
Pattern Matching over a Dynamic Network
of Tuple Spaces

Rocco De Nicola1 Daniele Gorla2? Rosario Pugliese1

1Dipartimento di Sistemi e Informatica, Università di Firenze
2Dipartimento di Informatica, Università di Roma “La Sapienza”

email : {denicola, pugliese}@dsi.unifi.it, gorla@di.uniroma1.it

Abstract. In this paper, we present recent work carried on µK, a core cal-
culus that retains most of the features of K: explicit process distribution,
remote operations, process mobility and asynchronous communication via dis-
tributed tuple spaces. Communication in µK is based on a simple form of
pattern matching that enables withdrawal from shared data spaces of matching
tuples and binds the matched variables within the continuation process. Pattern
matching is orthogonal to the underlying computational paradigm of µK, but
affects its expressive power. After presenting the basic pattern matching mech-
anism, inherited from K, we discuss a number of variants that are easy to
implement and test, by means of simple examples, the expressive power of the
resulting variants of the language.

1 Introduction

In the last decade, programming computational infrastructures available globally for
offering uniform services has become one of the main issues in Computer Science. The
challenges come from the necessity of dealing at once with issues like communication,
co-operation, mobility, resource usage, security, privacy, failures, etc. in a setting where
demands and guarantees can be very different for the many different components. K
(Kernel Language for Agents Interaction and Mobility, [5]) is a tentative response to
the call for innovative theories, computational paradigms, linguistic mechanisms and
implementation techniques for the design, realization, deployment and management of
global computational environments and their application.

K is an experimental language specifically designed to program distributed sys-
tems made up of several mobile components interacting through multiple distributed tu-
ple spaces. Its communication model builds over, and extends, L’s notion of gener-
ative communication through a shared tuple space [11]. The Lmodel was originally
proposed for parallel programming on isolated machines; multiple, possibly distributed,
tuple spaces have been advocated later [12] to improve modularity, scalability and per-
formance, and fit well in a global computing scenario.

K has proved to be suitable for programming a wide range of distributed appli-
cations with agents and code mobility [5, 6] and it has originated an actual programming
language, X-K [1], that has been implemented by exploiting Java [2].

? Most of the work presented in this paper was carried on while the second author was a PhD
student at the University of Florence.

N C
N ::= 0

∣

∣

∣ l :: C
∣

∣

∣ N1 ‖ N2

∣

∣

∣ (νl)N C ::= 〈t〉
∣

∣

∣ P
∣

∣

∣ C1 | C2

T T
t ::= u

∣

∣

∣ t1, t2 T ::= u
∣

∣

∣ ! x
∣

∣

∣ T1,T2

A
a ::= in(T)@u

∣

∣

∣ read(T)@u
∣

∣

∣ out(t)@u
∣

∣

∣ eval(P)@u
∣

∣

∣ new(l)

P
P ::= nil

∣

∣

∣ a.P
∣

∣

∣ P1 | P2

∣

∣

∣ ∗ P

Table 1. µK Syntax

The main drawback of K is that it is not an actual programming language, nor
a process calculus. The main aim of some our recent works (grouped together in [13])
has been the definition of a process calculus derived from K that retains all its
distinctive features and expressive power, and develop over it the type theoretic and
semantical foundations of the language. The resulting calculus has been called µK
and, in [8], we have proved that it can reasonably encode K.

In this paper, we first describe µK (Section 2). Then, in Section 3, we present
some recent enhancements of the basic formalism to deal with some low-level features,
namely inter-node connections and failures. In Section 4, we argue on alternative forms
of pattern matching for retrieving tuples. So far, K and its variants have used L’s
original pattern matching, because of its simplicity. Nevertheless, other variants could
be adopted without compromising language implementability, actually enhancing the
overall expressive power. A novel contribution of this paper is the informal examination
of this topic. Section 5 concludes the paper.

