of OclVoid”, and there not part of the concrete syntax [1, p. 133].
Calling the property ocllsUndefined(), defined for any object, is preferred, because
any other property call results in OclUndefined.



The type system is decidable, i.e. there exists an algorithm which either de-
rives a type T for any OCL expression e or reports that no type can be derived
for e.

We use the definitions of this section for the discussion of its limitations in
the following sections.

3 Extensions

In this section, we propose various extensions to the type system of OCL which
help to use OCL earlier in the development of a system and to write more
expressive constraints. We introduce intersection types, union types, operator
abstraction, and bounded operator abstraction to the type system of OCL. In-
tersection types, which express that an object is an instance of all components
of the intersection type, are more robust w.r.t. transformations of the contex-
tual class diagram. Union types, which express that an object is an instance of
at least one component of the union type, admit more constraints that have a
meaning in OCL to be well-typed. Parametric polymorphism extends OCL to
admit constraints on template without requiring that the template parameter
is bound. Bounded parametric polymorphism allows one to specify assumptions
on a template parameter. Together, our extensions result in a more flexible type
system which admits more OCL constraints to be well typed without sacrificing
adequacy or decidability.

3.1 Intersection Types
Consider the following constraint of class Obs in Fig. 4:
context Obs inv : a — union(b).m1() — forAll(z |z > 1)

This is a simple constraint which asserts that the value returned by m1 for each
element in the collection of a and b is always greater than 1. We show that it is
well-typed in OCL using the type system of Sect. 2.

a: Bag(D) b: Bag(C)
a — union(b) : Bag(A)
a — union(b).m1() : Bag(Integer)
a — union(b).ml() — forAll(x | x > 1) : Boolean

Now consider the following question: What happens to the constraint if we
change the class diagram to the one in Fig. 5, which introduces a new class F
that implements the common functions of classes C and D? The meaning of the
constraint is not affected by this change. However, the OCL constraint is not
well-typed anymore, as this derivation shows, where the type annotation error is
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Fig.5. The same diagram after a
Fig. 4. A simple initial class diagram. change.

used to state that the type system is not able to derive a type for the expression.*

a: Bag(D) b: Bag(C)
a — union(b) : Bag(OclAny)
a — union(b).m1() : error

The problem is, that the OCL type system chooses the unique and most
precise supertype of a and b to type the elements of a — union(b), which now
is OclAny, because we now have to choose one of A, E, and OclAny, which are
the supertypes of C' and D. Neither A nor E are feasible, because the type of
the expression has to be chosen now. Hence, we are forced to choose OclAny.
To avoid this problem constraints should be written once the contextual class
diagram does not change anymore. Otherwise all constraints have to be updated,
which if it is done by hand is a time consuming and error prone task.

The mentioned insufficiency of the type system can be solved in two ways:
We can implement a transformation which updates all constraints automatically
after such a change, or we introduce a more permissive type system for OCL. Be-
cause an automatic update of all constraints entails an analysis of all constraints
in the same way as performed by the more permissive type system, therefore we
extended the type system and leave the constraints unchanged.

The proposed extension is the introduction of intersection types. An inter-
section type, written T' AT’ for types T and T’ states that an object is of type
T and T'. Because A is both an associative and commutative operator, we in-
troduce the generalized intersection Ao, 7. In this paper 7 is always a finite
set of types. The empty intersection type /A @ is the top type, which does not
have any instances (and therefore is equivalent to OclVoid). Intersection types
are useful to explain multiple inheritance [10-12].

We add the rules of Fig. 6 to the type system, which introduces intersection
types into the type hierarchy. The rule S-INTERLB and S-INTER formalize the
notion that a type T belongs to both types, and that A corresponds to the
order-theoretic meet. The rule S-INTERA allows for a convenient interaction
with operation calls and functions. This extension of the type system already
solves the problem raised for the OCL constraint in the context of Fig. 5, as the
derivation in Fig. 7 demonstrates.

4 Recall, that we do not explicitly write the context in examples if it is clear.
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Fig. 6. Intersection Types

a:Bag(D) D<A D<E b:Bag(C) C<A C<E
a: Bag(ANE) b: Bag(ANE)
a — union(b) : Bag(A A E)
a — union(b) : Bag(A)
a — union(b).m1() : Bag(Integer)
a — union(b).m1() — forAll(z | x > 1) : Boolean

Fig. 7. Type checking with intersection types.

The extension of the OCL type system with intersection types is sufficient to
deal with transformations which change the class hierarchy by moving common
code of a class into a new super-class. This extension is also safe, and does not
change the decidability of the type system.