2 The Calculus µK

2.1 Syntax

The syntax of µK is reported in Table 1. A countable set L of names
l, l′, . . . , u, . . . , x, y, . . . is assumed. Names provide the abstract counterpart of the set
of communicable objects and can be used as localities and variables: we do not distin-
guish between these kinds of objects. Notationally, we prefer letters l, l′, . . . when we
want to stress the use of a name as a locality and x, y, . . . when we want to stress the use
of a name as a variable. We will use u for basic variables and localities.

Nets are finite collections of nodes where processes and tuple spaces can be allo-
cated. A node is a pair l :: C, where locality l is the address of the node and C is the
parallel component located at l. Components can be processes or (located) tuples. Lo-
cated tuples, 〈t〉, are inactive components representing tuples in a tuple space (TS, for
short) that have been inserted either in the initial configuration or along a computation
by executing an action out. The TS located at l results from the parallel composition
of all located tuples residing at l. In (νl)N, name l is private to N; the intended effect is
that, if one considers the term N1 ‖ (νl)N2, then locality l of N2 cannot be referred from
within N1.

match(l; l) = ε

match(!x; l) = [l/x]

match(T1; t1) = σ1 match(T2; t2) = σ2

match(T1,T2; t1, t2) = σ1 ◦ σ2

Table 2. The Pattern Matching Function

Tuples are sequences of names. Templates are patterns used to select tuples in a TS.
They are sequences of names and formal fields; the latter ones are written ! x and are
used to bind variables to names.

Processes are the µK active computational units. They are built up from the in-
ert process nil and from five basic operations, called actions, by using action prefixing,
parallel composition and replication. The informal semantics of process actions is as
follows. Action in(T)@u looks for a matching tuple 〈t〉 in the TS located at u; intu-
itively, a template matches against a tuple if both have the same number of fields and
corresponding fields match, i.e. they are the same name, or one is a formal while the
other one is a name. If 〈t〉 is found, it is removed from the TS, the formal fields of T are
replaced in the continuation process with the corresponding names of t and the opera-
tion terminates. If no matching tuple is found, the operation is suspended until one is
available. Action read(T)@u is similar but it leaves the selected tuple in u’s TS. Action
out(t)@u adds the tuple t to the TS located at u. Action eval(P)@u sends process P for
execution at u. Action new(l) creates a new node in the net at the reserved address l.
Notice that new is the only action not indexed with an address because it always acts
locally; all the other actions explicitly indicate the (possibly remote) locality where they
will take place.

Names occurring in terms can be bound by action prefixes or by restriction. More
precisely, in processes in(T)@u.P and read(T)@u.P the prefixes bind the names in
the formal fields of T within P; in process new(l).P, the prefix binds l in P; in (νl)N,
the restriction binds l in N. A name that is not bound is called free. The sets bn(·)
and fn(·) (of bound and free names, resp., of term ·) are defined accordingly, and so
is alpha-conversion. In the sequel, we shall assume that bound names in terms are all
distinct and different from the free ones (by possibly applying alpha-conversion, this
requirement can always be satisfied).

2.2 Operational Semantics

µK operational semantics is given in terms of a structural congruence and a reduc-
tion relation. The structural congruence, ≡, identifies nets which intuitively represent
the same net. It is inspired to π-calculus’ structural congruence (see, e.g., [16]) and
states that ‘‖’ is a monoidal operator with 0 as identity, that nil is the identity for |’, that
alpha-equivalent nets do coincide, and that the order of restrictions in a net is irrelevant.
Moreover, the following laws are crucial to our setting:

(C) l :: C1|C2 ≡ l :: C1 ‖ l :: C2

(R) l :: ∗P ≡ l :: P | ∗ P

(RN) l :: ∗nil ≡ l :: nil

(E) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l < fn(N1)

(R-O)

l :: out(t)@l′.P ‖ l′ :: nil 7−→ l :: P ‖ l′ :: 〈t〉

(R-N)

l :: new(l′).P 7−→ (νl′)(l :: P ‖ l′ :: nil)

(R-E)

l :: eval(P2)@l′.P1 ‖ l′ :: nil 7−→ l :: P1 ‖ l′ :: P2

(R-R)
N 7−→ N′

(νl)N 7−→ (νl)N′

(R-I)
match(T ; t) = σ

l :: in(T)@l′.P ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ l′ :: nil

(R-P)
N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-R)
match(T ; t) = σ

l :: read(T)@l′.P ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ l′ :: 〈t〉

(R-S)
N ≡ N1 N1 7−→ N2 N2 ≡ N′

N 7−→ N′

Table 3. µK Reduction Relation

Law (C) turns a parallel between co-located components into a parallel between
nodes (by relying on this law, commutativity and associativity of ‘|’ follows). Law
(R) unfolds a replicated process; however, when the replicated process is nil, the
unfolding is useless (see rule (RN)). Finally, law (E) is the standard π-calculus’
rule for scope extension; it states that the scope of a restricted name can be extended,
provided that no free name is captured.

The reduction relation is given in Table 3. It relies on the pattern matching function
match(;) that verifies the compliance of a tuple w.r.t. a template and associates values
to variables bound in the template. Intuitively, a tuple matches a template if they have
the same number of fields, and corresponding fields match. Formally, function match is
defined in Table 2 where we let ‘ε’ be the empty substitution and ‘◦’ denote substitutions
composition. Here, a substitution σ is a mapping of names for names; Pσ denotes the
(capture avoiding) application of σ to P.

The operational rules of µK can be briefly motivated as follows. Rule (R-O)
states that execution of an output sends the tuple argument of the action to the tar-
get node. However, this is possible only if the target node does exist in the net. Rule
(R-E) is similar, but deals with process spawning. Rules (R-I) and (R-R) re-
quire existence of a matching datum in the target node. The tuple is then used to replace
the free occurrences of the variables bound by the template in the continuation of the
process performing the actions. With action in the matched datum is consumed while
with action read it is not. Rule (R-N) states that action new(l′) creates a new node at
a reserved address l′. Rules (R-P), (R-R) and (R-S) are standard.

µK adopts a L-like [11] communication mechanism: data are anonymous
and associatively accessed via pattern matching, and communication is asynchronous.
Indeed, even if there exist action prefixes for placing data to (possibly remote) nodes, no
synchronization takes place between (sending and receiving) processes, because their
interactions are mediated by nodes, that act as data repositories.

2.3 Observational Semantics

We now present a preorder on µK nets yielding sensible semantic theories. We
follow the approach put forward in [10] and use may testing equivalence. Intuitively, two
nets are may testing equivalent if they cannot be distinguished by any external observer
taking note of the data offered by the observed net. More precisely, an observer O is a
net containing a node whose address is a reserved locality name test. A computation
reports success if, along its execution, a datum at node test appears; this is written
OK
===⇒ .

Definition 1 (May Testing Equivalence). May testing, v, is the least equivalence on

µK nets such that, for every N v M, it holds that N ‖ O
OK
===⇒ if and only if

M ‖ O
OK
===⇒ , for any observer O.

The problem underneath the definition of may testing we have just presented is the
universal quantification over observers. This makes it hard to prove equivalences in
practice. In [13], we have developed an alternative characterisations of ' as a trace-
based equivalence and a co-inductive proof technique as a bisimulation-based equiva-
lence. However, these definitions have been omitted from this paper: here, it sufficies to
have a sensible notion of equivalence to equate nets.

3 Node Connections and Failures

In this section we present two enhancements of the basic framework presented so far.
Such enhancements allow us to better model some global computing phenomena.

3.1 Modelling Connections

In [7], we developed the behavioural theory of a language derived from µK by
introducing explicit inter-node connections and process actions to dynamically change
them. The syntax of the resulting calculus, that is called K (topological K),
can be obtained by adding the following productions to those in Table 1:

N ::= · · ·
∣

∣

∣ {l1 → l2} a ::= · · ·
∣

∣

∣ conn(u)
∣

∣

∣ disc(u)

A connection (or link) is a pair of node addresses {l1 → l2} stating that the nodes at
addresses l1 and l2 are directly linked. Actions conn(l2) and disc(l2) aim at changing
the network topology: once executed at l1 they create/remove a link {l1 → l2} from the
net.