3.2 Union Types

Union types are dual to intersection types. They are not as useful as intersection
types, because they do not address a fundamental language concept like multiple
inheritance. They can be used to address overloading of operators, and they do
solve type checking problems for collection literals and the union operation of
collections in OCL. We explain this by the class diagram in Fig. 8. Consider

A a b B

+m(x: Integer): Integer const +m(x: Integer): Integer const

Fig. 8. A simple example class diagram.

the expression context C inv : Set{self.a, self.b}.m(1) on this class diagram.’

Assuming that the multiplicities of the associations are 1, we have the derivation
a:A b: B
Set{a,b} : Set(OclAny)
Set{a,b}.m(1) : error

® Note that @ : A and b : B, and both classes define a method m() return-
ing an Integer. However, in this case the intended meaning of the constraint is
Set{self.a.m(1), self .b.m(1)}, which is well-defined.

S-INTER ~ I'F Ao (T = T') < T — Apes T’ S-INTERA



even though both types A and B define the property m(x : Integer) : Integer.
Here, it is desirable to admit the constraint as well-typed, because it also has a
meaning in OCL. Using intersection types does not help here, because stating
that @ and b have the type A A B is not adequate.

Instead, we want to judge that a and b have the type A or B. For this purpose
we propose to introduce the union type AV B. A union type states, that an object
is of type A or it is of type B. Again, V is associative and commutative, so we
introduce the generalized union \/TeT T. The type \/( is the universal type,
a supertype of OclAny, of which any object is an instance. Union types are
characterized by the rules in Fig. 9. Rules S-UNIONUB and S-UNION formalize

T <Vrpier T' forany T € T. S-UnioNUB
T <Tforany T € T
Vier T'<T

S-UNION Aprer(T" = T) < (Ve T') =T S-UNIONA

Fig. 9. Rules for union types.

the fact that a union type is the least upper bound of two types. Note that it
only makes sense to use a property on objects of AV B that are defined for A
and B. This is stated by the rule S-UNIONA.

Using our extended type system, we can indeed derive that our example has
the expected type.

a:Ab:B m : A — Integer m : B — Integer
Set{a,b} : Set(AV B) m: AV B — Integer
Set{a,b} — collect(m()) : Bag(Integer)

3.3 Parametric Polymorphism

UML 2.0 provides the user with templates® (see [3, Sect. 17.5, pp. 541ff.]), which
are functions from types or values to types, i.e., they take a type as an argument
and return a new type. We first consider the case where the parameter of a class
ranges over types. This form of parametric polymorphism is highly useful, as
shown, e.g., in [13] and [14]. Adequate support for parametric polymorphism in
the specification language is again highly useful, as the proof of a property of
a template carries over to all its instantiations [15]. The OCL standard library
contains the collection types, which are indeed examples of generic classes.

We have not found yet how the parameter of a template, which is defined in
the class diagram, is integrated into OCL’s type system. In fact, it is not defined
in the proposal how the environment has to be initialized in order to parse

5 Also called generics or parameterized classes



expressions according to the rules of Chapter 4 of [1]. For example, consider the
following constraint:

context Sequence :: excluding(object : T') : Sequence(T)
(1) post : result = self — iterate(elem; acc : Sequence(T) = Sequence{} |
if elem = object then acc else acc — append(object) endif)

To what does T refer to? Currently, T' is not part of the type environment,
because it is neither a classifier nor a state but an instance of TemplateParameter
in the UML metamodel. This constraint is, therefore, not well-typed. But it is
worthwhile to admit constraints like (1), because this constraint is valid for any
instantiation of the parameter 7.

UML 2.0 allows different kinds of template parameters: parameters ranging
over classifiers, parameters ranging over value specifications, and parameters
ranging over features (properties and operations). In this paper, we only consider
parameters ranging over classifiers.

We propose to extend the environment such that I" contains the kinding judg-
ment T € x if T' is the parameter of a template. This states that the parameter
of a template is a type. Also note that the name of the template classifier alone
is not of the kind x but of some kind *x — --- — %, depending on the number
of type parameters. Additionally, we give the following type checking rules for
templates in Fig. 10. These rules generalizes the conforms-to relation previously
defined for collection types only. The rule S-INSTSUB states that if a template

I'-T:K—K I'tT:K—K T'vT':K I'rT<T
TFT(T <T(T7)

I'tT:K—K TIbT:K I'tT':K T'FT' <T"
TFTT) <T(1T7)

S-INSTSUB

S-INSTSUB-2

Fig. 10. Subtyping rules for parametric polymorphism

class T is a subtype of another template class 7", then T remains a subtype of
T’ for any class T bound to the parameter. This rule is always adequate. The
rule T-INSTSUB-2 states that for any template class T' and any types 77 and T”
such that 7" is a subtype of T”, then binding 7" and T" to the type parameter
in T preserves this relation. Note that rule S-INSTSUB-2 is not always safe. The
absence of side-effects in OCL expressions are a fundamental property for the
validity of the rule S-ARROW and therefore also for S-INSTSUB-2. The following
counter-example illustrates the importance of the absence of side-effects for the
type system. Consider the following fragment of C++ code:

class C { public: void m(double *&a) { al[0]
void main(void) { int *v = new int[1]; C *c

1.5; } }
new C(); c->m(v); }



If we allow the S-INSTSUB-2, then the call c->m(v) is valid, because int is a
subtype of double. But within the body of m the assignment a[0] = 1.5 would
store a double value into an array of integers, which is not allowed. However,
since we assume that each expression is free of side-effects, rule S-INSTSUB-2 is
adequate.

3.4 Bounded Operator Abstraction

While parametric polymorphism in the form of templates is useful in itself,
certain properties still cannot be expressed directly as types but have to be
expressed in natural language. For example, in the OCL standard the collection
property sum() of set has the following specification:

The addition of all elements in self. Elements must be of a type support-
ing the 4+ operation. The + operation must take one parameter of type
T and be both associative: (a +b) + ¢ = a + (b + ¢), and commutative:
a + b= b+ a. Integer and Real fulfill this condition.

Formally, the post condition of sum does not type check, because a type checker
has no means to deduce that T indeed implements the property + as specified.
The information can be provided in terms of bounded polymorphism, where the
type variable is bounded by a super type. The properties of 4+ can be specified
in an abstract class (or interface), say Sum, and the following constraints:

context Sum
2) inv : self .typeOf (). allInstances()— forAll(a, b, c |
a+(b+c)=(a+b)+c)
inv = self .typeOf (). alllnstances()—forAll(a,b | a+b = b+ a)

In Eq. (2) the property typeOf() is supposed to return the run-time type of
the self object. It is important to note that we cannot write Sum.alllnstances,
because the type implementing Sum need not provide an implementation of +
which work uniformly on all types implementing Sum. For example, we can define
+ on Real and on Vectors of Reals, but it may not make sense to implement an
addition operation of vectors to real which returns a real. So we do not want to
force the modeler to do this. The purpose of Sum is to specify that a classifier
provides an addition which is both associative and commutative.

When Sum is a base class of a classifier T', and we have a collection of
instances of T, then we also know that the property sum is defined for this
classifier. So Sum is a lower bound of the types of T'. Indeed, the signature of
Collection :: sum can be specified by Collection(T' < Sum) :: sum() : T, which
expresses the requirements on 7.

Syntactically, we express the type of a bounded template using the notation
Ar.C(t < S). For this new type constructor we have to define a new kind
IIT < S — %, where S is of kind . This new kind IIT < S states that 7 has to
be a subtype of S to construct a new type, otherwise the type is not well-kinded.

Observe that type operators are not comparable using the subtype relation.
Therefore, bounded operator abstraction does not introduce new rules into the
typing system.



3.5 Flattening and accessing the run-time type of objects

Quite often it is necessary to obtain the type of an object and compare it. OCL
provides some functions which allow the inspection and manipulation of the
run-time type of objects. To test the type of an object it provides the operations
oclls TypeOf() and ocllsKindOf(), and to cast or coerce an object to another type
it provides oclAsType(). In OCL, we also have the type OclType, of which the
values are the names of all classifiers appearing in the contextual class diagrams.”
The provided mechanisms are not sufficient, as the specification of the flatten()
operation shows (see [1]):

context Set :: flatten() : Set(T2)
post : result = if self .type.element Type.ocllsKindOf ( Collection Type)
(3)  then self — iterate(c; acc : Set() = Set{} | acc — union(c — asSet()))
else self
endif

This constraint contains many errors. First, the type variable T2 is not bound
in the model (see Sect. 3.3 for the meaning of binding), so it is ambiguous
whether T2 is a classifier appearing in the model or a type variable. Next, self
is an instance of a collection kind, so the meaning of self.type is actually a
shorthand for self— collect(type), and there is no guarantee that each instance
of the collection defines the property type. Of course, the intended meaning of
this sub-expression is to obtain the element-type of the members of self, but
one cannot access the environment of a variable from OCL. Next, the type of
the accumulator in the iterate expression is not valid, Set requires an argument,
denoting the type of the elements of the accumulator set (one could use T2 as
the argument).