The operational semantics of K is obtained by modifying that of µK to
take into account information on existing connections. First, the following structural
rules are added

l :: nil ≡ {l→ l} {l1 → l2} ≡ {l1 → l2} ‖ l1 :: nil ‖ l2 :: nil

They state that nodes are self-connected and that connections are established only be-
tween actual nodes. Second, the reduction relation of Table 3 is modified so that ax-
ioms check existence of proper connections enabling process actions. For example, rule
(R-O) now becomes

l :: out(t)@l′.P ‖ {l → l′} 7−→ l :: P ‖ {l→ l′} ‖ l′ :: 〈t〉

Thus, the sending operation is enabled only if the source and the target nodes are di-
rectly connected. Analogous modifications are needed for rules (R-E), (R-I) and
(R-R). Of course, we also need two new axioms for the two new primitives

(R-C) l :: conn(l′).P ‖ l′ :: nil 7−→ l :: P ‖ {l → l′}

(R-D) l :: disc(l′).P ‖ {l → l′} 7−→ l :: P ‖ l′ :: nil

The behavioural theory of K presented in Section 2.3, and modified to take
connections into account, has been used in [9] to state and prove the properties of a
well-known routing protocol for mobile systems, namely the handover protocol [15]
proposed by the European Telecommunication Standards Institute (ETSI) for the GSM
Public Land Mobile Network.
K can be easily accommodated to model a finer scenario where connections

must be activated by a handshaking between the nodes involved (this feature is similar
to the so-called co-capabilities of Safe Ambients [14]). This mechanism can be imple-
mented by introducing a new action acpt that, by synchronizing with an action conn,
authorises the creation of a new connection either from a specific node or from any
node. An enabling action corresponding to disc seems to be less reasonable, but could
be handled similarly.

Action acpt(l) by a process located at l′ means that l′ is ready to activate a connec-
tion with l; thus, the operational rule for activating a connection now becomes

(R-C1) l :: conn(l′).P ‖ l′ :: acpt(l).Q 7−→ l :: P ‖ {l → l′} ‖ l′ :: Q

Similarly, action acpt(!x) by a process located at l′ means that l′ is ready to activate a
connection with any node, whose address will be bound to x in the continuation. In this
case, the operational rule for activating a connection is

(R-C2) l :: conn(l′).P ‖ l′ :: acpt(!x).Q 7−→ l :: P ‖ {l→ l′} ‖ l′ :: Q[l/x]

3.2 Modelling Failures

In [9], we enriched K with some simple but realistic ways to model failures in
global computing systems. We model failures of nodes and of node components by
adding the annihilating rule

(R-FN) l :: C 7−→ 0

to K’s operational rules that serves different purposes. Indeed, axiom (R-FN)
models one of the following:

– message omission, if C represents a part of the tuple space at l (i.e. C is of the form
〈t1〉| . . . |〈tn〉);

– node fail-silent failure, if, in the overall net, l occurs as address only in l :: C;
– abnormal termination of some processes running at l, if in the overall net there are

other nodes with address l.

Modelling failures as disappearance of a resource (a datum, a process or a whole node)
is a simple, but realistic, way of representing failures in a global computing scenario
[3]. Indeed, while the presence of data/nodes can be ascertained, their absence cannot
because there is no practical upper bound to communication delays. Thus, failures can-
not be distinguished from long delays and should be modelled as totally asynchronous
and undetectable events.

Clearly, our failure model can be easily adapted to deal with link failures too. To
this aim, we only need to add the operational rule

(R-FC) {l1 → l2} 7−→ 0

that models the (asynchronous and undetectable) failure of the link between nodes l1

and l2.
The behavioural theory of K presented in Section 2.3 can be adapted to cope

with failures. In [9], we used some resulting equational laws to prove the properties of
a well-known distributed fault-tolerant protocol, namely the k–set agreement [4], and
of a simplified routing task, namely discovering the neighbours of a given node.

4 Experimenting with Pattern Matching

The pattern matching function adopted by K and its variants is essentially that of
L, that was introduced by Gelernter in its seminal paper [11]. It enables withdrawal
from the shared data space of matching tuples and binds the matched variables within
the continuation process. This choice was driven both by historical and simplicity rea-
sons. To be precise, K’s pattern matching differs from L’s original one in that
it does not allows tuples to contain formal fields. This feature, called inverse structured
naming, was introduced for widening matching possibilities (tuples’ formal fields can
be matched by any value of the same type), rather than for communication purposes
(indeed, tuples’ formal fields are never replaced by corresponding values).

Several other alternatives could be considered that simplify the task of program-
ming. In the rest of this section, we will present a number of variants and briefly dis-
cuss, by means of simple examples, the expressive power of the resulting variants of
the language. We shall limit our interest to variants of the matching function of Table 2
that can be ‘easily’ implemented also in a distributed setting.

For each variant, we shall present a simple motivating example and show that the
suggested modification simplifies programming when compared with the same task
written in µK. In the examples, wherever we find it convenient, we shall use basic
data values (e.g. strings) to improve readability.

4.1 Enforcing Name Difference

K’s pattern matching permits selecting a tuple that contains a specific value (name),
say l, in a specific field, say the i-th one: it sufficies to use a template containing l in
its i-th field. But one could be, instead, interested in selecting those tuples that have a
precise structure but do not contain a l in their i-th field. To this aim, we extend the
syntax of templates as

T ::= · · ·
∣

∣

∣ ¬ u !x

and, correspondingly, we extend the pattern matching function of Table 2 by adding the
axiom

match(¬ l !x; l′) = [l′/x] if l′ , l (1)

Clearly, this extension of the pattern matching function does not compromise imple-
mentability.

Let µK, be µK with the two modifications just presented. Then, we can
easily implement in µK, a standard if-then-else construct, as follows

if l1 = l2 then P1 else P2 , new(l′).out(l1)@l′.(in(l2)@l′.P1 | in(¬ l2 !x)@l′.P2)

with l′ < fn(l1, l2, P1, P2) and x < fn(P2). By relying on may-testing, we can easily state
and prove the soundness of this implementation as follows:

l1 = l2 implies that l :: if l1 = l2 then P1 else P2 ' l :: P1

l1 , l2 implies that l :: if l1 = l2 then P1 else P2 ' l :: P2

In µK such a construct is not finitary implementable, assuming (as usual) that the
set of names is infinite. At most, we can use process

new(l′).out(l1)@l′.(in(l2)@l′.P1 | in(!x)@l′.P2)

where, however, P2 could also be executed whenever l1 = l2.
Notice that the implementation in µK, of the if-then-else we have just presented

can be achieved with a simpler formulation of templates and pattern matching. Indeed,
it sufficies to add fields of the form ¬u, with rule (1) replaced by

match(¬l; l′) = ε if l′ , l

However, the general formulation exploiting fields of the form ¬ u !x enables us to pro-
gram more sophisticated applications. As an example, we consider a ‘fair server’, that
never serves the same client two consecutive times. The code required for this task is
the following:

P , in(!x)@l.new(l′).out(x)@l′.(< Serve client x > | ∗ Q)

Q , in(!y)@l′.in(¬ y !z)@l.out(z)@l′. < Serve client z >

The fair server is located at l and it runs process P. Client processes invoke the service
by sending to l the address of the node where they run. Then, process P retrieves the
first service request (coming from x), creates a new node l′ to store the currently served

client, serves x and then activates the replicated process Q. The latter one retrieves from
l′ the last served client y and waits for a new request coming from a client z different
from y; it then stores z in l′ and serves z.