The obvious solution, to allow the type of an expression depending on the
type of other expressions, poses a serious danger: If the language or the type
system is too permissive in what is allowed as a type, we cannot algorithmically
decide, whether a constraint is well-typed or not. But decidability is a desirable
property of a type-system. Instead, we propose to treat the flatten() operation
as a kind of literal, like iterate is treated. For flatten, we introduce the following
two rules:

e: C(T) C < Collection T < Collection(7")
e — flatten() : C(7')

e: C(T) C < Collection T & Collection(t")
e — flatten() : C(T)

T-FLAT

T-NFLAT

The rule T-FLAT covers the case where we may flatten a collection, because its
element type conforms to a collection type with element type 7”. In this case,
T’ is the new collection type. The rule T-NFLAT covers the case where the
collection e does not contain any other collections. In this case, the result type
of flatten is the type of collection e.

" The type OclType will be removed but still occurs in the proposal.



These rules encode the following idea: For each collection type we define an
overloaded version of flatten. As written in Sec. 3.2, we are able to define the
type of any overloaded operation using a union type. However, using this scheme
directly yields infinitary union types, because the number of types for which we
have to define a flatten operation is not bounded. The price for this extension is
decidability [16].

The drawback of this extension is that the meaning of the collection cannot be
expressed in OCL, because we have no way to define 77 in OCL. The advantage
is, that the decidability of the type system extended in this way is not affected.

4 Adequacy and Decidability

In this section, we summarize the most important results concerning the ex-
tended type system. This means that if the type system concludes that an OCL-
expression has type T, then the result of evaluating the expression yields a value
of a type that conforms to T. The type system is adequate and decidable. For
the (operational) semantics of OCL we use the one defined in [4, 1].

Theorem 1. Let I' be a context, e an OCL expression, and T a type such that
I'e:T. Then the value of e conforms to T'.

Proof. Similar to the one presented in [5] and in [17]. O

Theorem 2. Let I' be a context and e be an OCL expression. Then there exists
an algorithm which computes a type T such that I' e : T or returns an error if
no such type can be found by the type system.

Proof. Follows from [17] and [9], since our type system is a special case of the
type systems used there. a

Our type-checking algorithm is based on [17] and [9] but handles union types.
It is simpler than the cited ones, because we only have a form of bounded oper-
ator abstraction, where type abstractions are not comparable, except for collec-
tion types, which is crucial in the proof of decidability. Furthermore, the kind of
polymorphism in our type system is ML-like, where type variables (the template
parameters) are universally quantified.

However, the type system is incomplete. By this we mean that if e is an OCL
expression the type system will not compute the most precise type of e, but one of
its supertypes. One reason for incompleteness is the following: If e is a constraint
whose evaluation does not terminate, its most specific type is OclVoid. But we
cannot decide whether the evaluation of a constraint will always terminate.

Indeed, the type system presented in this paper covers a usable set of features
and it is still decidable. If we, e.g., also add checking for value specifications of
method specifications of templates to the type system, it would become undecid-
able [18]. Such type systems indeed form the theoretical foundation of interactive
theorem provers.



5 Related Work and Conclusions

A type system for OCL has been presented by Clark in [8], by Richter and
Gogolla in [19], and by Cengarle and Knapp in [5]. In Sect. 2 we summarized
these results and give a formal basis for our proposal.

A. Schiirr has described an extension to the type system of OCL [20], where
the type system is based on set approximations of types. These approximations
are indeed another encoding of intersection and union types. His algorithm does
not work with parameterized types and bounded polymorphism, because the
normal forms of types required for the proof of Theorem 2 cannot be expressed
as finite set approximations. We extended OCL’s type system to also include
polymorphic specifications for OCL constraints, which is not done by Schiirr.

Our type system is a special case of the calculus F¥. This system is analyzed
in [17], where a type checking algorithm is given. This calculus is a conservative
extension of F¥. M. Steffen has described a type checking algorithm for F¥
with polarity information [9]. Our type system does not allow type abstractions
in expressions and assumes that all type variables are universally quantified in
prenex form.

We have presented extensions to the type system for OCL, which admits a
larger class of OCL constraints to be well-typed. Furthermore, we have intro-
duced extensions to OCL, which allow to write polymorphic constraints.

The use of intersection types simplifies the treatment of multiple inheritance.
This extension makes OCL constraints robust to changes in the underlying class
diagram, e.g., refactoring by moving common code into a superclass. Intersec-
tion types are therefore very useful for type-checking algorithms for OCL. Union
types simplify the treatment of collection literals, model operator overloading ele-
gantly, and provides unnamed supertypes for collections and objects. Parametric
polymorphism as introduced by UML 2.0’s templates is useful for modeling. We
described how polymorphism may be integrated into OCL’s type system and
provided a formal basis in type checking algorithms. Bounded parametric poly-
morphism is even more useful, because it provides the linguistic means to specify
assumptions on the type of the type parameters.

We have proposed typing rules for certain functions which can not be formally
expressed in OCL. We have shown that this type system is sound, adequate, and
decidable.
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