The application we have just presented can be useful in a distributed system to avoid
starvation of client processes. If we want to extend it to the case where n client processes
must be regularly alternated, we need a more general form of pattern matching. This can
be obtained by defining a small language for name expressions like

ξ ::= u
∣

∣

∣ ¬u
∣

∣

∣ ξ1 ∨ ξ2
∣

∣

∣ ξ1 ∧ ξ2

where the only operations on names are tests for equality and difference combined by
logical connectors and/or. Now, templates are defined as

T ::= ξ !x
∣

∣

∣ T1, T2

Notice that the old field !x would be an abbreviation for (l ∨ ¬l)!x (for a generic l) and
the old field u would be an abbreviation for u!x (for an unused variable x). The pattern
matching rule (1) is now replaced by rule

match(ξ !x; l) = [l/x] if l |= ξ

where the compatibility check l |= ξ is defined as expected

l |= l l |= ξ1 ∨ ξ2 if l |= ξ1 or l |= ξ2

l |= ¬l′ if l , l′ l |= ξ1 ∧ ξ2 if l |= ξ1 and l |= ξ2

4.2 Scope of Name Binders

In the previous sections, we have assumed that the scope of name binders contained
within templates is the process following the action that has the template as argument.
However, it is possible to consider as part of the scope of a name also those template
fields that syntactically follow the binder of the name. This feature could be exploited
for retrieving tuples that contain multiple occurrences of the same name (value), what-
ever it is.

For example, consider the data base of a travel agency storing information about
clients. This can be modelled by associating to the agency a locality l whose TS hosts
the data base as tuples of the form

〈 Name , TripID , Departure Date , Return Date , Destination 〉

Consider now a query for the record of a client that has planned with the agency a one-
day trip to Rome (e.g., this could be needed to perform a market research). In the new
formulation of the calculus, this can be very easily implemented by action

read(!xn, !xi, !x, x, “Rome”)@l

To extend the scope of a name binder to the remaining part of the template where it
occurs, the pattern matching function in Table 2 has to be modified. We must reformu-
late function match in order to apply the partial substitution calculated after the analysis

of the first i fields to the analysis of the (i+1)-th field. To formalise this idea, let p range
over template fields, i.e.

p ::= u
∣

∣

∣ !x

Then, the pattern matching rules of Table 2 now become

matchσ(T ; t) = σ1 matchσ1 (p; l) = σ2

matchσ(T, p; t, l) = σ2

matchσ(u; l) = ε if u = l or σ(u) = l

matchσ(!x; l) = σ ◦ [l/x]

Function match is invoked in rules (R-I) and (R-R) as matchε(T ; t).
It should be apparent that the effect of the matching mechanism above, that permits

enforcing selection of tuples where the very same field occurs repeatedly, cannot be
achieved in its full generality in µK. At the best, it could be somehow simulated
under the (restrictive) assumption that the duplicated values are known in advance or
can be guessed. Coming back to the travel agency example, we could write, e.g.,

read(!xn, !xi, 1/1/05, 1/1/05, “Rome”)@l

but in this way we would only select those clients that went to Rome on January the 1st,
2005.

Also in a language with the full power of the if-then-else, like µK,, achieving
the effect of the pattern matching above poses some problems. Indeed, consider the
process

A , in(!x, !y)@l.if x = y then P else out(x, y)@l.A

where, for simplicity, we have used recursive process definitions (that can be simulated
by relying on replication, see e.g. [16]). This encoding of action in(!x, x)@l.P is not
fully satisfactory because it introduces divergence: process A can repeatedly access at l
a tuple of the form 〈l1, l2〉, with l1 , l2.

4.3 Exact Matching

L’s pattern matching enables the consumer of a datum to specify some constraints
over the accessed tuple (i.e., the values occurring at some precise positions of the tuple).
A symmetric capability is not available for the producer of a tuple, i.e. it cannot spec-
ify any constraint over the template used for retrieving the tuple. This fact forbids the
storing of reserved data at public tuple spaces. For example, let d be a reserved datum
stored at l, e.g.

l :: 〈d〉

Then, any process knowing l can easily retrieve d with action in(!x)@l.
To provide data producers with the capability of controlling data retrievals, we

slightly extend the syntax of tuples from Table 1 to become

t ::= · · ·
∣

∣

∣ u!

Intuitively, a name marked with a ‘ !’ occurring within a tuple can only be matched by
the very same name occurring at the corresponding position within a template and not

by a formal field. Hence, the pattern matching function of Table 2 must also include the
axiom

match(l; l!) = ε

In particular, both match(!x; l!) and match(l′; l!), with l′ , l, will fail. Let µK ! be
the variant of µK with exact name matching.

In µK !, tuple fields marked with a ‘ !’ act as passwords (of a symmetric cryp-
tographic system) that retrievers must exhibit in order to access the tuple. In this way,
secret data can be freely stored at public TSs; for example, the node

(νn)(l :: 〈n!, d〉 | P)

is safe in that no other process than P can (immediately) access d, whatever be the rest
of the net.

4.4 Nested Tuples

In K and all its variants tuples and templates are plain sequences of fields; roughly
speaking, they are lists of fields. A straightforward generalisation of this definition is
allowing nested tuples/templates, i.e. lists of fields that can contain other lists.

To model nested tuples/templates, we overload notation 〈·〉 and modify the syntax
of tuples and templates from Table 1 to become

t ::= · · ·
∣

∣

∣ 〈t〉 T ::= · · ·
∣

∣

∣ 〈T 〉

The pattern matching function is smoothly adapted to deal with nested arguments. We
just need to add such rules as the following ones

match(T ; t) = σ

match(〈T 〉 ; 〈t〉) = σ
match(!x; t) = [t/x]

to the definition of function match given in Table 2. The first rule extends pattern match-
ing by still requiring that matching templates and tuples have the same structure. The
second rule allows to match entire tuples with a single variable; in such a setting, it
should also be possible to assign entire tuples to variables and to use projection opera-
tors for retrieving each tuple field.

Notice that the two rules must not be necessarily used both at the same time. For
instance, let µKnt be the variant of µK with nested tuples and pattern matching
extended using the first rule above. A simple application is the modelling of tree-like
structures, similar to XML documents. For example, binary trees can be easily obtained
by restricting the syntax of nested tuples as follows

t ::= u
∣

∣

∣ 〈t1〉, u, 〈t2〉

Clearly, trees can be somehow modelled in µK by using tuples corresponding to a
preorder visit of the tree. To univocally identify the tree

〈a〉, b, 〈c〉

in µK we could use the tuple

b, left, a, right, c

where left and right are a reserved names used to delimit the two subtrees. However,
the exact name matching of µK ! is needed in order to faithfully simulate the pattern
matching function of µKnt . Thus, µKnt can be encoded in µK !, but the ease
of programming makes µKnt a valid proposal as well.

4.5 Collecting Multisets of Tuples

We conclude this section with another variant of the matching function, called matchAll,
that permits matching a template T and a multiset of tuplesM, and returning the multi-
set of substitutions induced by all matchings. Notationally, given a component C of the
form 〈t1〉 | · · · | 〈tn〉, we shall useM(C) to denote the multiset of tuples {|〈t1〉, · · · , 〈tn〉|};
we will use] to denote multiset union.

Function matchAll(T ;M) returns a pair consisting of:

1. the multiset Σ of substitutions, containing the elements σ1, . . . σn (corresponding
to the single tuples ti inM that match template T), and

2. the multisetM′ of the tuples t j inM that do not match T .

Function matchAll(T ;M) can be defined in terms of function match given in Table 2 as
follows:

matchAll(T ; {||}) = 〈{||}, {||}〉

matchAll(T ;M) = 〈Σ,M′〉

matchAll(T ;M] {|t|}) =

{

〈Σ] {|σ|},M′〉 if match(T ; t) = σ
〈Σ,M′] {|t|}〉 otherwise

To show its usefulness, we use function matchAll to model the semantics of the
construct forall used in the programming language X-K [1]. Intuitively, process

forall in(T)@l do P

retrieves all the tuples t1, . . . tn located at l that match T , then uses the substitutions
σi = match(T, ti) to execute n instances of P with the different substitutions (i.e.,
Pσ1, . . .Pσn). To formalize the semantics of forall, we find it convenient to make use of
a construct for sequential composition of processes, that we shall write P1; P2. The op-
erational semantics of sequential composition is modelled by the following rules where,
to avoid name capture, we assume that bn(P1) ∩ fn(P2) = ∅:

l :: P1 ≡ l :: nil

l :: P1; P2 ≡ l :: P2

l :: P1 ‖ N 7−→ l :: P′1 ‖ N′

l :: P1; P2 ‖ N 7−→ l :: P′1; P2 ‖ N

Now, the semantics of forall can be modelled as follows:

matchAll(T ;M(〈t1〉 | · · · | 〈tn〉)) = 〈{|σi1 , · · · , σik |},M(C′)〉

l :: forall in(T)@l do P ‖ l′ :: 〈t1〉 | · · · | 〈tn〉 7−→l′ l :: Pσi1 ; · · · ; Pσik ‖ l′ :: C′

N1 7−→l N′1

N1 ‖ N2 7−→l N′1 ‖ N2
N2 does not contain tuples located at l

The two rules above define a new transition relation 7−→l that is parameterized with
respect to the address l of the node where the tuple space is located. This parametriza-
tion is necessary for ensuring that the entire tuple space at l is used as a parameter of
matchAll. The operational semantics of the resulting language is given by the union of
relations 7−→ (defined in Table 3) and 7−→l, for any l.

5 Conclusions

We have briefly presented µK, a simple calculus that retains the main features of
K, and have summarised some recent linguistic extensions that permit the explicit
modelling of inter-node connections and of nodes and links failures. We have then
sketched a research that we are currently pursuing that aims at assessing the impact of
plugging into the calculus more powerful pattern matching mechanisms. By means of
simple examples, we have shown how flexible (but still implementable) pattern match-
ing policies can ease the task of programming global computing application. Clearly, the
study of relative expressiveness, possible encodings and minimality deserves a deeper
attention and will be the subject of future investigations.

References

1. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-K.
In P. Ciancarini and R. Tolksdorf, editors, Proc. of the 7th Int. IEEE Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 110–115. IEEE Computer
Society Press, 1998.

2. L. Bettini, R. De Nicola, and R. Pugliese. K: a Java Package for Distributed and Mobile
Applications. Software – Practice and Experience, 32:1365–1394, 2002.

3. L. Cardelli. Abstractions for mobile computation. In J. Vitek and C. Jensen, editors, Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, number 1603 in
LNCS, pages 51–94. Springer, 1999.

4. S. Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105(1):132-158, 1993.

5. R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

6. R. De Nicola, G. Ferrari, and R. Pugliese. Programming Access Control: The KLAIM Expe-
rience. In C. Palamidessi, editor, Proc. of the 11th International Conference on Concurrency
Theory (CONCUR’00), volume 1877 of LNCS, pages 48–65. Springer-Verlag, 2000.

7. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global com-
puting. Research Report 07/2004, Dipartimento di Informatica, Università di Roma “La
Sapienza”. Available at http://www.dsi.uniroma1.it/˜gorla/publications.htm.

8. R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based
calculi. Research Report 09/2004, Dipartimento di Informatica, Università di Roma “La
Sapienza”. Available at http://www.dsi.uniroma1.it/˜gorla/ publications.htm.
An extended abstract appeared in Proc. of EXPRESS’04, ENTCS.

9. R. De Nicola, D. Gorla, and R. Pugliese. Global computing in a dynamic network of tuple
spaces. In J. Jacquet and G. Picco, editors, Proc. of COORDINATION’05, number 3454 in
LNCS, pages 157–172. Springer, 2005.

10. R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Computer
Science, 34:83–133, 1984.

11. D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

12. D. Gelernter. Multiple Tuple Spaces in Linda. In J. G. Goos, editor, Proceedings, PARLE
’89, volume 365 of LNCS, pages 20–27, 1989.

13. D. Gorla. Semantic Approaches to Global Computing Systems. PhD thesis, Dip. Sistemi ed
Informatica, Univ. di Firenze, 2004.

14. F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceedings of POPL ’00,
pages 352–364. ACM, 2000.

15. F. Orava and J. Parrow. An algebraic verification of a mobile network. Journal of Formal
Aspects of Computing, 4:497–543, 1992.

16. J. Parrow. An introduction to the pi-calculus. In J. Bergstra, A. Ponse, and S. Smolka, editors,
Handbook of Process Algebra, pages 479–543. Elsevier Science, 2001.

